Created
November 26, 2021 17:04
-
-
Save DavidMStraub/813bd0c4296837936a188a29c8d8b981 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# $f_\\pi$-$f_K$\n", | |
"\n", | |
"The idea is to use $f_\\pi$ from FLAG without using data and then the $f_\\pi/f_K$ average to determine the $f_\\pi$-$f_K$ correlation\n", | |
"\n", | |
"FLAG 19:\n", | |
"\n", | |
"$$f_\\pi^\\pm=130.2(0.8)$$\n", | |
"$$f_K^\\pm/f_\\pi^\\pm=1.1932(19)$$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(array([130.1994679 , 155.35374008]),\n", | |
" array([0.800003 , 0.98593355]),\n", | |
" 0.9680247482084436)" | |
] | |
}, | |
"execution_count": 27, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"N = 10000000\n", | |
"\n", | |
"fpi = np.random.normal(130.2, 0.8, N)\n", | |
"rpiK = np.random.normal(1.1932, 0.0019, N)\n", | |
"fK = fpi * rpiK\n", | |
"\n", | |
"mn = np.mean([fpi, fK], axis=1)\n", | |
"cov = np.cov([fpi, fK])\n", | |
"err = np.sqrt(np.diag(cov))\n", | |
"corr = cov[0, 1] / err[0] / err[1]\n", | |
"\n", | |
"mn, err, corr" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[1. , 0.96802475],\n", | |
" [0.96802475, 1. ]])" | |
] | |
}, | |
"execution_count": 31, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"cov / np.outer(err, err)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"r_check = np.random.multivariate_normal(mn, cov, N)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 29, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(array([130.19955211, 155.35393757]), array([0.80014574, 0.98598111]))" | |
] | |
}, | |
"execution_count": 29, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.mean(r_check, axis=0), np.std(r_check, axis=0)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 30, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(1.1931987232851002, 0.0019000841634458055)" | |
] | |
}, | |
"execution_count": 30, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"_x = r_check[:, 1] / r_check[:, 0]\n", | |
"np.mean(_x), np.std(_x)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Check in flavio" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import flavio\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"par_r = flavio.default_parameters.get_random_all(size=100000)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(1.1935458482977104, 0.0019292902546725911)" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"r = par_r['f_K+'] / par_r['f_pi+']\n", | |
"np.mean(r), np.std(r)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(1.1935424579239557, 0.0019221587127443874)" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"r = par_r['f_K0'] / par_r['f_pi0']\n", | |
"np.mean(r), np.std(r)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"1.1935483870967742" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"0.1554/0.1302" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.7" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment