Created
March 21, 2016 16:24
-
-
Save dstndstn/4c824f847c629a66bf62 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"# Maximum Likelihood fitting\n", | |
"\n", | |
"Often one has complicated data sets that cannot easily be modelled by classical statistical techniques. For example, the data may be truncated, or have an additive bias or more complicated effects such that it does not well described by one of the well-known probability distributions.\n", | |
"\n", | |
"## Clusters and field\n", | |
"\n", | |
"As an example of this, consider fitting for the location and velocity dispersion of a group/cluster in redshift-space, where there is an background field population.\n", | |
"\n", | |
"The velocity dispersion, $\\sigma $ is of physical interest because the total mass $M \\propto \\sigma^3 $\n", | |
"\n", | |
"First we set up Python with imports etc." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"from __future__ import print_function\n", | |
"\n", | |
"%matplotlib inline\n", | |
"from pylab import *\n", | |
"\n", | |
"from scipy.stats import norm, uniform\n", | |
"from scipy.optimize import minimize" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"Parameters of the input cluster" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"input_mean = 5000.\n", | |
"input_sigma = 1000.\n", | |
"nclus = 1000.*(input_sigma/1000.)**3\n", | |
"\n", | |
"dmin = 0.\n", | |
"dmax = 10000.\n", | |
"nfield = 100\n", | |
"true_frac = float(nclus)/float(nclus+nfield)\n", | |
"\n", | |
"ndatabins = 100" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Number of cluster members: 1000.0\n", | |
"Actual mean and sigma: 5011.28064422 1010.05331245\n" | |
] | |
} | |
], | |
"source": [ | |
"def makedata(inp_mean, inp_sigma, nclus, dmin, dmax, nfield):\n", | |
" \"\"\"----------------------------------------------------------------\n", | |
" Makes a simulated redshift dataset that includes a group/cluster\n", | |
" superimposed on a uniform density background field\n", | |
" ----------------------------------------------------------------\"\"\"\n", | |
" # mock cluster data\n", | |
" cluster = norm.rvs(loc=inp_mean, scale=inp_sigma, size=int(nclus))\n", | |
" true_mean = mean(cluster)\n", | |
" true_sigma = std(cluster)\n", | |
"\n", | |
" # mock field data\n", | |
" field = uniform.rvs(loc=dmin, scale = dmax-dmin, size = nfield)\n", | |
" # Put the cluster and field data together into a data sample\n", | |
" data = concatenate((cluster, field))\n", | |
" \n", | |
" return (data, true_mean, true_sigma)\n", | |
"\n", | |
"# Generate the cluster\n", | |
"(data, true_mean, true_sigma) = makedata(input_mean, input_sigma, nclus, dmin, dmax, nfield)\n", | |
"print(\"Number of cluster members:\", nclus)\n", | |
"print(\"Actual mean and sigma:\", true_mean, true_sigma)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Here are the data\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEdCAYAAAASHSDrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGmBJREFUeJzt3X+wZGV54PHvwwyM6AjjaDKMAg4hQYlmV0XBJFheWUBc\nFUncAs2GoDGblPsjMVjKjFVbDLtZgkaWTSpJUZtVagIqWIlBMGtkRC5aRhEjmGEUBxWiYObycwQ0\ni8A8+8c5l+l75/a5597bp/v06e+nqmu6zz0/3nPm7X76PE+f90RmIklSPweMugGSpHYzUEiSKhko\nJEmVDBSSpEoGCklSJQOFJKmSgUKSVMlAoYkWEXdFxI8j4uGIeCgivhgRvxMRUWPZTRGxNyJ8H6nT\n7OCadAm8ITMPAY4ELgLOAz60hHUsGlSkcWagkEqZ+UhmXgucBZwTES+KiNdHxC0R8cOI+F5EnN+z\nyOfLf/dExCMRcUJEHB0Rn4uI+yPivoi4IiIOHf7eSINjoJDmycybgbuBVwGPAr+emYcCrwfeGRFv\nKmd9VfnvoZn5zMy8qXz9P4CNwLHAEcDWYbVdaoKBQlrYD4BnZeaNmbkTIDN3AFcCry7n2S/llJnf\nyczrM/PxzLwfuKRnfmksrR51A6SWeh7wYEScQFG3eBFwELAG+Hi/hSJiA/DHwInAMym+jD3YeGul\nBnlGIc0TEa+gCBRfBD4KXA0cnpnrgEvZ975ZaOjlC4EngReX6aqz8X2mMWcHlsoUUkQcEhFvAD4G\nXJ6ZtwFrgYcy8ycRcTzwa+wLEPcBe4Gje9a1FvgR8HBEPA94z5D2QWpMeD8KTbKIuBPYADxB8aG/\nE7gCuDQzMyLeDFwMrAduBO4E1mXmb5TLXwC8kyKNexpF8fsvgRcAd5TreldmHjnM/ZIGqfFAERF3\nAQ9TnI4/npnHR8R64Crg+cBdwJmZuafRhkiSlmUYqacEpjLzpZl5fDltM7A9M48Bri9fS5JaaFg1\nivk/Izwd2FY+3wacMaR2SJKWaFhnFJ+NiK9GxH8op23IzJny+QxFjliS1ELDuI7ilzPznyPip4Dt\nEXF77x/LgqEVdUlqqcYDRWb+c/nvfRHxN8DxwExEHJaZuyNiI3Dv/OUMHpK0PJk50IEqG009RcTT\nI+KZ5fNnAKcCO4BrgHPK2c6huKBpP5npI5Pzzz9/5G1oy2PUx6LsmcxeSjHJx6JND4/FvkcTmq5R\nbAC+EBG3AjcBn8rM6yiGRDglInYBJ5Wv1WJbt466BWor+0b3NZp6ysw7gZcsMP1B4OQmty1JGgyH\n8BgDU1NTo25Ca741tuFYtEVbjkUb+kZbjkVXtXYIj4jItrZNk6u4Q+psv4zGcsLSckUEOU7FbHVH\nG741qp3sG91noJAkVTL1JC2BqSe1naknSdLQGShUi3lo9WPf6D4DhSSpkjUKaQmsUajtrFFIkobO\nQKFazEOrH/tG9xkoJEmVrFFIS2CNQm3XRI1iGHe4k8ZCEQT2MQhIBVNPqmVy8tD7bkqkeianb0wu\nA4UkqZI1CqlUp/5gjUJt53UUkqShM1CoFvPQ6se+0X0GCklSJWsUUskahbrAGoUkaegMFKqli3no\niJjz0PJ0sW9oLq/M1oTrTR0ZLKSFWKPQxJpbb4AiUFij0HizRiFJGjoDhWoxD61+7BvdZ6CQJFWy\nRqGJZY1CXWSNQpI0dAYK1WIeWv3YN7rPQCFJqmSNQhPLGoW6yBqFJGnoDBSqxTy0+rFvdJ+BQpJU\nqfEaRUSsAr4K3J2Zb4yI9cBVwPOBu4AzM3PPAstZo1Cj6tYo9h9Z1hqF2mtcaxS/B3yDfe+uzcD2\nzDwGuL58LbVcMjeoSJOj0UAREYcD/xb4P+wbw/l0YFv5fBtwRpNt0GCYh1Y/9o3ua/qM4hLgPcDe\nnmkbMnOmfD4DbGi4DZKkFWjsxkUR8Qbg3sy8JSKmFponMzMi+p7Pb+35qjI1NcXU1IKr0RD4rVH9\n2DdGa3p6munp6Ua30VgxOyIuBM4GngCeBhwCfAJ4BTCVmbsjYiNwQ2a+cIHlLWarUUsrZmflPFJb\njFUxOzPfl5lHZOZRwFuAz2Xm2cA1wDnlbOcAVzfVBg2O3xrVj32j+4Z5HcXsV6+LgFMiYhdwUvla\nktRSjvWkiWXqSV00VqknSVI3GChUi3lo9WPf6D4DhSSpkjUKTSxrFOqiJmoUjV1wJ7XF/EH9Rvnh\nvv8Ag/sYdNRWpp5Uy/jnods0qF9vW9rUruUZ/76hxRgoJEmVrFGo8/rd53oUNQrrHWqa11FIkobO\nQKFaJjEPHRGVxWcVJrFvTBoDhdTX+BeapUGwRqHOW26Nos5zaxRqG2sUkqShM1Coli7loa09DFaX\n+oYWZqDQBLL2IC2FNQp1XlVdwBqFusYahSRp6AwUqsU8tPqxb3Sfo8dKDWjTiLXSSlmjUOeNokZR\n79oNaxQaPGsUkqShM1CoFvPQ6se+0X0GCklSJWsU6jxrFJok1igkSUNnoFAt5qHVj32j+wwUkqRK\n1ijUedYoNEmsUUiShs5AoVrMQ6sf+0b3GSgkSZWsUajz2lCjmMsahZpjjUIaW95VT+PLQKFazEOr\nH/tG9xkoJEmVGqtRRMTTgBuBNcBBwCczc0tErAeuAp4P3AWcmZl7FljeGoUGoh01isHff1tayFjV\nKDLz/wGvycyXAP8KeE1EnAhsBrZn5jHA9eVrSVJLNZp6yswfl08PAlYBDwGnA9vK6duAM5psgwbD\nPLT6sW90X6OBIiIOiIhbgRnghszcCWzIzJlylhlgQ5NtkCStzFCuo4iIQ4HPAFuAT2Tms3r+9mBm\nrl9gGWsUGghrFJokTdQoVg9yZf1k5g8j4m+B44CZiDgsM3dHxEbg3n7Lbe05p52ammJqaqrppqoj\nig/q8bRQ2w0i6md6eprp6elGt7HoGUVZgD4f2MS+wJKZ+TOLLPcc4InM3BMRB1OcUVwAvBZ4IDPf\nHxGbgXWZuV9B2zOKdtm6dbxy0Uv/Rl93vubPKOYuW72dNhi3vtF1ozqj+BDwLuBrwJNLWPdGYFtE\nHEBRC7k8M6+PiFuAj0fEOyh/Hru0JkuShqnOGcVNmXnCkNrTu13PKLRsnlFoUo3qjOKGiPgj4BPA\nY7MTM/Nrg2yItFTm8qXhqPPz2FcCLwcuBC7ueWiCtDcHnT0PjUJ7+4YGZdEzisycGkI7JEkt1bdG\nERFnZ+blEfFuFkjkZub/bLRh1ii0iKpcvjUKTaph1yieXv77TPq/myRJHecd7lRLW34rv38Bux1n\nFAtf4De4M4o5a23Z+6ItfUOFkYweGxFHR8S1EXF/RNwXEZ+MiMqL7aRmtbV43WRhva37rElQ6zoK\n4E+BK8tJZwH/pelrKzyj0EL6nykUr0d7RjGcdfm+UJVR3Y/i4My8PDMfLx9XAE8bZCMkSe3VN1BE\nxPqIeDbw6YjYEhGbysd5wKeH10S1gTno5kXEWA5maN/ovqpfPX2Nuee/v13+O3se7J3ppIHqTUlJ\n7eGvnjRWulyjqNsu3xeqMlb3zJYkdYOBQrWYh1Y/9o3uqwwUUThiWI2RJLVPZY0iisTrjsx88fCa\n9NS2rVFoP9YorFGo2tBrFOUn9T9ExPGD3KgkaXzUvR/FlyLiuxGxo3z8Y9MNU7uYh1Y/9o3uq3OH\nu9c23gppTI3jBXLSUtW6jiIiXgX8bGZeFhE/BazNzDsbbZg1Ci2gbTWKUazL94WqjGr02K3Ae4Et\n5aSDgCsG2QhJUnvVqVH8CvAm4EcAmXkPxc2MNEHMQ6sf+0b31QkUj2Xm3tkXEfGMBtsjSWqZOvej\neA/ws8CpwB8Cvwl8NDP/pNGGWaOYaPOLxIvXHorX1ig06ZqoUdQtZp9KESgAPpOZ2wfZiD7bNFBM\nsPkf9AYKA4XqGeWggDuALwCfL59rwpiHVj/2je6r86un3wJuAn4VeDNwU0S8o+mGSZLaoU6NYhfw\ni5n5QPn62cCXMvOYRhtm6mmimXpaWuqpX01Hk2dUqaf7gUd7Xj9aTpPUKsncACMNRp1A8R3gyxGx\ntbz47svAHRHx7og4t9HWqTXMQ6sf+0b31Rnr6TvlY/aryifL52ubapQkqT28Z7ZayRrFcmoU/oRW\nzdQo6pxRSEPhSKxSO3nPbNUyvDy0BdlxY42i+wwUkqRKfWsUEXF+n2USIDP/W1ONKrdvjWLCVNUV\nrFFYo1A9w76O4kcU10z0PhJ4B3BenZVHxBERcUNE7IyI2yLid8vp6yNie0TsiojrImLdynZDUq+I\nmPOQVqJvoMjMD2bmxZl5MfAXwMHA24ErgaNqrv9x4Pcz80UU997+TxFxLLAZ2F5e3X19+VotZh56\n3CTDqvfYN7qvskYREc+OiD8Avg4cCLwsM8/LzHvrrDwzd2fmreXzR4FvAs8DTge2lbNtA85YZvsl\nSQ2rqlF8kOLudv8b+PPMfGRFG4rYBNwIvBj4XmY+q5wewIOzr3vmt0YxYaxRDK5G0e+4qPuGej+K\niNgL/IQifTRfZuYhtTcSsZYiSPz3zLw6Ih7qDQwR8WBmrp+3jIFiwhgoDBRauaFecJeZA/npbEQc\nCPw1cHlmXl1OnomIwzJzd0RsBBZMZW3tSX5OTU0xNTU1iCZpGbZuHY9ctIXb4RuXvtFV09PTTE9P\nN7qNRofwKNNK24AHMvP3e6Z/oJz2/ojYDKzLzM3zlvWMokWG8WEwiDOKtp4FdPmMwkDRLiO7Feqy\nVx5xIsVd8f6RfT13C/AV4OPAkcBdwJmZuWfesgaKCWOgGM9AoXYZu0CxEgaKyWOgMFBo5UZ5z2xN\nOFML6se+0X0GCklSJVNPag1TT6aetHKmniRJQ2egUC1N5aEduG44mjzO1ii6z0ChFkjmpko0eB5j\nLZ81Co1U3aE2rFGsrEax2PLqDmsUkqShM1CoFvPQ6se+0X19BwWUmrDcYqrFbml0rFFoqObm0qE9\ndYE2tcUahZbPGoUkaegMFKrFPLT6sW90nzUKNWJ+TcF0R3v0/t/4/6I6rFGoEfNz5gtfB1H8rR11\ngTa1pdkahfWKbrNGIUkaOgOFajEPrX7sG91noJAkVbJGoUbsnzPv1ca6QJvasti69lnpGFi+x7rH\nGoXGWOLopYPisdRwGShUi3lo9WPf6D4DhSSpkjUKNaLefSaq/maNot66elmjkDUKSfuxXqHmGShU\ni3lo9WPf6D4DhSSpkjUKNcIaRVvWVT2f77HuaaJG4eixkuZw5F/NZ+pJtZiHnjT1i+T2je4zUEiS\nKlmjUCOsUbRlXdXz1bm3he/D8WKNQlIj5tclpF6mnlSLeehJsLyL9+wb3WegkCRVskahRlijaMu6\nqudb/H4W1ijGjWM9SZKGrtFAEREfjoiZiNjRM219RGyPiF0RcV1ErGuyDRqMOnnoiHjqoclhjaL7\nmj6juAw4bd60zcD2zDwGuL58rc5wNFOpaxqvUUTEJuDazPyF8vXtwKszcyYiDgOmM/OFCyxnjWLM\n1KtLjGcuf3zXVT2fNYru6UqNYkNmzpTPZ4ANI2iDJKmmkV5wl5kZEX2/rmztSX5OTU0xNTU1hFZp\nIVu3movWwgMG2jdGa3p6munp6Ua3MYpAMRMRh2Xm7ojYCNzbb8at9j6phXpTVBq1+V+iL7jggoFv\nYxQ1ig8AD2Tm+yNiM7AuM/craFujGD/WKNq4rur5llqjcByo9hu7GkVEfAz4e+AFEfH9iHg7cBFw\nSkTsAk4qX0uSWqrRQJGZb83M52bmQZl5RGZelpkPZubJmXlMZp6amXuabIMGwyyg+rFvdJ+jx2pF\nvLhO6j7HetKKLL0uMZ65/PFdV/V81ii6Z+xqFJKk8WegUC3modWPfaP7DBSSpErWKLQi1ijavq7q\n+axRdI81CknS0BkoVIt5aPVj3+g+A4UkqZI1Cq2INYq2r2ux+Xotv0ax0KiyGg1rFJIGLJkbVNqy\nLrWJgUK1mIdWP/aN7jNQSJIqWaOYcHVyy1XzWKNo+7oG0Zb5Fr8Oo99711pG85qoUTh6rKj+UFjK\nPOqm+UFnUOuzL40LU0+SVsQaRfcZKCRJlaxRDNA45l/r5Jar5rFG0fZ1NduW/mNF7TNpY0WN+nPA\n6yjGgr8ll3wfdGv/DRSSVsQaRfcZKCRJlca6RrF7924uvPAD7N1bvF61Ci655IMccMBo4t845l+t\nUbSxLeOzX97PYn+j3scmahRjHSh27tzJccedxGOPnVdOeTdPPPEEq1atar6BCxh1B1mO5QSK/bXz\nQ2x82zJO+9Vr6YFiztIDer+0oZjctUAx9qmnNWueA5wLnEvE2O/OmMiehybbSvtBU/3I/jlIfrJK\nkioZKCRJlRzrqUVWmludv3yVxda9lHVJg9SOGsPott/PKNtloGidqqLxUpevKkgOoy3Sco267416\n+/2Mpl2mniRJlQwUkqRKBgpJUqXO1ShWr567S3OvHN1/+ko1WfQdRfHKIrZGpV/f653elsLyIC20\n323bz84FikKdK0eHsb1BrbeJdS+2TQOGhm3Y79s2GcV7vT5TT5KkSgYKSVKlkQWKiDgtIm6PiDsi\n4rzFl1j2dirz7rN/7/dYbJmltqPuNpayjuVYybLSUqy0r/ZbVxPvh6ZrjnW3M4z2LMVIAkVErAL+\nFDgN+HngrRFxbDNbqzM4WO88dQe8W86gYwttp47pFS6/WFukJg1yEMn56xq390TdbbTr/TmqM4rj\ngW9n5l2Z+ThwJfCmEbVlDEyPugGSJtioAsXzgO/3vL67nCZJaplR/Tx2YOdU//Iv/8Qhh7wRgIcf\n3juo1UqSSqMKFPcAR/S8PoLirGKOuoWcxx//1PwlF30+d939nle1YanbWHlbVrZ8vXUt/fmol+9q\nW7q6X8NvS/2C8EqXX3hd/d6f/d+3y1m+WSO5FWpErAa+Bfwb4AfAV4C3ZuY3h94YSVKlkZxRZOYT\nEfGfgc8Aq4APGSQkqZ1GckYhSRofrbsye1gX4o1SRBwRETdExM6IuC0ifrecvj4itkfEroi4LiLW\n9SyzpTwmt0fEqT3Tj4uIHeXf/ngU+zMIEbEqIm6JiGvL1xN5LCJiXUT8VUR8MyK+EREnTPCx2FK+\nR3ZExEcjYs2kHIuI+HBEzETEjp5pA9v38lheVU7/ckQ8v7JBmdmaB0Ua6tvAJuBA4Fbg2FG3q4H9\nPAx4Sfl8LUW95ljgA8B7y+nnAReVz3++PBYHlsfm2+w7G/wKcHz5/P8Cp416/5Z5TM4FPgJcU76e\nyGMBbAN+s3y+Gjh0Eo9FuT/fBdaUr68CzpmUYwG8CngpsKNn2sD2HfiPwJ+Xz88Crqxsz6gPyLyD\n84vA3/W83gxsHnW7hrDfVwMnA7cDG8pphwG3l8+3AOf1zP93wCuBjcA3e6a/Bbh01PuzjP0/HPgs\n8Brg2nLaxB2LMih8d4Hpk3gs1lN8gXoWRcC8Fjhlko5F+aHfGygGtu/lPCeUz1cD91W1pW2pp4m7\nEC8iNlF8c7iJohPMlH+aATaUz5/L3J8Pzx6X+dPvYTyP1yXAe4DeC2Em8VgcBdwXEZdFxNci4i8i\n4hlM4LHIzAeBi4HvUfwyck9mbmcCj0WPQe77U5+1mfkE8MOIWN9vw20LFBNVWY+ItcBfA7+XmY/0\n/i2LUN/54xERbwDuzcxb2P/H5MDkHAuKb3Yvo0gJvAz4EcVZ9VMm5VhExNHAuyi+VT8XWBsRv947\nz6Qci4UMe9/bFihqXYjXBRFxIEWQuDwzry4nz0TEYeXfNwL3ltPnH5fDKY7LPeXz3un3NNnuBvwS\ncHpE3Al8DDgpIi5nMo/F3cDdmXlz+fqvKALH7gk8Fi8H/j4zHyi/8X6CIjU9icdi1iDeE3f3LHNk\nua7VwKHlWdyC2hYovgr8XERsioiDKIos14y4TQMXxSWVHwK+kZn/q+dP11AU7Cj/vbpn+lsi4qCI\nOAr4OeArmbkbeLj8ZUwAZ/csMxYy832ZeURmHkWRQ/1cZp7NZB6L3cD3I+KYctLJwE6K/PxEHQuK\nfPwrI+Lgch9OBr7BZB6LWYN4T3xygXX9O+D6yi2PumCzQAHndRRFrG8DW0bdnob28USKfPytwC3l\n4zSKAt5ngV3AdcC6nmXeVx6T24HX9kw/DthR/u1PRr1vKzwur2bfr54m8lgA/xq4Gfg6xbfoQyf4\nWLyXIlDuoPg12IGTciwozq5/APyEopbw9kHuO7AG+DhwB/BlYFNVe7zgTpJUqW2pJ0lSyxgoJEmV\nDBSSpEoGCklSJQOFJKmSgUKSVMlAIUmqZKCQJFUyUEjzlDd1uTEKm3pvHrPM9V0aEb9Usa3PR4Tv\nRbWWnVPa378HPpWDG7bgBOBLC/0hMx8DvgCcMaBtSQNnoJD291b2DZ72lIj4mfI+ES8vbzl5WUR8\nKyI+EhGnRsQXy9tUvqJnmWMpxuY5OCL+NiJuLW9NeWbPqq8ptym10upRN0BqWkS8Hvhp4FSKW0i+\nsXx8HfhWZn64Z95VwIszc9e8dbyAYqC2c4BHgKOBN1OMaHozcFZm/nJEnE4xQNuvlIu+Dvg0xaCP\n92Tm68v1HdKz+lsphluXWskzCnVaOWT3b2TmZcDbMvN7mflnwG9TDMf8l/MWeQ5FIOj10xRDOv9a\nZs7WK+7MzJ1lemonxaieALdR3Gxn1qkUt53cAZwSERdFxImZ+fDsDGX66YCIeNoKd1dqhIFCXfc2\n4Ap46gOZiFgH/BnwO1ncFGe++Xfa2wP8E8UN72c91vN8L8Vw0LPPV5fbeTrFUNC7M/MOilve7gD+\nICL+6wLbdChntZKpJ3Xdaor7LhMRh1N8IP8hxW02H4uIF2bm7T3z3w+snbeOnwC/CnwmIh6lT2F6\nAa8BPldueyPwUGZ+JCJ+CLxjdqaIWAM8ORvIpLYxUKjrLgXOiogjKb6xPwlcAJxLERB+q3fmzHwy\nIm6LiBdk5rf2Tc4fl/f33k6Rnpr/7T8XeP46ipvDAPwC8EcRMXv28c6e+V9K/eAjDZ03LpLmiYi3\nARsy8/0rXM8/AMdn5pOLzHchcHNm/s1Ktic1xUAhzVPer/2zwKsHeC1Fv22toThLaXxb0nIZKCRJ\nlfzVkySpkoFCklTJQCFJqmSgkCRVMlBIkioZKCRJlQwUkqRKBgpJUqX/Dzh+/ashE4EJAAAAAElF\nTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1130a6410>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11337cd90>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def plot_data(data, true_mean=None, true_sigma=None, ndatabins=100):\n", | |
" \"\"\"--------------------------------------------------\n", | |
" Plots a histogram of the input data set.\n", | |
" Optionally also shows the cluster mean and dispersion\n", | |
" -----------------------------------------------------\"\"\"\n", | |
" hist(data, ndatabins)\n", | |
" title('Data')\n", | |
" xlabel(r\"$cz$\"+\" (km/s)\")\n", | |
" ylabel(\"N per bin\")\n", | |
"\n", | |
" if true_mean: axvline(true_mean, ls='dotted')\n", | |
" if true_sigma:\n", | |
" axvline(true_mean+2*true_sigma, ls='dotted')\n", | |
" axvline(true_mean-2*true_sigma, ls='dotted')\n", | |
"\n", | |
"print(\"Here are the data\")\n", | |
"plot_data(data, true_mean, true_sigma)\n", | |
"show()\n", | |
"clf()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"A common way of dealing with the background is sigma-clipping.\n", | |
"\n", | |
"(Of course, it's not obvious which is the appropriate multiple of sigma is to clip. 2.5? 3? 5?)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": true, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"def sigma_clip(data, mean_in, sigma_in=1000., n_sigma=2.5):\n", | |
" \"\"\"--------------------------------------------------\n", | |
" Rejects data that are outside the +- n_sigma range\n", | |
"\n", | |
" Returns new mean, new sigma and clipped data set\n", | |
" --------------------------------------------------\"\"\"\n", | |
" vlo = mean_in - n_sigma*sigma_in\n", | |
" vhi = mean_in + n_sigma*sigma_in\n", | |
"\n", | |
" inrange = logical_and(data > vlo, data < vhi)\n", | |
" select = data[inrange]\n", | |
"\n", | |
" new_mean = mean(select)\n", | |
" new_std = std(select)\n", | |
" \n", | |
" return (new_mean, new_std, select)\n", | |
"\n", | |
"def clip_loop(data, mean_in, sigma_in=1500., n_sigma=2.5, verbose=True):\n", | |
" \"\"\"----------------------------------------------------------\n", | |
" Repeatedly sigma_clips until no further data are rejected\n", | |
"\n", | |
" Returns final mean, final sigma and final clipped data set\n", | |
" ----------------------------------------------------------\"\"\"\n", | |
"\n", | |
" done = False\n", | |
" # First pass\n", | |
" (new_mean, new_std, select) = sigma_clip(data, mean_in,\n", | |
" sigma_in=sigma_in,\n", | |
" n_sigma=n_sigma)\n", | |
" n_select_old = len(select)\n", | |
"\n", | |
" while not done:\n", | |
" (new_mean, new_std, select) = sigma_clip(data, true_mean,\n", | |
" new_std, n_sigma=n_sigma)\n", | |
" n_select = len(select)\n", | |
" if verbose: print(n_select, \"galaxies selected range from:\",min(select), \" to:\", max(select))\n", | |
" if verbose: print(\"mean:\", new_mean, \"and sigma:\", new_std)\n", | |
" if n_select == n_select_old: done = True\n", | |
" n_select_old = n_select\n", | |
" return (new_mean, new_std, select)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"Now we do the actual interative clipping." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1051 galaxies selected range from: 2201.88682939 to: 7820.80869449\n", | |
"mean: 4999.78323514 and sigma: 1031.34735404\n", | |
"1040 galaxies selected range from: 2454.38948783 to: 7549.74801179\n", | |
"mean: 4996.82426312 and sigma: 999.081442304\n", | |
"1035 galaxies selected range from: 2546.96150981 to: 7492.31527491\n", | |
"mean: 4994.35822934 and sigma: 985.826302644\n", | |
"1033 galaxies selected range from: 2546.96150981 to: 7465.0727843\n", | |
"mean: 4989.52428938 and sigma: 980.633825645\n", | |
"1030 galaxies selected range from: 2587.84701239 to: 7424.63003158\n", | |
"mean: 4991.86166136 and sigma: 973.094798558\n", | |
"1030 galaxies selected range from: 2587.84701239 to: 7424.63003158\n", | |
"mean: 4991.86166136 and sigma: 973.094798558\n" | |
] | |
} | |
], | |
"source": [ | |
"(clip_mean, clip_std, select) = clip_loop(data, true_mean)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"The final result is generaly OK for rich clusters with a high contrast between cluster and field.\n", | |
"\n", | |
"For poorer systems its not clear how well it works. " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"## Maximum likelihood\n", | |
"\n", | |
"The better way to do this is *maximum likelihood*.\n", | |
"\n", | |
"For a choice of mean and sigma, and the (prior) probability that one is in the cluster, one can calculate the probabiilty of observing a galaxy between\n", | |
"$v$ and $v+dv$. In fact we drop the $dv $ term since it doesn't matter:\n", | |
"with likelihoods we only care about relative probabilities: a small quantity $dv $ would rescale all probabilities by some constant factor.\n", | |
"\n", | |
"We will be varying the parameters of the model (in this case: mean, sigma, p_clus) to find which combination maximises the posterior likelihood\n", | |
"\n", | |
"(Note that the priors here are assumed to be uniform, but they need not be: a non-uniform prior could easily be added to the functions below.) " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": true, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"def likelihood(mean, sigma, p_clus, data):\n", | |
"\n", | |
" \"\"\"---------------------------------------------------------------\n", | |
" Calculate the likelihood of each member of the data set\n", | |
" for a given model based on a cluster with a mean and dispersion\n", | |
" plus a prior probability that a data point is in the cluster.\n", | |
" \n", | |
" Returns an array of probabilities same length as data.\n", | |
" ---------------------------------------------------------------\"\"\"\n", | |
" p_field = 1. - p_clus\n", | |
" \n", | |
" clus = norm(loc=mean, scale=sigma)\n", | |
" field = uniform(dmin, dmax-dmin)\n", | |
" \n", | |
" p = p_clus*clus.pdf(data) + p_field*field.pdf(data)\n", | |
"\n", | |
" return p\n", | |
"\n", | |
"def loglikelihood(mean, sigma, p_clus, data):\n", | |
"\n", | |
" p = likelihood(mean, sigma, p_clus, data)\n", | |
" logp = log(p)\n", | |
" loglike = sum(logp)\n", | |
" return loglike" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": true, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"def gridsearch(means, sigmas, fracs, data):\n", | |
" \"\"\"---------------------------------------------\n", | |
" Brute force grid search for maximum\n", | |
"\n", | |
" Input: means, sigmas, fracs are numpy arrays.\n", | |
" ---------------------------------------------\"\"\"\n", | |
"\n", | |
" maxlike = None\n", | |
" for mean in means:\n", | |
" for sigma in sigmas:\n", | |
" for frac in fracs:\n", | |
" like = loglikelihood(mean, sigma, frac, data)\n", | |
" if maxlike:\n", | |
" if like > maxlike:\n", | |
" maxlike = like\n", | |
" maxmean = mean\n", | |
" maxsig = sigma\n", | |
" maxfrac = frac\n", | |
" else:\n", | |
" maxlike = like\n", | |
" maxmean = mean\n", | |
" maxsig = sigma\n", | |
" maxfrac = frac\n", | |
"\n", | |
" return (maxmean, maxsig, maxfrac, maxlike)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": true, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"def findmax(data, frac):\n", | |
" \"\"\"-------------------------------------------------------------------\n", | |
" Finds the global maximum\n", | |
" \n", | |
" First do a coarse grid search over a wide range of plausible values.\n", | |
"\n", | |
" Then refine with a smaller step size\n", | |
" --------------------------------------------------------------------\"\"\"\n", | |
" means = arange(dmin,dmax,100.)\n", | |
" sigmas = arange(100.,2000.,100.)\n", | |
" (maxmean, maxsig, maxfrac, maxlike) = gridsearch(means, sigmas, frac, data)\n", | |
"\n", | |
" means = arange(maxmean-100., maxmean+100., 10.)\n", | |
" sigmas = arange(maxsig-100., maxsig+100., 10.)\n", | |
" (maxmean, maxsig, maxfrac, maxlike) = gridsearch(means, sigmas, frac, data)\n", | |
"\n", | |
" return (maxmean, maxsig, maxfrac, maxlike)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"Now we actually find the maximum" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"4990.0 1000.0 0.909090909091 -9386.5179244\n" | |
] | |
} | |
], | |
"source": [ | |
"frac = array([true_frac])\n", | |
"(maxmean, maxsig, maxfrac, maxlike) = findmax(data, frac)\n", | |
"print(maxmean, maxsig, maxfrac, maxlike)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": true, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"def plotlike(x, xlike, xtrue=None, type='log',\n", | |
" xlab=None,ylab=None, plot_title=None):\n", | |
"\n", | |
" if type is not 'log':\n", | |
" plot(x, exp(xlike))\n", | |
" ylim(0.,1.)\n", | |
" axhline(0., ls='dashed')\n", | |
" axhline(exp(-2.), ls='dashed')\n", | |
" axhline(exp(-8.), ls='dashed')\n", | |
" if not ylab: ylab = r\"$\\mathcal{L}$\"\n", | |
" else:\n", | |
" plot(x, xlike)\n", | |
" ylim(-18.,1.)\n", | |
" axhline(0., ls='dashed')\n", | |
" axhline(-2., ls='dashed')\n", | |
" axhline(-8., ls='dashed')\n", | |
" if not ylab: ylab = r\"$\\ln \\, \\mathcal{L}$\"\n", | |
" \n", | |
" if xtrue: axvline(xtrue, ls='dotted') \n", | |
" if xlab: xlabel(xlab)\n", | |
" ylabel(ylab)\n", | |
" if plot_title: title(plot_title)\n", | |
" show()\n", | |
" clf()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": false, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEdCAYAAADNU1r0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8VGXd9/HPj0OgoIKSqCCCIKCCiAe0FN3mITzkoR4r\ns9vUysrK8n4szXoeMdM00/J+mbcdtJS8MX28zVMewNst5gkFRAE5ekABERUVhUD3/j1/XGvLOMyG\nvWfPzLXWmu/79ZoXM2vWzPqtvTfzneu61lqXuTsiIiLl6BS7ABERyS6FiIiIlE0hIiIiZVOIiIhI\n2RQiIiJSNoWIiIiUTSEimWdmzWa2c5mvfcnMDm3lubFmNrdo3c8k9883sz+WV3G7azzBzF4xs1Vm\nNqoW2xRpK4WIRJF8IK9OPhhfM7M/m1mPCKV4ctvwCfdH3H140botz13i7t8EMLOBSZBV6//Tr4Ez\n3X0Ld59ZpW2IlEUhIrE4cIy7bwHsBewD/Kx4JTPrUuvCOsAq/oZmBgwA5lT6vUUqQSEi0bn7UuA+\nYHf4qHvqTDNbAMxLln3TzBaY2ZtmdoeZbV/0Nkeb2SIzW2Fmv0o+fDGzwWb2P2b2RvLcX81sq6LX\njjGz2Wb2lpldb2bdktc2mNkrpWo2s/FmNiF5OCX5920ze9fMDkrqHFGw/rZm9r6ZbVPivczMfpa0\nzpab2Q1mtmVSxyqgMzAz+XmUqqXZzL6T/HzeNbOfJ/v9uJm9bWY3m1nXgvWPMbNnzGylmT1qZiML\nnjvPzBYm7zPbzI4veO5UM/unmV2e/KxeMLNxpWqS+qEQkZhaPuh3BI4EZhQ8dxywL7BbMg5xCXAi\nsD3wMnBz0XsdD+xNaNUcB5xe8NzFyet2BXYExhfV8BXgCGAwMJQSLaISCrvAxib/buXuW7r7lKS+\nrxascxIw2d3fLPFepwFfAxqAnYGewNXuvtbdeybr7OHuu2ykniOA0cD+wLnAH5NtDgBGJvcxs9HA\ndcA3ga2B3wN3FoTMQuBAd98SuBD4q5n1LdjOGGAusA3wq+S9pJ65u2661fwGvET4lr0yuX810C15\nrhloKFj3OuDSgsc9gHXAgIL1jyh4/juED+xS2z0emF7w+EXgjILHRwILk/sNwCtF634muT8emJDc\nH5jU0Klg3f2AlwsePw38r1ZqehD4dsHjocn+dSrYv5038rNsBj5VtK0fFTz+NfCb5P5/Aj8vev1c\n4KBW3nsGcGxy/1RgQcFzmyfb3jb235Nu8W5Z6m+WfHHgOHf/n1aeL+xG2p7wwRhe6P6+mb0J9AMW\nl1h/MbADQPIt+irgQGALQuv7rY1s66PXdoS7P2lma8ysAXiN0Mq5s5XVW1pXhTV0AfoCy9q4yeUF\n99cUPf4XsG1yfyfgFDP7fsHzXZMaMLNTgLMJwQihVVTYBfdayx13X530GvYEXm9jnZIz6s6StCrs\nLlrK+g81kqO4tgGWFKwzoOh+y3OXAE3ACHffCvg3Nvy7L37t0g7UWugGQpfWvwG3uvu6Vtb72P4l\nNXzIx4OgIwrrWwxc7O69C2493f1vZrYT8Afgu8DW7t4bmEUVDhiQ/FCISBZMBE4zs1HJYPMlwBPu\nvrhgnXPMrFcyvnIW8LdkeU/gfeBdM+sH/KjovQ34rpn1M7OtgZ+y4XjLpqwgdOsMLlr+V+DzwMnA\njZvYv7OTQ4V7Jvt3s7s3t7OOQlZ0v+XxH4Fvm9mYZEC/h5kdnWy3ByFw3gA6mdlpwAhENkIhImn0\nsW/27v4g8H+A2wjf2gcBXy56zR3ANEIf/t3A9cnyCwmD7e8AdyXvUfj+DtwEPAAsAhYAv2itlqLl\nntS3mjB4/2hyxNOYZPkrwHSg2d3/uZH9vR6YQDjK6wVgNVDY3bSpSX9KPV+8jy21TiMMql9N6NZb\nAJySPDcHuAJ4nNBtNQL4Z6n3aUdtknPmrr8BkWoxs+uAJe7+f2PXIlINGlgXqRIzG0joztozbiUi\n1aPuLJEqMLOLgOeAX7n7y5taXySr1J0lIiJlU0tERETKlukxETNTM0pEpAzuXpHzfzLfEol9yn81\nbxdccEH0GrR/2r963L8875t7Zb97Zz5ERLJg/PjYFYhUh0JERETKphBJsYaGhtglVFU97V8eWyJ5\n/v3led8qLdOH+JqZZ7l+EZEYzAzXwLpIduSxJSICKQ8RMxtnZnOTaT/PjV2PiIh8XGq7s8ysM2F+\n7cMIc0M8BZzk7s8XrKPuLBGRdqqX7qwxhGlKX3L3DwhzPBwXuSYRESmQ5hDpx8enLX01WSaSOu7w\nxhvw5puln9eYiORVmkOkTf1UZuMLbo2Ytf4fdvx4MNvwpvW1fkfW798fttkGhgyBnXeGwYPhpJPg\nq19dv86FF6a3fq2f//UbGxsZP378R7dKSvOYyP7AeHcflzz+CWGGuMsK1tGYiNScO/zpT3DRRTBy\nJJx9NowaBX36hOfmz4dHH4XLLoNddoErroDhw2NXLbJeJcdE0hwiXQgD64cSpkSdigbWJbK1a+H0\n00NQXH017Ldf6+uuWwe/+x1ccglcfjmcemrNyhTZqEqGSGqv4uvuH5rZ94D7gc7AdYUBIlJrb74J\nxx8PffvClCmw2WYbX/8TnwitlKOOgjFjYOXK8FgkT1LbEmkLtUSkVt55Bw44AI48MnRTdWrnaOLZ\nZ8O998IXvwg//3l1ahRpq7rozmoLhYjUQlMTHHcc7LRT6J4q14oVMHYsnHeeurYkLoVIQiEitXDe\nefDkk/DAA9C1a8fea84cOPhgmDQJ9tyzMvWJtFe9nGwoEt3EiXDLLXDrrR0LkJajKnfbLQzIf+EL\nYYxEJOsUIiKtWL4cfvADuO22cPhupXzpS/C5z4WjvESyTt1ZIq348pdh4EC49NLKv/fatbDHHuHQ\n32OPrfz7i2yMxkQSChGplnvuCa2Q557b9KG85Zo8Gb7xjTBOsvnm1dmGSCkaExGpovfegzPPhGuv\nrVyAlLrSxGGHwac+BRdfXJltiMSgEBEpctll4VDcww6r/rauuAJ+/3uYO7f62xKpBnVniRRYsSJc\n52ratDAeUgtXXBHOgL/jjtpsT0RjIgmFiFTaOefAmjUdO6mwvdasCVf+veceGD26dtuV+qUxEZEq\nWLoUrr8efvrTyr/3xq6+vdlmcO65uhyKZJNCRCRx8cXh3I0ddqj9ts84I5wVP2NG7bct0hHqzhIB\nFi8OXUlz58InPxmnht/+Fh5+GG6/Pc72pX5oTCShEJFK+fGP4cMP4cor49XQMjZy771hkiuRatGY\niEgFvf9+GAv5/vert422zEi62WZw1llw1VXVq0Ok0hQiUvduvBEOOggGDYpdSTiD/fbb4Y03Ylci\n0jbqzpK61twcrqz7hz+EIEmD004L56qce27sSiSv1J0lUiH33x+6kcaOjV3Jet/7HlxzTRijEUk7\nhYjUtd/+Fn74Q7CKfCdrXVvGRFrsvTf06wd33121ckQqx90zewMcfIPbBRd4SRdcsOG6Wr9+1z/r\nrHTVo/W1fq3WDx/9lfkc1piI1K0LLoC3307n0VDr1sGAAeG8kWHDYlcjeaMxEZEOam6GG24Ig9hp\n9IlPwMknw4QJsSsR2TiFiNSlhx6CXr1gzz1rs732jIm0OOWUECLNzRUvR6RiFCJSl/7yl/S2QlqM\nGhWCbsqU2JWItE5jIlJ33nkHdtoJFi6EPn1iV7NxV14Js2aFM+pFKkVjIiIdcMstcOih6Q8QgK98\nJZzB/v77sSsRKU0hInXnxhvha1+r7TbLGRMB2G67MA/73/9e0XJEKkYhInVlyRKYPRvGjYtdSdud\ncko4kkwkjTQmInXlP/4Dpk8PA+tZsXo1bL99GMOJNdeJ5IvGRETKdMstcOKJsaton803h89+Fu64\nI3YlIhtSiEjdWLIE5syBww+v/bbLHRNp8YUvwG23VaQUkYpSiEjduO02OPbYcDZ41hx1FDz6KKxc\nGbsSkY9TiEjduPXWeF1ZHW2JbLEFHHII3HVXRcoRqRiFiNSFlqOyYnRlVYq6tCSNFCJSF2J3ZXW0\nJQLwuc+Fa36tWtXx9xKpFIWI1IU774Tjj49dRcf07g0HHAD/+EfsSkTW03kiknvvvhtmCly2DHr2\njF1Nx/zpT/DAA+FQZZFy6TwRkXa4/3448MDsBwjAMcfApEnwwQexKxEJFCKSe3ffHcYTYqrEmAiE\na2kNHgyPPVaZ9xPpKIWI5FpTUxhDOPro2JVUzlFHwT33xK5CJFCISK5NnRquO7XTTnHrqFRLBEIg\nanBd0kIhIrl2991hHCFP9tkHXn8dXn45diUiChHJubvuij8eApVtiXTuHC5lr9aIpIFCRHLr5ZfD\nYb1jxsSupPI0LiJpofNEJLeuvTZctHDChNiVVN7KlWGcZ/ly2Gyz2NVI1ug8EZE2mDQJjjgidhXV\n0bs3jBoFjY2xK5F6pxCRXGpqCteZOuyw2JUElRwTaXHkkXDffZV/X5H2UIhILk2bFi51sv32sSup\nnsMOgwcfjF2F1DuNiUguXXwxvPEG/OY3sSupnqYm6NMHnn8+nMku0lYaExHZhEmTsj13SFt07gwN\nDWqNSFypDREzG29mr5rZjOQ2LnZNkg3vvRe6sw4+OHYl61VjTATUpSXxpTZEAAeudPfRyU1DiNIm\nU6bA3ntDjx6xK6m+Qw+FyZNBvboSS5pDBKAifXZSX9LYlVWtlsiwYdDcDAsXVuf9RTYl7SHyfTOb\naWbXmVmv2MVINqQxRKrFbH1rRCSGLjE3bmaTgFLHlfwU+E/g58nji4ArgK8Xrzi+4CteQ0MDDQ0N\nlS5TMmTZMli6NHRnpcn48dUdF7njDvjOd6rz/pJ9jY2NNFbpzNRMHOJrZgOBu9x9ZNFyHeIrH3Pz\nzTBxYvhQTZNqhsjSpTByZLiyb+fO1dmG5EtdHOJrZoWniZ0APBerFsmOhx9O11FZLaoVIAA77AB9\n+8Izz1RvGyKtSW2IAJeZ2bNmNhM4GDg7dkGSflOmpDNEqq2hIQSoSK2lNkTc/RR338PdR7n78e6+\nPHZNkm4rVsCSJbDnnrEr2VA1WyIABx0EjzxS3W2IlJLaEBFprylT4IAD6nNcYOzYECLNzbErkXqj\nEJHcSOt4CFS/JdKvH2y1VbiOlkgtKUQkN9IcIrWgLi2JQSEiufDWW/Dii7DXXrErKa3aLREIITJl\nSvW3I1JIISK58Mgj8KlPQdeusSuJZ+zYECI6dUpqSSEiufDww+GbeFrVoiUyeHAYWH/ppepvS6SF\nQkRyod7HQyBcR0tdWlJrChHJvPfeg3nzYN99Y1fSulq0RGB9l5ZIrShEJPOmTg0nGHbrFruS+HSE\nltSaQkQy77HH4NOfjl3FxtWqJbL77mFu+ddeq832RBQiknmPPRaOzBLo1An22w+eeCJ2JVIvFCKS\nac3N4QMz7SFSq5YIhJ/F44/XbntS3xQikmnz5kHv3rBdqanN6pRCRGopE5NStUaTUsl110FjI0yY\nELuS9HjnnXAtrZUr6/vkS2ldXUxKJdIWWRhUr7WttoKBA+HZZ2NXIvVAISKZlpUQqeWYCKhLS2pH\nISKZ9eabYX7xESNiV5I+ChGpFYWIZNYTT4Sz1LMwCVWtWyL7768QkdpQiEhmZaUrK4bhw8PA+nJN\nKi1VphCRzMrC+SEtat0S0UmHUisKEcmk5mZ4+ul0X3QxNnVpSS0oRCST5s2DPn3CLQtq3RIBDa5L\nbShEJJOeekqtkE0ZMwamT4emptiVSJ4pRCSTpk4NH5JZEaMl0nI5mLlza79tqR8KEcmkp57KVojE\nss8+4WclUi26dpZkzrp14Vv2669Djx6xq0m3K6+EF16Aq6+OXYmkia6dJXXt2WdhyBAFSFvsu69a\nIlJdChHJnKlTszeoHmNMBGD0aJg1K7TeRKpBISKZo/GQtuvZEwYNCkEiUg1tChEz28bMehQtG2tm\n3atTlkjr1BJpn332CSdmilRDW1sic4DfFi1bBpxZ2XLaz2zDW2v/YceP1/p5WH/BgtJX7s1K/bVe\nv2VcJC31aP10rF8pbTo6y8wucPcLSyy/2d2/XJXK2kBHZ9WfxkY4//xw8cUsGT8+Xmtk6lT41rdg\nxow425f0iXF01mQzu8TM+hUU0QnYrRJFiLSVzlRvvz32CJeJWbMmdiWSR20KEXd/FLgNuNbMHjWz\n84ExhG4ukZqZPj308WdNzDGR7t1h113hmWfi1SD51eajs9x9mrt/Dvg8sBQYD7xcpbpESpo+Hfba\nK3YV2aPBdamWdh/i6+7L3f0v7j4OmFKFmkRKevddWLIEhg2LXUn7xWyJgE46lOrp0Hki7n5PpQoR\n2ZSZM8NRWV26xK4ke0aP1sC6VIeunSWZcdVVYYD4mmtiV5I9a9dCr17w1luw2Waxq5HYdO0sqUsa\nDylft24wdKjOXJfK61CImNnwShUisikzZmQ3RGKPiYC6tKQ62tW7bGbHAMcCXZNFewGjKl2USLE1\na2DhQth999iVZJdCRKqhvUOUI4DLgQ+SxydXthyR0p57LhyV1a1b7ErKk5aWyMSJsauQvGlviDwL\nvODuTQBmpoMGpSY0HtJxe+4ZwripCTp3jl2N5EV7x0R+Bkw3s4fM7CFgQhVqEtlA1kMkDS2RLbeE\n7bcPR7iJVEp7Q+Ridx/l7oe4+yHA16pRlEixrIdIWmhcRCptk+eJmNmZhLBYXeLp4e6+fTUKawud\nJ1If1q0L5zisWKEpcTvqkkvCuSK//nXsSiSmSp4n0pYxkfnAge7+QfETZnZkJYoQ2Zg5c2DgQAVI\nJYwerQCRytpkd5a7Ty4VIMlz91a+JJGPe+aZMCicZWkYE4H13VlqwEul6Ix1Sb1nn4VROhupIrbb\nLhwmvXhx7EokL6KGiJmdaGazzazJzPYqeu4nZrbAzOaa2RGxapT4Zs7MfoikpSUCGlyXyordEnkO\nOIGiS8qb2W7AlwgzJ44DrklmUpQ6456PEEmT0aM1QZVUTtQPZnef6+7zSzx1HDDR3T9w95eAhYSZ\nFKXOLFsGZqEbJsvS1BLZY49w0qFIJaT12/0OwKsFj18F+rWyruRYSyvEKnIwogCMHBnGmUQqoerT\n+5jZJKDU98jz3f2udryVjiepQzNnhm/OWZemlsjQoWGGyPff12HT0nFVDxF3P7yMly0Bdix43D9Z\ntoHxBf87GxoaaGhoKGNzklYzZ8K4cbGryJcuXWD4cJg9G8aok7guNDY20tjYWJX3TsXMhsl1uM5x\n92nJ492A/yKMg/QDJgNDik9P1xnr+bf77nDTTfk4TyRNrZFTT4UDD4RvfCN2JRJDbmY2NLMTzOwV\nYH/gHjO7F8Dd5wC3AHOAe4EzlRb151//ghdegF13jV1J/uyxh8ZFpDJS0RIpl1oi+TZtWvjGrCOJ\nKm/yZPjFL6BKPRyScrlpiYhsjM5Ur56Wloi+g0lHKUQktfJyZBakazwEYNttoWvXcJSWSEcoRCS1\ndKZ6demkQ6kEhYikknu+urPS1hIBDa5LZShEJJWWLoVOnaBv39iV5JdCRCpBISKpNGtWuDxHXi53\nopaI5JVCRFJp9mwYMSJ2Ffm2666wcCGsXRu7EskyhYik0qxZ+QqRNLZEuneHQYNg7tzYlUiWKUQk\nlWbNCpc8keoaMSK0+kTKpRCR1Gluhjlz8hUiaWyJQPgZK0SkIxQikjovvQS9e0OvXrEryb/ddw+t\nPpFyKUQkdfI4qK6WiOSVQkRSJ2+D6mk2ZEi49Mnq1bErkaxSiEjq5HFQPa0tka5dQ5DoCC0pl0JE\nUkctkdrSEVrSEQoRSZUPP4T58/M3EVVaWyKgcRHpGIWIpMrChdCvH/ToEbuS+qEQkY5QiEiq5LUr\nSy0RySuFiKRKXkMkzQYPhtdeg/fei12JZJFCRFIlj0dmQbpbIp07w9Ch8PzzsSuRLFKISKrMnp3P\nEEk7dWlJuRQikhrr1sGLL8KwYbErqbw0t0RAISLlU4hIaixcCAMGQLdusSupPwoRKZdCRFJjzhzY\nbbfYVVSHWiKSVwoRSY3nn8/fSYZZMWgQrFgBq1bFrkSyRiEiqZHnEEl7S6TlCK1582JXIlmjEJHU\nyHN3VhbsuqsO85X2U4hIKjQ1hWtmDR8eu5LqSHtLBMLPXlfzlfZSiEgqvPwy9OkDPXvGrqR+qSUi\n5VCISCo8/3y+u7Ky0hJRiEh7KUQkFebMye+gelYMHRpO9vzgg9iVSJYoRCQV8nxkFmSjJdK9O/Tv\nD4sWxa5EskQhIqmQ9+6srFCXlrSXQkSic89/d1YWWiIQfgc6QkvaQyEi0S1bFrpSttkmdiWiI7Sk\nvRQiEl3ex0MgOy0RnSsi7aUQkejy3pWVJS3dWe6xK5GsUIhIdGqJpEfv3rD55rBkSexKJCsUIhLd\n3Ln5D5EsUZeWtIdCRKKbNy+fsxkWykpLBDS4Lu2jEJGoVq2Ct98OJ7lJOugwX2kPhYhENX8+7LIL\ndMr5X2KWWiI64VDaI+f/dSXt6qErK2uGD9fkVNJ2ChGJql5CJEstkf79YeVKTZUrbaMQkajqJUSy\npFOn0MW4YEHsSiQLFCIS1dy59REiWWqJgOZbl7ZTiEg0zc3h2+7QobErkWLDhoWDHkQ2RSEi0bz6\nKmy1FWy5ZexKqk8tEckrhYhEM29eOBJI0mfoULVEpG0UIhJNPQ2qZ7UlogsxyqZEDREzO9HMZptZ\nk5ntVbB8oJmtMbMZye2amHVKddRTiGTN1luHOV5eey12JZJ2sVsizwEnAFNKPLfQ3UcntzNrXJfU\nQD2FSNZaIhB+NxoXkU2JGiLuPtfd1fNap+opRLJI4yLSFrFbIhszKOnKajSzA2MXI5X1/vvw+uuw\n006xK6kNtUQkr7pUewNmNgnYrsRT57v7Xa28bCmwo7uvTMZK/m5mu7u7LsSQEwsWwODB0Llz7Eqk\nNUOHwj//GbsKSbuqh4i7H17Ga9YB65L7081sEbALML143fEFX/EaGhpoaGgot1SpoXrrylJLRGJq\nbGyksbGxKu9tnoJj+MzsIeAcd5+WPO4DrHT3JjPbmTDwPsLd3y56naehfmm/iy6C1avhl7+MXYm0\nZu3acDLoqlXQtWvsaqSSzAx3t0q8V+xDfE8ws1eA/YF7zOze5KmDgZlmNgO4FfhWcYBIttXb5U6y\n2BLp1g369YMXXohdiaRZ1buzNsbdbwduL7H8NuC22lcktbJgAZxxRuwqZFNajtCqp65HaZ80H50l\nObZgQbjceL3IYksENC4im6YQkZpbuRLWrYNtt41diWyKzhWRTVGISM21tEKsIsN62ZDVlsiQIbBw\nYewqJM0UIlJz8+fXV1dWlmmGQ9kUhYjUXL2Nh0B2WyI77ggrVsCaNbErkbRSiEjN1WOIZFWXLjBw\nICxaFLsSSSuFiNRcPYZIVlsioHER2TiFiNSUe/2daJh1GheRjVGISE298QZ06gTbbBO7ktrKcktk\nl13UEpHWKUSkpuqxKyvrhgxRS0RapxCRmqrXEFFLRPJKISI1Va8hkmU77hgmENNhvlKKQkRqql5D\nJMstkZbDfHU1XylFISI1Va8hknUaF5HWKESkZloO763HEMlySwQ0LiKtU4hIzSxfDt27Q69esSuR\n9lJLRFqjEJGaqddWCKglIvmlEJGaWbQofKOV7FFLRFqjEJGaWbgQBg+OXUUcWW+JDBigw3ylNIWI\n1MyiRfUbIlnXpQvstJMO85UNKUSkZuq5OyvrLRHQhRilNIWI1Ew9d2flweDBmldENqQQkZpYuRI+\n/BD69IldSRx5aIkMHqzuLNmQQkRqomU8xCx2JVIutUSkFIWI1EQ9j4dAPloiO++sEJENKUSkJjQe\nkn2DBsHixaFbUqSFQkRqot4P781DS6R7d9h2W3j11diVSJooRFKssbExdgkVU6o7K0/7V0oe969w\nXCSP+9ciz/tWaQqRFMvTH3Kp7qw87V8phfuXh5YIfHxcJM+/vzzvW6UpRKTq1qyBt96Cfv1iVyId\npSO0pJhCRKruhRfCJTM6d45dSTx5aYkoRKSYuXvsGspmZtktXkQkInevyFlbmQ4RERGJS91ZIiJS\nNoWIiIiULZUhYmadzWyGmd1VtPx/m1mzmW1dsOwnZrbAzOaa2REFy/c2s+eS566qZf2bUmr/zOz7\nZva8mc0ys8sKlmd+/8xsjJlNTZY9ZWb7Fqybqf0zs5fM7NlkX6Ymy7Y2s0lmNt/MHjCzXgXr52H/\nLk/+Nmea2X+b2VYF62dm/0rtW8Fzmf9saW3/qv7Z4u6puwH/DtwE3FmwbEfgPuBFYOtk2W7AM0BX\nYCCwkPXjPFOBMcn9fwDjYu9Xa/sHHAJMAromjz+Zs/1rBD6b3D8SeCir+1f491ew7FfAj5P75wKX\n5mz/Dgc6Jfcvzer+ldq3ZHkuPlta+d1V/bMldS0RM+sPHAX8CSg8euBK4MdFqx8HTHT3D9z9JcIP\nYj8z2x7Ywt1b0vhG4PiqFt5Grezfd4BfuvsHAO6+Ilmel/1bBrR8e+0FLEnuZ27/EsVHtRwL3JDc\nv4H1teZi/9x9krs3Jw+fBPon97O4f6WOSMrFZ0uieP+q/tmSuhABfgP8CGj5o8XMjgNedfdni9bd\nASi8ks+rQL8Sy5cky9Ngg/0DdgEOMrMnzKzRzPZJludl/84DrjCzxcDlwE+S5VncPwcmm9nTZvbN\nZFlfd1+e3F8O9E3u52X/Cp1O+HYK2du/DfYtZ58tpX53Vf9s6VKR0ivEzI4BXnf3GWbWkCzbHDif\n0KT+aNUI5XVYqf1LdAF6u/v+yXjBLcDOMWrsiI3s33XAWe5+u5mdCFzPx3+fWXKAuy8zs08Ck8xs\nbuGT7u6W7fOXNtg/d38EwMx+Cqxz9/+KW2LZSv3ufgIcUbBOJj9bEqX2r+qfLakKEeDTwLFmdhTQ\nHdiS0JwaCMy0MKNRf2Came1HSMkdC17fn5CiS1jf5G5ZvoT4Ntg/M5tAqPm/Adz9qWSArw/52b8x\n7n5Yss7/I3R1Qfb2D3dflvy7wsxuB8YAy81sO3d/LekOeD1ZPS/794iZnUropjy0YPVM7V+JfTsY\nGEQ+PluMfPQJAAAEyklEQVRa+91V/7Ml9mDQRgaJDgbu2tjgEesHhz5B+GNYxPrBoSeB/QjfLFIz\n+FVq/4BvARcm94cCi3O2f9OBg5P7hwJPZXH/gM0J/cUAPYBHCd9ifwWcmyw/jw0HnrO+f+OA2UCf\novUzs3+t7VvROpn9bNnI767qny1pa4kUK9Ut8NEyd59jZrcAc4APgTM9+SkAZwJ/ATYD/uHu91W5\n1nK01Ho9cL2ZPQesA06BXO3fGcDvzKwbsCZ5nMX96wvcnnxr7QLc5O4PmNnTwC1m9nXgJeCLkKv9\nW0D4sJmUPPe4u5+Zsf0ruW9F62T5s6W1311XqvzZosueiIhI2dJ4dJaIiGSEQkRERMqmEBERkbIp\nREREpGwKERERKZtCREREyqYQERGRsilERESkbAoRyZ3k+kATCh53MbMVVjTJWQxm1s3MHrZgYHIm\ncUfe71oz+/RGtjXFzPT/XKpGf1ySR+8Du5tZ9+Tx4YSLy6Xh8gwnA3d75S4VsR/weKkn3H0t8Ajp\nmu9CckYhInn1D+Do5P5JwESSy3yb2VfN7MlkGtFrW76pm9ntyVwMswrmmxiYTC36h2T5/QXhVI6T\ngDuKF5rZzmY2PZmadKCFKUv/bGbzzOwmMzvCzB61MAXvvslrdgXmu7ubWQ8zu8fMnrEwtekXk7e+\nM9mmSFUoRCSv/gZ8Obno40jClUkxs+GECyR+2t1HEybPOjl5zenuvg+wL3CWmfVOlg8Brnb3EcDb\nwBdKbdDMjjaz08xsopkNMLPvmtl9ZnaZmZ1uZp2BEe4+v+h1wwiXyP+au09LFg8Gfg0MB4YBX3L3\nA4BzCPPrQJhq+N7k/jhgibvv6e4jCdO9QrhSa8nuLpFKUIhILrn7c4R5aE4C7il46lBgb+BpM5sB\nfIZwKWyAH5jZM4TuoR0Js8IBvOjrZ76blrzvx5jZUOAUd/8zcKq7L3b33xGuWLwLYV6cPsCqopdu\nC/wd+EpSc4sX3X120u01G5icLJ9VsP0jWB8WzwKHm9mlZnagu7+b/BzWAp062HoSaVXaLwUv0hF3\nEr7NH0z4AIfQpXWDu59fuGIyE+OhwP7u/i8ze4gwsRbA2oJVmwiXyC52KvBX+OiDGzPrBfyO0ML5\nMLlMd/HMeW8DLwNjgcJZEgu32Uy4jHfL/S5mthnQy91fS7a5wMxGE7rwfmFmD7r7RQX7nIbxIMkh\nhYjk2fXASnefbeun630QuMPMfuNhBritgZ6EWTRXJgEyHNi/ndvqAiwGMLP+hA/uXwI/BNYm77kg\n2VahdcDngfvN7D13n9jG7R0CPNTyIJlRcaW732Rm7wBfT5Z3A5pagk2k0hQikkcO4O5LgKsLlrm7\nP29mPwMeSAbUPyBMwnMf8G0zmwPMY/0RT86G3+JLfau/FviSmQ1Inm8CLgT+nRAc33D3pmRwfpi7\nz2t5L3dfbWF++klmtgp4rg3bPBK4teDxSOByM2tO9unbyfLRtHL0lkglaFIqkRpK5irv6+6XdfB9\nphHmrm/axHqXEKYjvr0j2xNpjUJEpIbM7BOEQfKDK3iuSGvb6gZMqsW2pH4pREREpGw6xFdERMqm\nEBERkbIpREREpGwKERERKZtCREREyqYQERGRsilERESkbAoREREp2/8HFapfgEh5C7sAAAAASUVO\nRK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11318ae50>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEdCAYAAAD930vVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8HHV9//HXOxciJBASAoFcMHIVCioKkVqVQ6kYRIk/\nL9XUFhGKKKXaiy1qb4e2UhX9qX3En4CAVUQi9fITL4B4OcULl4KACIQmJCF3zA0SAoQk59M/ZpZM\nNrtn95yzs3N29v18PM6D3dnZme+Xc7Lv/cx35juKCMzMzAYyqugGmJnZyOewMDOzhhwWZmbWkMPC\nzMwacliYmVlDDgszM2vIYWEdQ1K/pMOG+N5lkk6r89prJC2sWvf308cflfTFobV40G38P5JWSNoi\n6aXt2KdZsxwWlqv0g/fp9ANwraQvSRpfQFMi/dnzhYifRcSLq9atvHZpRJwPIGlWGlh5/bv5FHBh\nROwbEffntA+zIXFYWN4CeGNE7Au8HDgR+PvqlSSNaXfDhkEt36Ak4FDgoVZv26wVHBbWNhGxGrgZ\n+B14/rDShZIWAY+ky86XtEjSBknfkXRI1WbOlPSopHWSPpl+yCLpcEk/kbQ+fe2rkiZWvXe2pAcl\nbZR0jaRx6Xt7JK2o1WZJvZKuTZ/elv73CUmbJb02bedxmfUPkrRV0gE1tiVJf59WW49L+rKk/dJ2\nbAFGA/en/z9qtaVf0vvT/z+bJf1z2u/bJT0haYGksZn13yjpPkmbJP1C0vGZ1z4saXG6nQclvTnz\n2jmSfi7psvT/1RJJc2q1ybqHw8LaofKBPhM4A7g389pc4CTg2HSc4FLg7cAhwGPAgqptvRl4BUmV\nMhc4N/Pax9L3HQPMBHqr2vBHwOnA4cBR1KhwasgeunpN+t+JEbFfRNyWtu+PM+vMA34UERtqbOs9\nwLuBHuAwYAIwPyK2RcSEdJ2XRMSRA7TndOAE4GTgYuCL6T4PBY5PHyPpBOBq4HxgMnAFcGMmTBYD\nr46I/YBLgK9KmprZz2xgIXAA8Ml0W9bNIsI//sntB1hG8q15U/p4PjAufa0f6MmsezXw8czz8cBz\nwKGZ9U/PvP5+kg/mWvt9M/CrzPOlwHszz88AFqePe4AVVev+fvq4F7g2fTwrbcOozLqvBB7LPL8b\neFudNv0YeF/m+VFp/0Zl+nfYAP8v+4HfrdrX32Sefwr4TPr4C8A/V71/IfDaOtu+FzgrfXwOsCjz\n2j7pvg8q+u/JP8X9dNJxYutMAcyNiJ/UeT17+OcQkg/A5I0RWyVtAKYDy2usvxyYBpB+K/4c8Gpg\nX5KqeeMA+3r+vcMREXdKekZSD7CWpGq5sc7qlWop24YxwFRgTZO7fDzz+Jmq588CB6WPXwicLenP\nM6+PTduApLOBvyQJQEiqnOyhs7WVBxHxdHq0bwLw2ybbaSXjw1BWtOxhntXs+vAiPWvqAGBVZp1D\nqx5XXrsU2AkcFxETgT9hz7/v6veuHkZbs75McijqT4D/jIjn6qy3W//SNuxg9w/84ci2bznwsYiY\nlPmZEBFfl/RC4Ergz4DJETEJ+A05DNxbeTgsbCS5HniPpJemg76XAndExPLMOh+StH86/vEB4Ovp\n8gnAVmCzpOnA31RtW8CfSZouaTLwd+w5HtLIOpLDMYdXLf8q8BbgXcBXGvTvL9NTcCek/VsQEf2D\nbEeWqh5Xnn8ReJ+k2enA+nhJZ6b7HU8SLOuBUZLeAxyH2QAcFlak3b6pR8SPgX8AvknyLfxFwDur\n3vMd4B6SY+zfA65Jl19CMuj9JPDddBvZ7QdwHfBD4FFgEfCv9dpStTzS9j1NMoj+i/QMo9np8hXA\nr4D+iPj5AP29BriW5KyqJcDTQPYwUaOby9R6vbqPlbbeQzK4PZ/kcNwi4Oz0tYeATwO3kxxuOg74\nea3tDKJtVnKKyPdvQNI1wJnAbyPi+Drr/DvJgOPTwDkRcW+t9cxGKklXA6si4h+LbotZHtpRWXwJ\nqHuOtqQ3AEdEcrrge0nO4jDrGJJmkRyG8umlVlq5h0VE/IzktMl6ziIZICQi7gT2rzrf22zEkvQv\nwAPAJyPisUbrm3WqkTBmMZ3dT2lcCcwoqC1mgxIR/xDJXE7/VnRbzPI0EsIC9jxlz4NpZmYjyEi4\nKG8VydQMFTPY/bx6ACQ5QMzMhiAihn0NzUioLG4kPaVP0snAExFR8yKloi93z/Pnn/7pnwpvg/vX\n3M9b3xocfXTwwQ+Wr29l/911Y/9aJfewkHQ98EvgaCU3djlX0gWSLgCIiB8ASyQtJpns7MK822Q2\nVBs3wq23wmc/Cz/96Z6v9/a2vUlmbZH7YaiImNfEOhfl3Q6zVrjhBpgzB047DZYuhfXri26RWXuM\nhMNQBvT09BTdhFyVpX9f+QqcfTaMHQuvfjX813/t3rcyVhZl+d3VU/b+tUruV3C3iqTolLZaOS1a\nlATEypVJWFx2GTz2GMyfX3TLzOqTRJRkgNusI3z1qzBvXhIUAKeeCj+pmni9jJWFGTgszJr2ox/B\nWWften7CCbBmDaxdW/89ZmXhsDBr0vLlcNhhu56PHg2veQ309e1a5srCysphYdaEHTvg8cdh+vTd\nl596au1TaM3KxmFh1oQ1a+DAA3eNV1Sccgr8PHMnCFcWVlYOC7MmLF8OM2fuufzww5PXzMrOYWHW\nhBUr4NBD91y+334QAZs3J89dWVhZOSzMmlCvspBg2jRYvbr9bTJrJ4eFWRNWrKgdFpAMeq9K50l2\nZWFl5bAwa0K9w1CQVBar9phU36xcHBZmTah3GAqSyqJyGMqVhZWVw8KsCa4srNs5LMwaePpp2LIl\nuc6iFlcW1g0cFmYNrFyZBMKoOv9asgPcZmXlsDBrYKBDULD7qbOuLKysHBZmDQw0uA1wyCHJzLP9\n/e1rk1m7OSzMGmhUWYwbBxMnwrp1riysvBwWZg00qizA4xZWfg4LswYGunq7onL6rCsLKyuHhVkD\njQ5Dwe6nz5qVkcPCbAARgzsM5crCysphYTaAJ55Ibp86ceLA63nmWSu7MUU3wGwka6aqgF2VxVVX\n5d8msyK4sjAbQDPjFeDKwsrPYWE2gGbOhAKPWVj5OSzMBrByJcyY0Xi9KVOSyQZ37Mi/TWZFcFiY\nDWDdOjjooMbrjRoFBx8M552Xf5vMiuCwMBvAunX1pyav5qu4rcwcFmYDWL8+OcTUjGnT4HOfy7c9\nZkVxWJgNYDBhMX06bN6cb3vMiuLrLMwGMNjKYq+98m2PWVFcWZjVsXMnbNoEkyc3t76vtbAyc1iY\n1fHEE7DffjCmyfp7yhS4445822RWFIeFWR2DORMKkrB45pn82mNWpNzDQtIcSQslLZJ0cY3Xp0i6\nWdJ9kn4j6Zy822TWjMGMVwAccIDHLKy8cg0LSaOB+cAc4FhgnqRjqla7CLg3Il4G9ACfluSBdyvc\nYMNiyhTYsCG/9pgVKe/KYjawOCKWRcR2YAEwt2qdNcB+6eP9gA0R4UkTrHCDDYt994Wnn4Zt2/Jr\nk1lR8g6L6cCKzPOV6bKsLwK/I2k1cD/wwZzbZNaUwYaFBHvv7erCyinvwz3RxDofBe6LiB5JhwO3\nSnppRGypXrE3M6VnT08PPT09rWqn2R7Wr0/mexqMWbOS902blkuTzBrq6+ujr6+v5dvNOyxWAdkJ\nnmeSVBdZrwI+BhARj0paChwN3F29sV7P/2xttG4dHHfc4N7jcQsrWvUX6UsuuaQl2837MNTdwJGS\nZknaC3gHcGPVOguBPwCQNJUkKJbk3C6zhgZ7GArg8ceT95mVTa6VRUTskHQRcAswGrg6Ih6WdEH6\n+hXApcCXJN1PEl5/GxEb82yXWTOGEhb77OPKwsop91NUI+Im4KaqZVdkHq8H3pR3O8wGayhh8frX\nu7KwcvIV3GZ1DCUsPGZhZeWL38xqeO65ZOqOiRMH977bbkuutzArG1cWZjWsX59M3yEN7n0es7Cy\ncliY1TCUQ1AAH/iAxyysnBwWZjUMNSwOOMCVhZWTw8KshqGGxVVXubKwcnJYmNWwfv3g7mVR8YIX\nwNatsH1769tkViSHhVkNQ60sLrkkuQ2rD0VZ2TgszGpYt25oYQEet7BycliY1TDUyqK3N3mfxy2s\nbBwWZjUMNSzAlYWVk8PCrAZXFma7c1iY1TDUs6HAlYWVk8PCrErEruk+BqtSWTgsrGwcFmZVtm6F\nUaOSeZ6G4oADfBjKysdhYVZlOIPbriysrBwWZlWGExbgysLKyWFhVsWVhdmeHBZmVTZscGVhVs13\nyjOrsnFjMr/TUPT2ws6dsHkz7NgBY/wvzErClYVZlQ0bhh4WAKNHJ7dj3bSpdW0yK5rDwqzKcCsL\n8LiFlY/DwqzKcMKiwuMWVjYOC7MqGzcO7eptcGVh5eWwMKviysJsTw4LsyrDGeCuVBaeTNDKxmFh\nVqUVlcXkycl2zMrCYWGW0d8PTz4JkyYN7f3ZysJhYWXisDDLePJJ2Hff5FqJ4XBlYWXjsDDLGO4F\neZXKYvJkj1lYuTgszDJaMV4BriysfBwWZhnDDQuPWVhZOSzMMoZzQV6WKwsrG4eFWUarKovx42H7\ndnj22ZY0y6xwDguzjOEOcFdIPhRl5ZJ7WEiaI2mhpEWSLq6zTo+keyX9RlJf3m0yq6dVlQX4UJSV\nS65hIWk0MB+YAxwLzJN0TNU6+wOfB94UEccBb8uzTWYDadWYBTgsrFzyrixmA4sjYllEbAcWAHOr\n1vkj4JsRsRIgIjz9mhWm1ZWFr7Wwssg7LKYDKzLPV6bLso4EJkv6qaS7Jf1Jzm0yq6tVYxbgMQsr\nl7zvEBxNrDMWeDlwGrAPcLukOyJiUa4tM6vBYxZmteUdFquAmZnnM0mqi6wVwPqIeAZ4RtJtwEuB\nPcKiN/Mvsaenh56enhY317pdq67gBoeFFaOvr4++vr6Wb1cRzXz5H+LGpTHAIyRVw2rgLmBeRDyc\nWefFJIPgrwfGAXcC74iIh6q2FXm21ay/H/baK7k2YswQv0b19u6qLi6/HH71K7jyyla10GzwJBER\nGu52cq0sImKHpIuAW4DRwNUR8bCkC9LXr4iIhZJuBn4N9ANfrA4Ks3bYvBkmTBh6UFTzmIWVSa6V\nRSu5srC8PfoovO51sGRJa7b34x/Dxz4GP/lJa7ZnNhStqix8BbdZqpXjFeAxCysXh4VZqhUX5Pk6\nCysrh4VZqtWVhccsrEwcFmapVlyQl60sPPOslYnDwizV6spCSra3aVPrtmlWFIeFWaoVYZGtLCA5\nFOVxCysDh4VZqpUzzlb4jCgrC4eFWSqPysJhYWXhsDBLtXLG2QqHhZWFw8Is5TELs/ocFmYpj1mY\n1eewMCOZcXbTJpg0aXjb8ZiFlZXDwoxkxtnx41s342yFw8LKwmFhRusGt2uNWTgsrAwcFmYkYTFl\nSuu368kErSwcFmbA+vWtCQuPWVhZNQwLSQdIGl+17DWSXpBfs8zaa8OG1p8JBQ4LK49mKouHgM9W\nLVsDXNj65pgVI6/KYsIEeO452LZt+Ns2K1IzYfH/IuL87IKIWAzMzqdJZu2X15hFZeZZVxfW6ZoJ\nix9JulTS9MoCSaOAY/Nrlll7rV/fmsNQ1ZUFOCysHBqeVR4Rv5D0LHC5pMnA94GfkByeMiuFVh2G\nquWAA5Ltm3Wyps6Gioh7IuJNwFuA1UAv8FiO7TJrq1YNcNeqLKZM8emz1vkGdepsRDweEf8REXOA\n23Jqk1nb5VlZTJniysI635Cvs4iI77eyIWZFatUAd73KwmFhnc4X5VnXi2jdAHctBx7osLDO57Cw\nrrdlC4wbl/wMV73KYt264W/brEgOC+t6eV29XeHDUFYGDgvreq0c3PaYhZWVw8K6Xl5Xb1c4LKwM\nHBbW9Vo5uO3KwsrKYWFdL89rLAD23TeZTPDZZ/Pbh1neHBbW9Vo5wF2rspB8Fbd1PoeFdb28Kwvw\n6bPW+RwW1vXyrizA4xbW+RwW1vXaVVk4LKyTOSys6+V9nQU4LKzz5R4WkuZIWihpkaSLB1jvJEk7\nJL0l7zaZZeV9BTc4LKzz5RoWkkYD84E5JHfWmyfpmDrrfQK4GVCebTLLavUkgvUqC08maJ0u78pi\nNrA4IpZFxHZgATC3xnp/DnwD8Pki1lZbt8KYMbD33vnux2dDWafLOyymAysyz1emy56X3tt7LvCF\ndFHk3Caz57V6cNtjFlZWeYdFMx/8nwU+HBFBcgjKh6GsbdpxJhQ4LKzzjcl5+6uAmZnnM0mqi6xX\nAAskAUwBzpC0PSJurN5Yb+ZrW09PDz09PS1urnWbVg9u9/Z6figrVl9fH319fS3frpIv9PmQNAZ4\nBDgNWA3cBcyLiIfrrP8l4LsR8a0ar0WebbXudN118P3vw9e+1prt1QuLZ56B/fdP5oeSa2drI0lE\nxLD/6nI9DBURO4CLgFuAh4CvR8TDki6QdEGe+zZrRh6VRS177w1jx8JTT7VuX2btlPdhKCLiJuCm\nqmVX1Fn3PXm3xyyrXWMWkJw+u25dMgutWafxFdzW1dp1NhR43MI6m8PCulo7rt6ucFhYJ3NYWFdz\nZWHWHIeFdTVXFmbNcVhYV1u3zpWFWTMcFta1+vuTsDjooPbsz5MJWidzWFjX2rgxOY113LjWbbNR\nZeHJBK1TOSysa61dCwcf3L79+TCUdTKHhXWtNWtaHxYes7CyclhY11q7Fg45pH37c1hYJ3NYWNfK\n4zDUQJXF5MmwaRPs3NnafZq1g8PCula7xyzGjEmu6fAgt3Uih4V1rXZXFpAc9lq9urX7NGsHh4V1\nrXZXFpCExZo17d2nWSs4LKxrrVnT+gHuRpXFtGmuLKwzOSysa7myMGuew8K60rZtyV3rJk1q7XZd\nWVhZOSysKz3+OEydCqPa/C/AlYV1KoeFdaW8DkG5srCyclhYVypivAJcWVjnclhYV8rjTChoXFkc\nfDD89rfJ9OhmncRhYV2pqMpir71g4kRfxW2dx2FhXamoMQtIxi18KMo6jcPCulJRlQV4yg/rTA4L\n60quLMwGx2FhXand97LIcmVhnchhYV0nIgmLqVNbv+1mKgufPmudyGFhXefJJ5OzkvbZp5j9+8I8\n60QOC+s6eQ5uu7KwsnJYWNcp8kwocGVhnclhYV2n6Mri4IOTiQx9Fbd1EoeFdZ0iz4QCGDcO9tsP\nNmworg1mg+WwsK6zZk2xlQX49FnrPA4L6zpFj1mAL8yzzuOwsK6zYgVMn57Ptl1ZWFk5LKzrLF0K\nhx1WbBtcWVinaUtYSJojaaGkRZIurvH6uyTdL+nXkn4h6SXtaJd1n+3bk2/0hx6az/ZdWVhZ5R4W\nkkYD84E5wLHAPEnHVK22BHhtRLwE+BfgyrzbZd1pxYrkg3rs2GLb4crCOk07KovZwOKIWBYR24EF\nwNzsChFxe0Q8mT69E5jRhnZZF1qyJN9DUIOpLFatyq8dZq3WjrCYDqzIPF+ZLqvnPOAHubbIutaS\nJfCiFxXdiqQNS5cW3Qqz5o1pwz6i2RUlnQqcC/xerdd7M1/benp66OnpGWbTrNvkPbjd29v8VdxP\nP51MajhxYn7tse7T19dHX19fy7fbjrBYBczMPJ9JUl3sJh3U/iIwJyI21dpQb7M1vlkdS5bA3LmN\n18ubBEccAY8+Ci9/edGtsTKp/iJ9ySWXtGS77TgMdTdwpKRZkvYC3gHcmF1B0qHAt4A/jojFbWiT\ndal2VBbNOuIIWOy/dusQuVcWEbFD0kXALcBo4OqIeFjSBenrVwD/CEwCviAJYHtEzM67bdZ98h7g\nHgyHhXUSRTQ9pFAoSdEpbbWRafPm5JTVLVuSw0B5aHbMAuCqq+CXv4RrrsmnLWYAkoiIYf/F+wpu\n6xpLlyZnIeUVFIPlysI6icPCukY7Tpsd7JjFokW5NcWspRwW1jVGwpxQWdOmJafOPvVU0S0xa8xh\nYV1jpFUWo0Yl4fXoo7k1x6xlHBbWNUbSmVAVHrewTuGwsK5RGeDO02CvGz3ySIeFdQaHhXWF/n5Y\ntmxkzAuV5crCOoXDwrrC2rXJHEzjx+e7n8FWFg4L6xQOC+sKI2W22WoOC+sUDgvrCu0a3B5sZTFj\nBqxfD888k0tzzFqmo8JC2vOn3j/O3l6v7/V3ueoq+NrXRk57KuuPGQPPPgv77DMy2uP1y7l+K3hu\nKOsKZ5wB738/nHVWvvsZzNxQFW96E5x3Hrz5zXm0yLqd54Yya1IE3H03nHhi0S2pzeMW1gkcFlZ6\ny5cnh3umTct/X0M5DHDUUbBwYcubYtZSDgsrvZFcVQCcdBLceWfRrTAbmMPCSq+dYTGUyuKlL02u\nLn/yyZY3x6xlHBZWeiO9shg7NrkP9113Fd0Ss/ocFlZqlcHtV7yiPfsb6qmLv/u7cPvtLW2KWUs5\nLKzUliyBCRPg4IOLbsnAHBY20jksrNTafQhqOJXFHXckEx6ajUQOCyu1kT5eUTF1Kkya5FNobeRy\nWFip3XNPZ1QW4ENRNrI5LKy0+vuTsGjX4PZwOSxsJHNYWGktXgyTJ8OUKe3b53Aqi1e9ymFhI5fD\nwkrrppvglFOKbkXzXvKSZGqSJ54ouiVme3JYWGldfz28853t3edwKosxY5JDZnfc0bLmmLWMw8JK\nacmS5Oe004puyeDMmQPf/GbRrTDbk8PCSmnBAnj725OpNNppuDefefe74RvfgC1bWtIcs5ZxWFgp\nXX89zJtXdCsG75BDknGWG24ouiVmu/Od8qx0HngAzjwTli2DUR34deh734NLL4Vf/rLollgZ+E55\nZnVUBrY7MSggGbd47DF48MGiW2K2S4f+czKrrb8/Ga8o6hDUcMcsIDkr6pxz4Oqrh78ts1ZxWFip\nXHFFMsPsy15WdEuG59xz4dpr4dlni26JWcJjFlYajz2WzAN1221wzDFFt2b43vY2eOEL4dOfLrol\n1sk8ZmGWEQHnnw9//dflCAqAK69Mrrn4zneKbolZG8JC0hxJCyUtknRxnXX+PX39fkkn5N0mK5+r\nr4ZNm+BDHyq2Ha0Ys6iYPDkZf3nve5N7dJsVKdewkDQamA/MAY4F5kk6pmqdNwBHRMSRwHuBL+TZ\nppGqr6+v6CbkKq/+9ffDZz4DH/0oXHNNMjjcbnn+7k4+GT78YXjrW5NTgYvgv02D/CuL2cDiiFgW\nEduBBcDcqnXOAr4MEBF3AvtLmppzu0acsv/B5tG/tWvhjW9MLmC78044/viW76Ip2b61srKo+Iu/\nSK5GP/FE+NSnYMeO1u9jIP7bNMg/LKYDKzLPV6bLGq0zI+d2WQfasiW54O7yy+H1r4ejjkrOerrt\nNnjRi4puXX4k+MhHkgkGf/jDpN8XXZSMZaxeDTt3Ft1C6wZ5F+3Nnr5UPVJf6GlPl12WfAC10yOP\nJDfqKatK/2qd0Bax+8+OHcnP9u2wdSs89RRs3AjbtsGsWXDCCclg9je/CRMmtL0rA+rtzae6ADji\nCLjlFrjvPrj1Vpg/PwnPjRvhwAOT27LuvXfyM3ZsclHi6NFJ2GR/YNd/m9Etf5t5mjsX/vRP891H\n3nI9dVbSyUBvRMxJn38E6I+IT2TWuRzoi4gF6fOFwCkR8XjVtnzerJnZELTi1Nm8K4u7gSMlzQJW\nA+8Aqq+tvRG4CFiQhssT1UEBremsmZkNTa5hERE7JF0E3AKMBq6OiIclXZC+fkVE/EDSGyQtBrYC\n78mzTWZmNngdcwW3mZkVp/AruCWNlnSvpO9WLf9rSf2SJmeWfSS9eG+hpNMzy18h6YH0tc+1s/2N\n1OqfpD+X9LCk30jKjt90VP+q+yZptqS70mX/LemkzLqd1rdlkn6d9uWudNlkSbdK+h9JP5S0f2b9\nMvTvsvTv8n5J35I0MbN+x/cv81rHf7bU61+uny0RUegP8FfAdcCNmWUzgZuBpcDkdNmxwH3AWGAW\nsJhdldFdwOz08Q+AOUX3q17/gFOBW4Gx6fMDO7V/NfrWB7w+fXwG8NMO7tvzf3uZZZ8E/jZ9fDHw\n8ZL173XAqPTxx8vWv3R5KT5b6vz+cv1sKbSykDQDeANwFbufPvt/gb+tWn0ucH1EbI+IZSQdfqWk\nQ4B9I6KSrl8B3pxrw5tUp3/vB/4tkosUiYh16fKO6l+dvq0BKt9G9wdWpY87qm8Z1SdVPH8Bafrf\nSltL0b+IuDUi+tOnd7LreqdS9C9Vis+WVHX/cv1sKfow1GeAvwEqf6BImgusjIhfV607jeSCvYrK\nBX7Vy1ex54V/Rdmjf8CRwGsl3SGpT9KJ6fJO61+tvn0Y+LSk5cBlwEfS5Z3WN0iu9fmRpLslnZ8u\nmxq7ztR7HKjMNFCW/mWdS/JNE0rSv5J9ttT6/eX62VLATDoJSW8EfhsR90rqSZftA3yUpBx+ftUC\nmjdstfqXGgNMioiT02P6NwCHFdHGoRqgb1cDH4iIb0t6O3ANu/8uO8nvRcQaSQcCtyq5/ud5ERHq\n7Gt/9uhfRPwMQNLfAc9FxNeKbeKw1Pr9fQQ4PbNOR362pGr1L9fPlsLCAngVcJaSiQRfAOxHUgbN\nAu5XconpDOAeSa8kSb2ZmffPIEnFVew+PcgMdh3+KNIe/ZN0LUmbvwUQEf+dDrRNobP6V69vsyPi\nD9J1vkFyiAo6q28ARMSa9L/rJH2bZJ6zxyUdHBFr0xL+t+nqZenfzySdQ3J48bTM6mXo3ynAiyjH\nZ0u931++ny1FD9SkAyunAN8daBCHXYM0e5H80h9l1yDNncArSb4pjJhBqFr9Ay4ALkkfHwUs7+T+\nVfXtVyRX30PyYfPfndg3YB+SY7kA44FfkHwj/SRwcbr8w+w5ANzp/ZsDPAhMqVq/FP2rWqdjP1sG\n+P3l+tlSZGVRrVZJ//yyiHhI0g3AQ8AO4MJIewtcCPwHsDfwg4i4Oee2DkWlrdcA10h6AHgOOBs6\nvn+Vdr4X+LykccAz6fNO7NtU4NvpN9AxwHUR8UNJdwM3SDoPWAb8IZSqf4tIPlBuTV+7PSIuLEv/\nqtbp5M+Wer+/seT42eKL8szMrKGiz4YyM7MO4LAwM7OGHBZmZtaQw8LMzBpyWJiZWUMOCzMza8hh\nYWZmDTnJeE6lAAADo0lEQVQszMysIYeFdax07ptrM8/HSFqnqhtpFUHSOEn/pcSs9Kra4Wzvckmv\nGmBft0nyv2fLjf+4rJNtBX5H0gvS568jmSBtJExL8C7ge9G6KRJeCdxe64WI2Ab8jJF1rwUrGYeF\ndbofAGemj+cB15NOPS3pjyXdmd568vLKN29J307vA/CbzL0OZqW3o7wyXX5LJoSGYh7wneqFkg6T\n9Kv0dpazlNzm8kuSHpF0naTTJf1Cya1bT0rfcwzwPxERksZL+r6k+5TcDvMP003fmO7TLBcOC+t0\nXwfemU5eeDzJLJpIejHJRH+viogTSG7S9K70PedGxInAScAHJE1Klx8BzI+I44AngLfW2qGkMyW9\nR9L1kg6V9GeSbpb0CUnnShoNHBcR/1P1vqNJpm5/d0Tcky4+HPgU8GLgaOAdEfF7wIdI7u0CyS1q\nb0ofzwFWRcTLIuJ4kluEQjKraM3DVGat4LCwjhYRD5DcA2Ue8P3MS6cBrwDulnQv8Psk0zMDfFDS\nfSSHdWaS3GEMYGnsuovaPel2dyPpKODsiPgScE5ELI+Iz5PMsHskyT1ZpgBbqt56EPD/gT9K21yx\nNCIeTA9XPQj8KF3+m8z+T2dXKPwaeJ2kj0t6dURsTv8/bANGDbMaMqtrJE1RbjZUN5J8Oz+F5IMa\nkkNRX46Ij2ZXTO/sdxpwckQ8K+mnJDdwAtiWWXUnybTN1c4BvgrPf0AjaX/g8yQVy4506ujqu7A9\nATwGvAbI3nUvu89+kqmlK4/HSNob2D8i1qb7XCTpBJJDb/8q6ccR8S+ZPo+E8RorIYeFlcE1wKaI\neFC7bvP6Y+A7kj4Tyd3EJgMTSO7IuCkNihcDJw9yX2OA5QCSZpB8QP8b8BfAtnSbi9J9ZT0HvAW4\nRdJTEXF9k/s7Ffhp5Ul6h75NEXGdpCeB89Ll44CdlQAzazWHhXWyAIiIVcD8zLKIiIcl/T3ww3Rg\nezvJjV5uBt4n6SHgEXadYRTs+a281rf0y4F3SDo0fX0ncAnwVyQB8acRsTMdJD86Ih6pbCsinlZy\n//JbJW0BHmhin2cA/5l5fjxwmaT+tE/vS5efQJ2zpcxawTc/MstBei/rqRHxiWFu5x6Se5vvbLDe\npSS3sf32cPZnVo/DwiwHkvYiGaw+pYXXWtTb1zjg1nbsy7qXw8LMzBryqbNmZtaQw8LMzBpyWJiZ\nWUMOCzMza8hhYWZmDTkszMysIYeFmZk15LAwM7OG/he+sA25lSRZkgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1130c3310>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEfCAYAAACAm/v/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHdV55/HvqxUsAUIsQkgCCRAg9s1CYwPqYIMlhjWO\nzWKDHeInccDMjBMGG8w8bs84jj2YjO04jjO2YWyGJR4TgwgDARvaEIYAZtWCNoR2JLS0QAtIAr3z\nx6lGV1fdUt/qqlun6v4+z9OPuuvWrXpbUvfvvufUPWXujoiISBr9ii5ARETKSyEiIiKpKURERCQ1\nhYiIiKSmEBERkdQUIiIikppCREREUlOIiIhIagoRaUlmttDMPpbHc81shpmdVbPv2fXb82ZmR5nZ\nS2b2tpl9qRnnlNY0oOgCRHrLzBYCBwLvAxuBh4AvufvGFIfz5CONXT7X3Y+r27e77V3fz9Xu/ljK\nOnblBuC37n5SDscW+YA6ESkTB853972AU4DTgJvrdzKzsrw4csByOvahwKycji3yAYWIlJK7Lwce\nBo6FD4aNbjCzV4D1ZtbPzCaYWYeZdSZDSRfUHWaimc00s7VmdpuZDe56wMy+ambzk+GgmWZ2cQPP\n/WAIq1bd0NYdwCHAA2a2Pqn9V3X7/8DMvtfd97+r783MHgPagB8m9R+xu79PkbQUIlI2BmBmY4Cp\nwIs1j12WbBsG9AceIATNAcB1wJ1mNr7mOFcA5wKHA0eyY1czHzjD3fcGvgH8bzMb0cvn9jTUVTu0\ndSWwmO2d1S+AKWa2T/L9DQAuBX6+01+A2cAevrcjk2OfDTwJXOvue7v7/B7qEekzhYiUiQH3mVkn\n4ZdkB/Ct5DEHfuDuy9x9MzAJGOLu33b399z9ceCfCb/8u/b/YbJ/J/BXwOVdJ3L3X7n7iuTzXwLz\ngIm9eW4aybmeBD6VbJoCrHL3F7vZvafvrb6GHofKzOxIM/ulmT2edEIPmNkX+/I9SGsqy9ixCIRf\n3hftYiJ6Sc3nB9d9DbAo2d7d/otrHzOzq4AvA2OTTUOB/Xvz3D74OfBF4KfAZ4E7etivp+9tVN22\nbjsiMxsO/Bg4z93fNbP7gM+5+1tpC5fWpU5EqqT2l+ZyYIyZ1b4aPxRYVvP1IXWfLwcws0OB/wlc\nCwx3932BGez4yr7b5/ahXoD7gRPM7Djg3wN39vC8nr63pb0877XA37n7u8nXg4FNvXyuyA4UIlJV\n/0b4xXiDmQ00szbgfOCe5HEDrjWzUckr86/VPDaE8At+NdDPzP4YqL08d1fPbcRKwpwKAO7+DnAv\ncBfwjLv3FAq7+95q6+zOXiRXbpnZscBMd9+aon4RhYhUU/JL8QLCRPsq4IfAle4+t2sXwiv9R4DX\nCHMe30yeOwu4FXgaWEEIkH+tPXxPz23QXwM3J1dY/UWy7efJ+XoayurN91ZbZ3f+HjjXzD4JfBz4\naoraRQAw3R5XJB7JVWezgRHuvqHoekR2R52ISCTMrB/wl8DdChApC12dJRIBMxtCmCN5nXB5r0gp\naDhLRERS03CWiIikVurhLDNTGyUikoK7Z7L4Z+k7EXeP/uPrX/964TWoTtWpOlVj10eWSh8iIpKN\n9vaiK5AyUoiIiEhqCpEmaGtrK7qEXlGd2SpbnbF3ImX4+yxDjVkr9SW+ZuZlrl9EpAhmhmtiXUSy\nFHsnInGKOkTMbIqZzTazeWb2laLrERGRHUU7nGVm/YE5hFVGlwHPAZe7+6s1+2g4S0SkQa0ynDUR\nmO/uCz0sfX0PcFHBNYmISI2YQ2QUO94CdCk73/5TRPpgzRpYsgTWr9eciKQTc4j0apzKrL3mowOz\nnn8Y2tvBbOcP7a/9W3X//feHY4+FESPgvvvg3XezPb72j2P/jo4O2tvbP/jIUsxzIpOAdnefknx9\nI7DN3b9Ts4/mREQa5A5XXgnTp8M998CECbBxI1x9Nbz+Otx/P4wcWXSVkqdWmRP5PTDezMaa2SDg\nUmBawTWJlN7PfgZz5sAzz4QAARgyJATK2WfDVVeFoBHpjWhDxN3fA74E/AswC/jH2iuzRKRxy5bB\njTeGINljjx0f+8Y34JvfhM5OuO22YuqT8ol6KXh3fwh4qOg6RKri2mvhmmvghBO6f3zAALj99tCR\nTJkCo3Qpi+xGtHMivaE5EZHee/FFuOgimDcPBg/e9b433wzLl6sjqaos50QUIiIt4gtfgMMOg5tu\n2v2+a9bA+PEwc6Ym2auoVSbWRSQja9fCvfeGIOlJ7ZWf++0HV1wBf/u3uZcmJacQEWkBt98O558P\nBx7Y++d8+cvwk5/Ahg351SXlp+EskYrbti0MTd15J0ya1Nhz/+iPYPJkuO66fGqTYmg4S0R67dln\nw0T66ac3/txrrgldjEhPFCIiFTdtGlx8cVgCY1e6Ww1j8mRYsSK8OVGkOwoRkYq7//5waW8a/fvD\npz8Nd9+dbU1SHZoTEamw+fPhzDPDO9X7pXzJ+MwzYSmU2bN3381IOWhORER6Zdo0uOCC9AECMHEi\nvPdeeLOiSD2FiEiFTZsGF17Yu317WiHcDC6/XENa0j2FiEhFrV0buoePfazvx/rkJ8Pcikg9hYhI\nRf3ud/CRj8Cee/Zu/13dq+ikk8LdD197LZPSpEIUIiIV9eSTYVI9C2bwiU/AQ1pTW+ooREQqqtEQ\n2d1dU6dOhYcf7lNJUkEKEZEK2rABXn0VPvzh7I55zjnwxBM73oddRCEiUkFPPw0nn7zz3Qt3ZXed\nyPDhcPzxIUhEuihERCroiSfgrLOyP+7UqZoXkR0pREQqKM2k+u46EQiT6488kqokqajSh4jZzh89\n/TC0t2t/7V/9/W++GX7/+3B5b9bHnzgxLKWyalU836/2T7d/VrR2lkjFPP10WMI9r2VKpk6FP/1T\nuOSSfI4v+dPaWSLSo+efDx1DXs46S5Prsp1CRKRiXngBTjml8ef1dthj8mSFiGynEBGpmLQh0lun\nnQZz58Jbb+V3DikPzYmIVMjmzbDvvmHxxUbeI9Kos8+G66+H887L7xySH82JiEi3ZsyA8ePzDRDQ\nvIhspxARqZAXXgjvVE+jkUtBJ08OqwSLKEREKiTv+ZAuEyfCyy+H4TNpbQoRkQrpS4g00okMGRKG\nzV5+Od25pDoUIiIVsXVrmBM58cTmnO/00+HZZ5tzLomXQkSkImbPhjFjYK+90j2/0eUxJk6EZ55J\ndy6pDoWISEW89FK4jW2zqBMRUIiIVMasWXDssemf32gncswxsHw5dHamP6eUn0JEpCJmzQq/2Jul\nf3849VR47rnmnVPioxARqYhXX+1biKRZMlzzIqIQEamAd9+FxYvhiCOae17Ni4jWzhKpgFdegcsu\nC0NazbRkSRjSWrky3ABJykFrZ4nIDvo6lJXW6NHhz+XLm39uiYNCRKQCZs2CCRP6dow0cyJmYa2u\nvO6iKPFTiIhUQLOvzKp10kkKkVamEBGpgCxCJE0nAqETeemlvp1bykshIlJyW7fCggVw5JHFnF/D\nWa1NISJScq+9BqNGwZ579u04aTuRI46AN9+Edev6dn4pJ4WISMkVOR8C4Z3rJ5ygZeFblUJEpOTm\nzIGjj+77cdJ2IqAhrVamEBEpufnzm/9O9Xq6Qqt1KURESi6rEOlrJ6IrtFqTQkSk5F57rfhO5Ljj\nYN483XO9FWntLJES27QJhg+HjRvDBHeRjj0W7rqrebfnlfS0dpaIAOH9IePGFR8gELqRGTOKrkKa\nLdoQMbN2M1tqZi8mH1OKrkkkNlkOZfVlTgQUIq0q2hABHPgbdz85+Xi46IJEYjN/Phx+eNFVBAqR\n1hRziADoDgUiu5Dl5b197USOP14h0opiD5HrzOxlM/uZmQ0ruhiR2MTwHpEu48aF5U/Wry+6Emmm\nAUWe3MweBQ7q5qGvAX8P/Nfk6/8G3Ar8Sf2O7TUvn9ra2mhra8u6TJFovfZadsNZ7e1960b69w/3\nNJk5EyZNyqYmyUZHRwcdHR25HLsUl/ia2VjgAXc/vm67LvGVlrVlC+y1V3jlP2hQ34/X1xAB+Pzn\n4Ywz4Atf6Hs9kp+WuMTXzEbWfHkJML2oWkRitHBhuD1tFgECfQ8Q0OR6Kyp0OGs3vmNmJxGu0nod\n+LOC6xGJSpZDWVk5/nh4WNdRtpRoOxF3v8rdT3D3E939YndfWXRNIjHJelJdnYikEW2IiMiuLVgA\nhx1WdBU7OvjgsH7WqlVFVyLNohARKamFC2Hs2OyOl0UnYhZukPXqq30/lpSDQkSkpBYtgkMPLbqK\nnU2YoBBpJQoRkZLKOkSy6EQg3GVRIdI6FCIiJbRhA7zzDhxwQNGV7GzCBJg9u+gqpFkUIiIltGgR\nHHJImIPIijoRSUMhIlJCsc6HQJjsX7Uq3ChLqk8hIlJCeYRIVp1I//4wfjzMmZPN8SRuChGREoq5\nEwENabUShYhICcXciYAm11uJQkSkhNSJSCwUIiIlpE5EYqEQESmZLVtg9eqwTlWsjjwyrDL83ntF\nVyJ5U4iIlMySJTByJAzI+EYOWXYie+4ZalywILtjSpwUIiIlE/t8SJejjtJlvq1AISJSMnmFSJad\nCIQhrXnzsj2mxEchIlIyixZluwR8Xo48EubOLboKyZtCRKRkFi8O62ZlLetOZPx4dSKtQCEiUjJL\nl8Lo0UVXsXvqRFqDQkSkZJYtyydEsu5ExowJlyJv2pTtcSUuChGRklm6FEaNKrqK3evfP9wDfv78\noiuRPClEREpkwwbYuhWGDcv+2Fl3IqAhrVagEBEpkWXLQheS5c2o8qQQqT6FiEiJ5Dmpnlcnoiu0\nqk0hIlIiXZ1IWYwfr06k6hQiIiWSZ4hoTkTSUIiIlEhZ3iPSZcQI2LwZOjuLrkTyohARKZGydSJm\neud61SlEREqkbHMioBCpul6FiJntZ2ZD6radaWZ75FOWiHQnzzca5tGJABx+eLhBlVRTbzuRWcD3\n6ra9AVyTbTmNM9v5o6cfhvZ27a/9y7v/1q2wZg0cdFAc9fR2/xkzun/Xelnqr+r+WTF33/1OZl93\n9290s/0ed78sl8p6wcy8N/WLVMGSJTBpUhjSykN7ez6/cJ54Am68EZ56KvtjSzpmhrtbFsfqbSfy\nGzP7lpl90EibWT/gmCyKEJHdK8uaWfU0nFVtvbpLs7s/ZWbvAj82s+HAg8BjhGEuEWmCvFbv7ZLX\nsMfIkfD222Hdr6FD8zmHFKfXV2e5+/PufgHwh8ByoB1YlFNdIlKnjFdmAfTrB+PGwYIFRVcieWj4\nEl93X+nu/8vdpwBP5FCTiHQj7+GsPCdgDz9cS8JXVZ/eJ+LuD2ZViIjsWlk7EYAjjtC8SFXpzYYi\nJbF8ORx8cH7Hz7sTUYhUk0JEpCRWrAiT1GWkEKmuPoWImR2dVSEismt5h4g6EUmjV5f4djGz84EL\ngYHJplOAE7MuSkR29M474SOP2+I2w6GHhjmdLVtg0KCiq5EsNRQiwHHALcDW5OvPZFuOiHRnxYqw\n3Ill8h7j7uXZiQwaFOZzFi0KCzJKdTQ6nPUKsMDdF7r7QuC57EsSkXplng/poiGtamo0RG4GXjCz\nx83sceCOHGoSkTpvvLF94cW85L1Qny7zraZGh7P+qva9IWY2JeN6RKQbXcNZZTZuHLz+etFVSNZ2\nGyJmdg3wOWBT8vX1NQ8fDZS8yRaJXzNCJO9OZNw4ePbZfM8hzdebTmQucIa7b61/wMymZl+SiNRb\nsQJOPbXoKvpG62dV027nRNz9N90FSPLYQ9mXJCL1qjAnouGsatI71kVKoApzIvvtB9u2QWdn0ZVI\nlgoNETP7lJnNNLP3zeyUusduNLN5ZjbbzM4tqkaRGDTjEt/cb6Nq6kaqqOhOZDpwCXVLypvZMcCl\nhDsnTgF+lNxJUaTlbNsGK1fCiBFFV9J3CpHqKfQXs7vPdve53Tx0EXC3u29N3tQ4H5jY1OJEIrF2\nbbgj4ODB+Z4n704EFCJVFOur+4OBpTVfLwVKeicFkb6pwrvVuyhEqqfRNxs2zMweBbqbErzJ3R9o\n4FCeUUkipdKMK7OgeZ3Iww/nfx5pntxDxN3PSfG0ZcCYmq9HJ9t20l7zP7+trY22trYUpxOJVxWu\nzOpy2GF6r0gROjo66OjoyOXY5l78C/xkHa7r3f355OtjgLsI8yCjgN8AR3hdsWZWv0mkcm65JUys\nf/e7+Z6nvT3/bmTjRth///Bnv1gH01uAmeHumawJXfQlvpeY2RJgEvCgmT0E4O6zgF8Cs4CHgGuU\nFtKqqtSJDBkCe+8dviephig6kbTUiUgruOIKOO88+Oxni64kG5Mmwa23wkc/WnQlrasynYiI7F6V\nOhHQFVpVoxARiVyz3mjYjKuzQCFSNQoRkci9+WY13q3eZezYcJtcqQaFiEjE3nsP1q0LixfmrVmd\nyCGHKESqRCEiErE1a2DYMOjfv+hKsnPoobB4cdFVSFYUIiIRW7UKDjywOedqZieyeDHowspqUIiI\nROzNN5sXIs0yZEj4WLWq6EokCwoRkYg1M0Sa1YlAGNLSvEg1KEREIvbmm3DAAUVXkb2uIS0pP4WI\nSMTUiUjsFCIiEWvmxHoz6TLf6lCIiESsyp2IhrOqQSEiErGqzoloOKs6FCIiEatqJ6KJ9epQiIhE\nrKpzIgccAJs2hZtTSbnpfiIikdq8GfbaK/xpmdz5IS5HHQX33QcTJhRdSevR/UREWsCqVeFWslUM\nENC8SFUoREQi1ewlT5o5JwK6zLcqFCIikariulm1dJlvNShERCLV7En1ZnciGs6qBoWISKSq+h6R\nLrrMtxoUIiKRqvqciDqRalCIiESq6nMio0bBG2+EWwBLeSlERCJV9U5k0KDw/S1f3tzzSrYUIiKR\nWrWq2nMioMt8q0AhIhKpZk+sN7sTAV3mWwUKEZFIrV5d/U5Ek+vlpxARidA778CWLWHtrGYpohPR\nZb7lpxARidCaNdVeN6uLOpHyU4iIRKgrRJpJnYikoRARidDq1bDffkVXkb+uTkR3dCgvhYhIhFql\nE9l7bxgwANaubf65JRsKEZEIrV7d/BApii7zLTeFiEiEihjOKqITAU2ul51CRCRCRQxnFUWT6+Wm\nEBGJUBHDWepEJA2FiEiEWuXqLND6WWWnEBGJUKtcnQUwZgwsXVrMuaXvFCIiEWqlq7NGj4Zly4qu\nQtIyL/G7fMzMy1y/SE+GDg332dh776Iryd/WrTBkCGzaFN4zIvkzM9w9k0V11ImIRObdd5u/+GKR\nBg4MXdfKlUVXImkoREQiU9Tii0XNiUAY0tK8SDkpREQis2ZN61yZ1UUhUl4KEZHIFDWprk5E0lCI\niESmla7M6qIQKS+FiEhkihrOUiciaShERCKjTkTKRCEiEplWnBMZNUohUlYKEZHItOLVWaNGhTdX\nbttWdCXSKIWISGRasRPZY4/w7vxVq4qrQdIpNETM7FNmNtPM3jezU2q2jzWzd8zsxeTjR0XWKdJM\nrTgnApoXKauiV6qZDlwC/EM3j81395ObXI9I4Vrx6izYHiKnnlpsHdKYQkPE3WdDWAxMRAJ1IlIm\nMc+JjEuGsjrM7IyiixFphi1bwgKMRSy+GEsnIuWSeydiZo8CB3Xz0E3u/kAPT1sOjHH3zmSu5D4z\nO9bd1+dWqEgEOjth+PDmL74Yg9Gj4be/LboKaVTuIeLu56R4zhZgS/L5C2b2GjAeeKF+3/aal09t\nbW20tbWlLVWkcGvXhhApgjqR6uro6KCjoyOXY0dxUyozexy43t2fT77eH+h09/fN7DDgCeA4d19X\n9zzdlEoq5amn4IYbwp+tZs4cuOACmDu36EqqrzI3pTKzS8xsCTAJeNDMHkoemgy8bGYvAv8H+LP6\nABGpolbuRLreta7XheVS9NVZvwZ+3c32e4F7m1+RSLHWroV99y26imIMHQqDB2+fF5JyiPnqLJGW\n08qdCGgNrTJSiIhEpNVfhWtyvXwUIiIRafVORCFSPgoRkYgUGSIxUIiUj0JEJCLqRBQiZaMQEYmI\nOhGFSNkoREQiUuQlvupEJA2FiEhE1IkoRMomimVP0tKyJ1Il27bBoEGweTP07190NcVwDysYL18e\n7nQo+ajMsicist1bb4VfoK0aIBBWL1Y3Ui4KEZFIFD2UFcOcCIQQWbas6CqktxQiIpEoOkRioaVP\nykUhIhKJokMkpk5EIVIeChGRSBQdIrFQiJSLQkQkEkUvA69ORNJQiIhEQp1IoBApF4WISCSKXgY+\nlk5EE+vlohARiYQ6kWD//WH9+vCmS4mfQkQkEkWHSCydSL9+cNBB8MYbRVcivaEQEYlE0SESk4MP\nDkufSPwUIiKRKDpEYulEIISIOpFyUIiIRKLoEImJOpHyUIiIRMBd7xOppRApD4WISAQ2boSBA2Hw\n4KIricPIkQqRslCIiESgs7PYLgTUiUg6ChGRCKxbV3yIxEQhUh4KEZEIrFsHw4YVW0NsnYiuzioH\nhUgTdHR0FF1Cr6jObDVSZ2dncSES49/n8OGwaRO88872bTHWWa8MNWZNIdIEZfmPpTqz1UidRQ5n\nddUZUydiFibXa7uRMvy7l6HGrClERCIQw3BWbDQvUg4KEZEIxBAiMXUioBApC3P3omtIzczKW7yI\nSIHc3bI4TqlDREREiqXhLBERSU0hIiIiqZU2RMxsipnNNrN5ZvaVgmsZY2aPm9lMM5thZv8h2T7c\nzB41s7lm9oiZDat5zo1J7bPN7Nwm1trfzF40swcirnGYmf3KzF41s1lmdnqkdd6Y/JtPN7O7zGxw\nDHWa2W1mttLMptdsa7guMzs1+d7mmdn3m1TnLcm/+8tm9k9mtk+MddY89pdmts3Mhtdsa3qdPdVo\nZtclf58zzOw7udTo7qX7APoD84GxwEDgJWBCgfUcBJyUfD4UmANMAP47cEOy/SvAt5PPj0lqHph8\nD/OBfk2q9S+AO4Fpydcx1vhz4Ork8wHAPrHVmZxrATA4+fofgc/FUCdwJnAyML1mWyN1dc2VPgtM\nTD7/v8CUJtR5TtffC/DtWOtMto8BHgZeB4YXWWcPf5d/ADwKDEy+PiCPGsvaiUwE5rv7QnffCtwD\nXFRUMe6+wt1fSj7fALwKjAIuJPxCJPnz4uTzi4C73X2ruy8k/CNOzLtOMxsNnAf8FOi6MiO2GvcB\nznT32wDc/T13fyu2OoG3ga3Ah8xsAPAhYHkMdbr7k0Bn3eZG6jrdzEYCe7n7s8l+v6h5Tm51uvuj\n7r4t+fIZYHSMdSb+BrihblshdfZQ458Df538jsTdV+VRY1lDZBSwpObrpcm2wpnZWMIrgmeAEe6+\nMnloJTAi+fxgQs1dmlX//wD+M7CtZltsNY4DVpnZ7Wb2gpn9xMyGxFanu68FbgUWE8Jjnbs/Glud\nNRqtq377Mpr/M3Y14dUw3dRTaJ1mdhGw1N1fqXsopjrHA2eZ2b+ZWYeZnZZHjWUNkSivSzazocC9\nwH909/W1j3noD3dVd67fk5mdD7zp7i+yvQvZsYCCa0wMAE4BfuTupwAbga/uUEQEdZrZ4cB/IgwH\nHAwMNbPP7lBEBHV2e9Ld11U4M/sasMXd7yq6lnpm9iHgJuDrtZsLKmdXBgD7uvskwovHX+ZxkrKG\nyDLCeGSXMeyYoE1nZgMJAXKHu9+XbF5pZgclj48E3ky219c/OtmWp48AF5rZ68DdwNlmdkdkNUL4\nd1zq7s8lX/+KECorIqvzNOD/ufsad38P+Cfg30VYZ5dG/p2XJttH121vSr1m9nnCsOtnajbHVOfh\nhBcPLyc/T6OB581sRGR1LiX8vyT5edpmZvtnXWNZQ+T3wHgzG2tmg4BLgWlFFWNmBvwMmOXu36t5\naBphspXkz/tqtl9mZoPMbByh7XyWHLn7Te4+xt3HAZcBj7n7lTHVmNS5AlhiZkcmmz4OzAQeiKlO\nYDYwycz2TP79Pw7MirDOLg39Oyf/Dm9buDLOgCtrnpMbM5tCeNV8kbu/W1d/FHW6+3R3H+Hu45Kf\np6XAKclwYTR1Jsc/GyD5eRrk7qszrzGrqwOa/QFMJVwFNR+4seBaziDMM7wEvJh8TAGGA78B5gKP\nAMNqnnNTUvts4BNNrncy26/Oiq5G4ETgOeBlwiupfSKt8wZCwE0nTFYPjKFOQqe5HNhCmDv84zR1\nAacm39t84AdNqPNqYB6wqObn6EcR1bm56++z7vEFJFdnFVVndzUm/x/vSM75PNCWR41a9kRERFIr\n63CWiIhEQCEiIiKpKURERCQ1hYiIiKSmEBERkdQUIiIikppCREREUlOIiIhIagoRkQZYuPHU7ywY\n292NilIc88dm9pEezvWEmennVKKl/5wijfkM8M+e7VIPpwNP1290983Ak2R8fwyRLClERBpzOXB/\n/UYzOyy5/8mpSYcyO7knyhwzu9PMzjWzpyzcnvbDNc+bQFjPak8ze9DMXkpuT/rpZJdpyTlFoqQQ\nEalhZueb2QNmtsLMHjezP695rD9wnLvPrXvOUYQl6z/n7s8nmw8HvgscDRwFXOruHwWuJyx+12Uq\n8BBhwc5l7n6Sux9PuO0qhEU9dxrqEonFgKILEImFmR0CXODuF5jZxYT7Tv+6Zpf9gfV1TzuQsFz2\nJe4+u2b76+4+MznuTMIKugAzCPei6HIu8HlgL+BWM/s2YbjsXyEMaZlZPzPbw3dcGl0kCupERLa7\nCvh+8vl+wFvd7FN/B7t1hKXLz6zbvrnm822E5c67Ph8AH9whb5i7r3D3eYTbKk8Hvmlm/6XunFpu\nW6KkTkRku30J90yHcJfCX9Q9vhoYWrdtC/CHwL+Y2QZ3v7uB8/0B8Bh8cLfBTne/08zeAv4k2T4Y\neD+ZZBeJjkJEZLufEu74ZsD33X1r7YPu/r6ZzTCzo9x9zvbNvim5h/2jZrae0E3Udw7ezedT2X7f\n6+OBW8xsG7AV+GKy/WS6uXJLJBa6KZVIA5L7f49w9+9kcKzngYnu/v4u9vkW8Fzd3IxINBQiIg0w\ns0GESfLJGb9XpLtzDQYebca5RNJSiIiISGq6OktERFJTiIiISGoKERERSU0hIiIiqSlEREQkNYWI\niIikphCep1RbAAAAEElEQVQREZHUFCIiIpLa/wesaF3UYxGDNQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1134a8050>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEfCAYAAACwF+reAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH2RJREFUeJzt3XuYXHWd5/H3J91JIDdCiIMjRIMIDuANkKDOAO1lMaIY\nV2cH8Y4zOzCIu+6MC+qMS5gZ7+iqD4qMF9YrgQeQSUYBcaFXvHFRQAgJJIRIEgRJCJALkNt3/zin\nSKVS1XWquk511S+f1/P0k6pTp059qzvdn/r+fueiiMDMzGwk48a6ADMz630OCzMza8phYWZmTTks\nzMysKYeFmZk15bAwM7OmHBZmZtaUw8LMzJpyWFjSJK2U9NoynivpLknHV637mtrlZZP0Qkm3S3pC\n0lndeE3bMw2OdQFmtSStBP4E2A5sAq4GzoqITW1sLvKvdoz43Ih4Uc269ZZX3s/7I+L6NusYydnA\n/42Il5WwbbNnuLOwXhTAmyJiKnAU8HLgn2pXktQvH3YCUEnbfh5wd0nbNnuGw8J6WkQ8CFwDHAHP\nDPecLel3wAZJ4yQdJmlY0vp8COjkms3MkbRY0qOSviVpYuUBSR+RtDwfxlks6S0tPPeZoadqNUNS\n3wWeCyyStCGv/fKa9b8s6Yv13v9I703S9cAQcEFe/wuafT/N2uWwsF4lAEmzgDcAt1U99vZ82XRg\nAFhEFijPAj4IfF/SIVXbeQdwInAwcCi7dinLgb+IiGnAecD3JO1f8LmNhqiqh6TeDTzAzk7pO8Bc\nSfvk728QOAX49m7fAGl8g/d2aL7t1wA3Ah+IiGkRsbxBPWaj5rCwXiTgKknryf4YDgOfzB8L4MsR\nsSYingZeAUyOiE9HxLaIuAH4D7I/8pX1L8jXXw98Aji18kIRcXlEPJTfvgxYBswp8tx25K91I/Bf\n8kVzgUci4rY6qzd6b7U1NBziknSopMsk3ZB3NosknTGa92B7pn4Z87U9SwDzRpgQXlV1+zk19wF+\nny+vt/4D1Y9Jeg/wP4DZ+aIpwMwizx2FbwNnAN8A3gV8t8F6jd7bATXL6nY4kmYAXwNOioinJF0F\nvDciHm+3cNtzubOwflT9x/FBYJak6k/XzwPWVN1/bs3tBwEkPQ/4N+ADwIyI2Be4i10/qdd97ijq\nBfh34CWSXgS8Efh+g+c1em+rC77uB4CvRMRT+f2JwOaCzzXbhcPC+t2vyf4Ani1pvKQh4E3Agvxx\nAR+QdED+Sfsfqx6bTPaHfC0wTtJpQPVuryM9txUPk815ABARTwJXAD8AboqIRn/8m7236jrrmUq+\np5SkI4DFEbG1jfrNHBbW3/I/fieTTXg/AlwAvDsi7q2sQvbJ/SfAfWRzEv+aP/du4PPAr4CHyILi\n59Wbb/TcFn0K+Kd8j6a/z5d9O3+9RkNQRd5bdZ31XAicKOltwOuAj7RRuxkAKvuyqpK+RdZq/zEi\nXtxgnS+T/UJsBt7XYLLPLBn5Xl5Lgf0jYuNY12PWTDc6i4vJ9vioS9JJwAsi4hDgb8k+DZklS9I4\n4B+ASxwU1i9K3xsqIm6UNHuEVd5Mvo95RNwkabqk/SPi4bJrM+s2SZPJ5jDuZ4QPUWa9phd2nT2A\nXXcPXA0cSPYLZZaU/PxWU8a6DrNW9coEd+3eHOVOpJiZWUt6obNYA8yqun8gu+4jD4AkB4iZWRsi\nYtQnsuyFzmIh8B4ASa8AHms0XxERPf917rnnjnkNrtM11n6df34wZ865vO1twWmnjX09/f797Kc6\nO6X0zkLSJcAJwExJq4BzgfEAEXFRRPxY0kmSlpNdu+C0smsy29OsXQtTpsA//zMc35XLMllqurE3\nVNMTr0WEr/BlVqK1a2HSJJgxA558cqyrsX7UC8NQSRkaGhrrEgpxnZ3TDzWuXQvHHDPEjBmwZQt0\ncHSi4/rh+wn9U2enlH4Ed6dIin6p1azXHHccfOIT2RDU1KmwZg1MmzbWVVk3SCISmeA2s5KtWwf7\n7ZfdHjcuu2/WCoeF2R5g7VqYmV+lY++94dFHx7Ye6z8OC7PE7diRhcOMGdn9I45wWFjrHBZmiXvs\nsWyeYvz47P5++zksrHUOC7PEVQ9BAaxY4bCw1jkszBJXGxaes7B2OCzMErdu3a5hMW+ew8Ja57Aw\nS9zatTt3m4Vsotu7zlqreuGss2ZWotphqJ/8BDZvHrt6rD+5szBLnOcsrBMcFmaJqw2LD3/YYWGt\nc1iYJa52gnvGDIeFtc5hYZa42s7iK1/JwsLn5bRWOCzMEle7N9TgIEyYAJs2jV1N1n8cFmaJq+0s\n5s/3UJS1zmFhlrDt27NzQ+27767LfayFtcphYZaw9ethn32yoacKdxbWDoeFWcJq94SqcFhYqxwW\nZgmrna8AdxbWHoeFWcLqhQX4mhbWOoeFWcLWrdt5hbwKdxbWDoeFWcI2bIBp03Zf7rCwVjkszBK2\ncSNMnrzrskpn4V1nrRUOC7OEbdoEU6bsvtydhbXKYWGWsE2b6ncWnuC2VjkszBJWbxgKYPr07IA9\ns6IcFmYJqzcMNX9+tswnErRWOCzMEtaos5g8OXvMpym3ohwWZglr1FmMHw8DA7Bly5iUZX3IYWGW\nsHoT3BWV7sKsCIeFWcIaHWcBnrew1jgszBLW6DgLcGdhrXFYmCXMnYV1isPCLGEjdRZTprizsOJK\nDwtJcyUtlbRM0jl1Hp8p6RpJt0u6S9L7yq7JbE+wbVv2NXHirssrncXkye4srLhSw0LSAHABMBc4\nHDhV0mE1q50F3BYRLwOGgM9LGsTMRmXTJpg0CaT6j7uzsFaU3VnMAZZHxMqI2AosAObVrPMHoHIS\n5WnAuojYVnJdZslrNATlzsLaUfYn+AOAVVX3VwPH1qzzdeB6SQ8CU4G/Krkmsz1Co6O3K9xZWCvK\nDosiJxP4GHB7RAxJOhi4TtJLI2JD7YrzKx+JgKGhIYaGhjpVp1lyGh2Q584ibcPDwwwPD3d8u2WH\nxRpgVtX9WWTdRbVXAZ8AiIj7JN0PvBC4tXZj1WFhZiMbaU8ocGeRqtoP0uedd15Htlv2nMWtwCGS\nZkuaAJwCLKxZZynwOgBJ+5MFxYqS6zJLXqNhKHcW1o5SO4uI2CbpLOBaYAD4ZkQskXR6/vhFwCeB\niyXdQRZeZ0eEL8tiNkruLKyTSt9FNSKuBq6uWXZR1e21wMll12G2p3FnYZ3kI7jNEjXSGWfBnYW1\nxmFhlqgix1k4LKwoh4VZooocZ+FhKCvKYWGWKHcW1kkOC7NEubOwTnJYmCWqyBHc7iysKIeFWaI2\nbmx+nIU7CyvKYWGWqGadxYQJsH07bN3a1bKsTzkszBLV7Ahuyd2FFeewMEtUsyO4wfMWVpzDwixR\nzY7gBncWVpzDwixRjSa43VlYOxwWZolyZ2Gd5LAwS1AEbN7sOQvrHIeFWYKefDLbNXZgYOT13FlY\nUQ4LswSNNATlzsLa4bAwS1Czo7cr3FlYUQ4LswS5s7BOc1iYJajInlDgzsKKc1iYJWikYSh3FtYO\nh4VZgtxZWKc5LMwS5M7COs1hYZYgdxbWaQ4LswR5byjrNIeFWYKaXX+7YsoUh4UV47AwS1Cj80LB\n7p2Fh6GsCIeFWYJambNwZ2FFOCzMErR5M0yaVP8xdxbWDoeFWYJGGoaq5s7CinJYmCVo06ZincXe\ne8OWLbB9e1fKsj7msDBL0EjDUNWkbD0PRVkzDguzBBXdGwp8YJ4V47AwS9BIw1C1fGCeFeGwMEtQ\n0b2hwJ2FFeOwMEtQ0eMswJ2FFVN6WEiaK2mppGWSzmmwzpCk2yTdJWm47JrMUufOwjptsMyNSxoA\nLgBeB6wBbpG0MCKWVK0zHfgK8PqIWC1pZpk1me0Jih5nAe4srJiyO4s5wPKIWBkRW4EFwLyadd4B\nXBERqwEiYm3JNZklbfv27NiJiRPrP+7OwtpRdlgcAKyqur86X1btEGCGpBsk3Srp3SXXZJa0yhCU\nVGx9dxZWRKnDUEAUWGc8cBTwWmAS8CtJv46IZaVWZpaoZpPb7iysHWWHxRpgVtX9WWTdRbVVwNqI\neBJ4UtLPgJcCu4XF/Kr/5UNDQwwNDXW4XLP+V/To7Qp3FmkZHh5meHi449tVRJEP/21uXBoE7iHr\nGh4EbgZOrZng/jOySfDXAxOBm4BTIuLumm1FmbWapeKuu+CUU2Dx4vqPz5+/a3dx/vnw0EPZv5Ye\nSUREwUHJxkrtLCJim6SzgGuBAeCbEbFE0un54xdFxFJJ1wC/A3YAX68NCjMrrpVjLMCdhRVT9jAU\nEXE1cHXNsotq7p8P+HONWQc0G4bynIW1w0dwmyWmlWMswJ2FFeOwMEtMs5MIurOwdjgszBLjvaGs\nDA4Ls8S0c5yFw8KacViYJaadzsLDUNaMw8IsMc0muN1ZWDscFmaJaeUqeeDOwopxWJglptXjLCZN\nyp6zY0epZVmfc1iYJabVI7gHBmCvveDJJ8uryfqfw8IsMa12FuB5C2vOYWGWmFb3hgLPW1hzDguz\nxLR6nAW4s7DmHBZmiXFnYWVwWJglxp2FlcFhYZYYdxZWBoeFWWK8N5SVoWlYSNpP0uSaZcdJ2qu8\nssysXa0eZwHuLKy5Ip3F3cAXa5b9ATiz8+WY2WhEuLOwchQJi69GxH+tXhARy4E55ZRkZu3auhXG\njYPx41t7njsLa6ZIWPxU0iclHVBZIGkccHh5ZZlZO4qcRNCdhbVjsNkKEfELSU8BX5M0A/gRcD3Z\n8JSZ9ZB29oSCrLN44IHO12PpKLQ3VET8JiJOBt4KPAjMB35fYl1m1oYik9vuLKwdLe06GxEPR8T/\niYi5wM9KqsnM2jSazsJzFjaSto+ziIgfdbIQMxu9ImHhzsLa4YPyzBLSzjEW4LCw5hwWZglpt7Pw\nMJQ147AwS4g7CyuLw8IsIe4srCwOC7OEtLs3lDsLa8ZhYZaQdo+zqHQWEaWUZQlwWJglpN3OYnAw\nO5/UU091viZLg8PCLCGbN7fXWUD2PA9FWSMOC7OEFDmRYCPTpsGGDZ2tx9LhsDBLyIYNMHXqyOs0\n6iymTYMnnuh4SZYIh4VZQjZuzPZsasfUqe4srDGHhVlC3FlYWUoPC0lzJS2VtEzSOSOsd4ykbZLe\nWnZNZqlyZ2FlKTUsJA0AFwBzya6sd6qkwxqs9xngGkBl1mSWMncWVpayO4s5wPKIWBkRW4EFwLw6\n630QuBx4pOR6zJI2ms7CYWEjKTssDgBWVd1fnS97Rn5t73nAhfkiH0Nq1qaNG9vvLDwMZSMpOyyK\n/OH/IvCRiAiyISgPQ5m1ISL7Y+/OwsowWPL21wCzqu7PIusuqh0NLJAEMBN4g6StEbGwdmPzqz4S\nDQ0NMTQ01OFyzfrX00/vPG3HSObPr99duLNIw/DwMMPDwx3frqLEM4dJGgTuAV4LPAjcDJwaEUsa\nrH8xsCgirqzzWJRZq1m/e+QROOwwWLt25PUahcWll8IVV8Bll5VRnY0VSUTEqEdsSu0sImKbpLOA\na4EB4JsRsUTS6fnjF5X5+mZ7kqKT2yPtDeXOwhopexiKiLgauLpmWd2QiIjTyq7HLFVFdpsdydSp\nnrOwxnwEt1ki3FlYmRwWZolwZ2FlcliYJaITnYXDwhpxWJglosgBeSOp7DrrnQ6tHoeFWSKKHpDX\nqLOYMAEGBnxpVavPYWGWiNF2FuBJbmvMYWGWiNF2FuBJbmvMYWGWCHcWViaHhVki3FlYmRwWZokY\nzbUsKrz7rDXisDBLRNFhqJE6Cw9DWSMOC7NEjOZaFhUehrJGHBZmiXBnYWVyWJglwp2FlclhYZYI\ndxZWJoeFWSLcWViZHBZmCdi+PTun06RJzddt1lk4LKweh4VZAjZvzoJi3Ch/oz0MZY04LMwS0MqF\nj3wEt7XDYWGWgE4cvQ3uLKwxh4VZAlqZ3HZnYe1wWJgloBNnnAV3FtaYw8IsAZ3sLHxpVavHYWGW\ngE51FoOD2eVVN28e/bYsLQ4LswR0qrMAD0VZfQ4LswR0qrOALCwef7wz27J0OCzMEtDKrrPNOot9\n94X160ddkiXGYWGWgFYOymtm5kxYt64z27J0OCzMEtDJzmK//WDt2lGXZIlxWJgloBNnnK2YOdNh\nYbtzWJgl4IknsonpIop0Fh6GsloOC7MErFuX/ZHvBHcWVo/DwiwBjz5aPCzcWVg7HBZmCVi3DmbM\n6My23FlYPQ4Lsz4XkXUWRcPCnYW1w2Fh1ueeeAL23js7p1MnuLOweroSFpLmSloqaZmkc+o8/k5J\nd0j6naRfSHpJN+oyS0ErXQUU6ywefdRnnrVdlR4WkgaAC4C5wOHAqZIOq1ltBXB8RLwE+Bfg38qu\nyywVndwTCrIOZa+9fBEk21U3Oos5wPKIWBkRW4EFwLzqFSLiVxFROXXZTcCBXajLLAmthkWzzgJ8\nFLftrhthcQCwqur+6nxZI38N/LjUiswS0uowVBE+P5TVGuzCaxQe+ZT0auD9wJ/Xe3x+1UeioaEh\nhoaGRlmaWf9rp7No1l14krt/DQ8PMzw83PHtdiMs1gCzqu7PIusudpFPan8dmBsRdU+QPL9I/2y2\nh+n0nAV499l+VvtB+rzzzuvIdrsxDHUrcIik2ZImAKcAC6tXkPRc4ErgXRGxvAs1mSWj1QPyinzm\ncmdhtUoPi4jYBpwFXAvcDVwaEUsknS7p9Hy1/wXsC1wo6TZJN5ddl1kqWjnVR1HuLKxWN4ahiIir\ngatrll1UdftvgL/pRi1mqSlrzuKOO0ZTlaXGR3Cb9TnPWVg3OCzM+lynj+AGz1nY7hwWZn3OnYV1\ng8PCrI9t25ZdUnX69OLPcWdh7XBYmPWx9ethn31gXId/kyun+/DJBK3CYWHWx9rZbbZIZ7HXXtkJ\nBTdubKssS5DDwqyPlTFfUeGTCVo1h4VZH2vncqpFz5rjkwlaNYeFWR8rs7PYf3/4wx/K2bb1H4eF\nWR8ra84CYPZsWLmyxYIsWX0VFtLuX43+48+f7/W9fvrr//CH9YehOrH9Cy+EH/ygt96v129v/U5Q\n9Mm+cZKiX2o165YzzoCXvATOPLP4c4qcGwrg8suzsLjyynars14giYjQaLfTV52Fme2qjDPOVsye\nDfffX862rf84LMz6WJl7Qx10kMPCdnJYmPWxVavgwAPL2faMGbB9Ozz2WDnbt/7isDDrU9u3wwMP\nZMNFrSjaWUjuLmwnh4VZn1q9Ojtwbu+9y3uNgw7y7rOWcViY9akVK+D5z2/9ea3sXulJbqtwWJj1\nqfvug4MPLvc1PAxlFQ4Lsz7Vjc7Cw1BW4bAw61MrVpTfWXgYyiocFmZ96r77ujNnsXKlL4JkDguz\nvtWNzmKffbKLIPm6FuawMOtDjz0GW7Zku862qtWTzXmS28BhYdaXKl2FRn16uOae/3xYvrz817He\n5rAw60PtzldA653FscfCL3/Z3mtZOhwWZn2oG/MVFSecAD/7WXdey3qXw8KsD3WzszjyyGyPqEcf\nbe/1LA0OC7M+1M3OYnAQXvlK+PnPu/N61pscFmZ9JgIWL4ZDD23v+e1cevP44z0UtadzWJj1md/+\nNjv+odVTk4+Gw8IcFmZ9ZuFCePOb239+O53FMcfA3XfDhg3tv671N4eFWZ9ZuBBOPrm7r7nXXnD0\n0d6Fdk+m6JOTvkiKfqnVrCwPPABHHQUPPZRNPHfTZz8Lt90Gl1zS3de10ZFERIz68E13FmZ9ZNEi\neOMbux8UAGeeCTfcAHfc0f3XtrFXelhImitpqaRlks5psM6X88fvkHRk2TWZ9atFi0Y3XwHtzVkA\nTJkCH/0ofPzjo3t960+lhoWkAeACYC5wOHCqpMNq1jkJeEFEHAL8LXBhmTWVbXh4eKxLKMR1dk63\navzpT+H22+HEE9t7fifqPP30rIYy5y764WcO/VNnp5TdWcwBlkfEyojYCiwA5tWs82bg2wARcRMw\nXdL+JddVmn75D+Q6O6cbNd5zD7zjHXDppTB1anvbqNTZbmcB2UT3F74Ab30rXHdd+9sZST/8zKF/\n6uyUssPiAGBV1f3V+bJm6xxYcl1mfWHjRvje9+Ckk+BTn8rO0zTW/vIvYcECeM974EMfyo7s3rZt\nrKuyspU9TVZ096Xamfq6z7viCrj44lEW1IEdqkbaxrJlcPPNY19HM8uXw69/PfZ1NNvGfffBL34x\n9nWMZMUKuPHGztbx9NPwyCPZXk/HHw+f+1z2ab4T5s8fXXcBMDQEt9wCF10EH/wgLFkCz342POtZ\n2eT74CAMDOz6b9HTqd97L9x66+jq64ZO1vmZz8ARR3RmW2UpdddZSa8A5kfE3Pz+R4EdEfGZqnW+\nBgxHxIL8/lLghIh4uGZb3m/WzKwNndh1tuzO4lbgEEmzgQeBU4BTa9ZZCJwFLMjD5bHaoIDOvFkz\nM2tPqWEREdsknQVcCwwA34yIJZJOzx+/KCJ+LOkkScuBTcBpZdZkZmat65sjuM3MbOz0/BHcRQ7q\n62ItsyTdIGmxpLsk/bd8+QxJ10m6V9JPJE2ves5H89qXSmpzD/m26x2QdJukRb1ap6Tpki6XtETS\n3ZKO7bU689dcLOlOST+QNLEXapT0LUkPS7qzalnLdUk6On9vyyR9qUt1fi7/md8h6UpJ+/RinVWP\n/YOkHZJm9Gqdkj6Yf0/vklQ9L9yZOiOiZ7/Ihq6WA7OB8cDtwGFjWM+zgZflt6cA9wCHAZ8Fzs6X\nnwN8Or99eF7z+Pw9LAfGdbHevwe+DyzM7/dcnWTH2Lw/vz0I7NNLdeavswKYmN+/FHhvL9QIHAcc\nCdxZtayVuiojCzcDc/LbPwbmdqHO/1T5vgCf7tU68+WzgGuA+4EZvVgn8GrgOmB8fv9Zna6z1zuL\nIgf1dU1EPBQRt+e3NwJLyI4TeebAwvzft+S35wGXRMTWiFhJ9oOa041aJR0InAR8g527JvdUnfmn\nyeMi4luQzXFFxOM9VucTwFZgkqRBYBLZzhpjXmNE3Aisr1ncSl3HSvpTYGpEVHb4/k7Vc0qrMyKu\ni4gd+d2b2HlsVU/VmfsCcHbNsl6r8++AT+V/J4mIRzpdZ6+HRZGD+saEsj28jiT7j75/7NyD62Gg\ncgT6c8hqruhm/f8b+J/AjqplvVbnQcAjki6W9FtJX5c0uZfqjIhHgc8DD5CFxGMRcV0v1Vij1bpq\nl6+h+79j7yf7ZEudesa0TknzgNUR8buah3qqTuAQ4HhJv5Y0LOnlna6z18OiJ2ffJU0BrgD+e0Ts\ncjmYyHq6keou/T1JehPwx4i4jd0PeMyK6IE6yYadjgK+GhFHke0N95FdihjjOiUdDHyIrIV/DjBF\n0rt2KaA3vpe7v2jzusacpH8EtkTED8a6llqSJgEfA86tXjxG5TQzCOwbEa8g+5B4WadfoNfDYg3Z\neGHFLHZNw66TNJ4sKL4bEVflix+W9Oz88T8F/pgvr63/wHxZ2V4FvFnS/cAlwGskfbcH61xN9qnt\nlvz+5WTh8VAP1fly4JcRsS4itgFXAq/ssRqrtfIzXp0vP7BmeVfqlfQ+sqHSd1Yt7qU6Dyb7kHBH\n/rt0IPAbZeeu66U6yV/7SoD892mHpJmdrLPXw+KZg/okTSA7qG/hWBUjScA3gbsj4otVDy0km/Qk\n//eqquVvlzRB0kFkrWKBk4GMTkR8LCJmRcRBwNuB6yPi3T1Y50PAKkmH5oteBywGFvVQnUuBV0ja\nO//5vw64u8dqrNbSzzj/GTyhbC80Ae+uek5pJM0l+wQ8LyKeqqm/J+qMiDsjYv+IOCj/XVoNHJUP\n8/VMnbmrgNcA5L9PEyJibUfr7OQsfRlfwBvI9jpaDnx0jGv5C7I5gNuB2/KvucAM4KfAvcBPgOlV\nz/lYXvtS4PVjUPMJ7NwbqufqBF4K3ALcQfbJaJ9eq5NscnMxcCfZpPH4XqiRrGt8ENhCNrd3Wjt1\nAUfn72058OUu1Pl+YBnw+6rfo6/2UJ1PV76fNY+vIN8bqtfqzP9Pfjd/3d8AQ52u0wflmZlZU70+\nDGVmZj3AYWFmZk05LMzMrCmHhZmZNeWwMDOzphwWZmbWlMPCzMyacliYmVlTDguzOpRd4Oj/KTO7\n3gVx2tjm1yS9qsFr/UySfx+tZ/k/p1l97wT+Izp7ioNjgV/VLoyIp4Eb6fB1D8w6yWFhVt+pwL/X\nLpT0/PzaG0fnHcfS/Hoc90j6vqQTJf1C2WVNj6l63mFk52vaW9KPJN2eX9Lyr/JVFuavadaTHBa2\nR5L0JkmLJD2k7Lrqf1f12ADwooi4t+Y5LyQ7jfp7I+I3+eKDgfOBPwNeCJwSEX8OfJjsBG4VbwCu\nJjvx5JqIeFlEvJjscp2QnZxytyEqs14xONYFmHWbpOcCJ0fEyZLeQnZN4h9WrTIT2FDztD8hO4Xz\nf46IpVXL74+Ixfl2F5Od8RXgLrJrIVScCLwPmAp8XtKnyYa5fg7ZUJSkcZL2il1P2W3WE9xZ2J7o\nPcCX8tv7AY/XWaf2imiPkZ1S+7ia5U9X3d5Bdhruyu1BeOaKa9Mju4b7MrLL8d4J/Kukj9e8pk8D\nbT3JnYXtifYlu6Y2ZFe9+07N42uBKTXLtgBvBa6VtDEiLmnh9V4NXA/PXL1ufUR8X9LjwF/nyycC\n2/PJbrOe47CwPdE3yK4eJuBLEbG1+sGI2C7pLkkvjIh7di6Ozfn1za+TtIGsO6jtBKLO7Tew85rI\nLwY+J2kHsBU4I19+JHX2lDLrFb74kVkd+fWh94+Iz3RgW78B5kTE9hHW+SRwS83ciVnPcFiY1ZFf\n8/2nwAkdPtai3mtNBK7rxmuZtcthYWZmTXlvKDMza8phYWZmTTkszMysKYeFmZk15bAwM7OmHBZm\nZtaUw8LMzJpyWJiZWVP/HxqlMBrR64mdAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1134fb0d0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1131248d0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"meanlike = []\n", | |
"means = arange(4500.,5500.,10.)\n", | |
"for mean1 in means:\n", | |
" meanlike.append(loglikelihood(mean1, maxsig, maxfrac, data)-maxlike)\n", | |
"\n", | |
"xlab=\"Mean $cz$(km/s)\"\n", | |
"plot_title=\"Probability of mean\"\n", | |
"plotlike(means, meanlike, true_mean, xlab=xlab, plot_title=plot_title)\n", | |
"plotlike(means, meanlike, true_mean, type='linear',\n", | |
" xlab=xlab, plot_title=plot_title)\n", | |
"\n", | |
"siglike = []\n", | |
"sigmas = arange(10.,1500.,10.)\n", | |
"for sigma1 in sigmas:\n", | |
" siglike.append(loglikelihood(maxmean, sigma1, maxfrac, data)-maxlike)\n", | |
"\n", | |
"xlab = r\"$\\sigma$\"+\" (km/s)\"\n", | |
"plot_title = \"Probability of \"+r\"$\\sigma$\"\n", | |
"plotlike(sigmas, siglike, true_sigma, xlab=xlab, plot_title=plot_title)\n", | |
"plotlike(sigmas, siglike, true_sigma, xlab=xlab, type='linear',\n", | |
" plot_title=plot_title)\n", | |
"\n", | |
"def plot_data_and_model(data, true_mean=None, true_sigma=None,\n", | |
" maxmean=None, maxsig=None, maxfrac=None,\n", | |
" ndatabins=ndatabins):\n", | |
"\n", | |
" plot_data(data, true_mean, true_sigma, ndatabins=ndatabins)\n", | |
"\n", | |
" d = arange(0.,10010.,10.)\n", | |
" p = likelihood(maxmean, maxsig, maxfrac, d)\n", | |
" norm = sum(p)\n", | |
" nexp = p/norm*len(data)*len(d)/ndatabins\n", | |
"\n", | |
" plot(d, nexp)\n", | |
" title('Data and model')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Here are the data and the best fitting model\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEdCAYAAAASHSDrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVOX5//H3vbsUBaUZKQqCBUHsIBYsq4lGDSiWWBKN\n0USNMepP/Ro1fvMVk2g0iSUxRpNYYmzBBooGFdQVuyBFRJZiQaQsIL0Ku/fvj3MWZpfd2dndmTln\nZj6v65qL2ZlT7jmcmfuc5z7Pc8zdERERqU9R1AGIiEi8KVGIiEhSShQiIpKUEoWIiCSlRCEiIkkp\nUYiISFJKFCJpYGb/MrPfRrDenmZWZWYNfpfN7Mdm9mY24pL8okQhkTCzL8xsrZmtNLNlZva2mV1s\nZpbi/Cn/QGaJhw+RvBOXL5kUHgcGu/v2QA/gVuBa4IFGLielxJIlcYpFJG2UKCRy7r7K3UcBZwLn\nmVk/ADP7nplNMrMVZvalmd2YMNu48N/lZrbKzA42s93M7DUzW2Jmi83sUTNrV996zezP4XJXmNkE\nMzs84b1hZvakmT0cnvV8bGb9E94/wMwmhu/9B2idZD0/Ds+Y7gjPnmab2WFmdn64/goz+1HC9O3M\n7N9mtig887qh+kzLzIrM7E/h5/sU+F6tdbUzswfMbL6ZfWVmv43RWZfkKO1AEhvuPh74Cqj+wV4N\nnOPu7Qh+EC8xs5PD944I/23n7tu5+/vh3zcDXYG+QHdgWJJVfgDsB3QAHgeeMrOWCe8PAZ4A2gHP\nA38FCKcZCTwczvsUcBrJm54GAlOAjuEynwQOBHYDzgH+ambbhtPeDWwH9AKOAn4EnB++d1G4LfYH\nBgCn11rvv4BvwuUeABwH/DRJXCINUqKQuJlP8GOKu7/h7tPC51OB/xD8cEIdzTzu/qm7v+ruG919\nCXBnwvRbcffH3H2Zu1e5+x1AK2DPhEnedPeXPBgQ7VGCpAJwCFDi7n9290p3fwYY38Dn+tzdHw6X\n9STQDfhNGOsYgh/33c2smODM6np3X+Puc4DbgXPD5ZwB3Onu89x9GXBL9bYws87ACcCV7r7O3RcD\ndwFnNRCbSFIlUQcgUstOwFIAMzuYoHbRD2hJ8EP+ZH0zhj+UfyY4I9mO4EBoaZLp/we4gOBH24Ht\ngR0SJqlIeL4WaB0243QD5tVa3ByS1ygSl7UOIPwhT3ytbbj+FuHyqn1JsF0gOFuaW+u9aruE8y5I\nuCagqNY0Io2mMwqJDTM7iOAH8a3wpccJmnh2dvf2wH1s2Wfraua5BagE9g6bq86lnn3czI4ArgG+\n7+7t3b0DsILUCtIL2PLDXW2XemJqrCXARqBnwms9CJrkqtfdo9Z71eYCG4BO7t4hfLRz933SEJcU\nMCUKiVJ1k8n2ZjaYoO3+kermJoIj7GXu/o2ZDQR+wJYf48VAFUFbPAnTrwFWmtlOBImgPtsBm4Al\nZtbSzP6P4IwiFe8Cm8zscjNrYWanAgelOG9S7l5JcNZ0s5m1NbNdgCsJmr4I37vczHYysw7AdQnz\nLgBeAe4ws+3CwvduZnZkOmKTwqVEIVEaZWYrCZpGridoiz8/4f2fA78Jp/k1MLz6DXdfS1C4ftvM\nloaJ5CaCAvEKYBTwDPUf5b8UPmYCXxA0/SQ20dTVL8LDdX8DnAr8GPiaoG7wTJLPWe+y6nEZQcL7\nDHgTeAx4KHzvn8DLBIXxCWz9GX9E0Ez3CUGz21NAlyRxiDTIMn3jIjP7AlhJ0CSw0d0HmllHgi/9\nLgRf0jPcfXlGAxERkSbJxhmFA6XufoC7Dwxfuw4Y4+69gVdJOH0WEZF4yVbTU+0C4UkE16AT/js0\nS3GIiEgjZeuMYmzY8/XC8LXO7l59uWAF0DkLcYiISBNkox/FIHdfYGbfAsaYWXnim+7uZqYCm4hI\nTGU8UYSX7OHui81sBMFQBhVm1sXdF5pZV2BR7fmUPEREmsbd0zpAZUabnsxsWzPbLnzehmDcmakE\n4+acF052HkGnqq24ux7u3HjjjZHHEJdH1Nsi3DOpvsq0kLdFnB7aFlsemZDpGkVn4E0zmwy8D7zg\n7q8QDMtwrJnNBI4J/5YYGzYs6ggkrrRv5L+MNj25++cEo1zWfn0p8J1MrltERNJDPbNzQGlpadQh\nxOaoMQ7bIi7isi3isG/EZVvkq4z3zG4qM/O4xiaFKxiVtXq/tIy1CYs0lZnhuVTMlvwRh6NGiSft\nG/lPiUJERJJS05NII6jpSeJOTU8iIpJ1ShSSErVDS320b+Q/JQoREUlKNQqRRlCNQuJONQoREck6\nJQpJidqhpT7aN/KfEoWIiCSlGoVII6hGIXGXiRpFNu5wJ5ITgiSwhZKASEBNT5KSwmmH3nJTIklN\n4ewbhUuJQkREklKNQiSUSv1BNQqJO/WjEBGRrFOikJSoHVrqo30j/ylRiIhIUqpRiIRUo5B8oBqF\niIhknRKFpCQf26HNrMZDmiYf9w2pST2zpcAlNh0pWYjURTUKKVg16w0QJArVKCS3qUYhIiJZp0Qh\nKVE7tNRH+0b+U6IQEZGkVKOQgqUaheQj1ShERCTrlCgkJWqHlvpo38h/ShQiIpKUahRSsFSjkHyk\nGoWIiGSdEoWkRO3QUh/tG/lPYz2JpGDtxrW8O/dd2B+oehQW7Q0Lo45KJDsyXqMws2JgAvCVuw8x\ns47AcGAX4AvgDHdfXsd8qlFIRqVSo6hYXUGXM7rAfsAiYClQfBZ0+xBsFv/40T+44IALKC4qznL0\nInXLRI0iG4niKqA/sJ27n2RmfwCWuPsfzOxaoIO7X1fHfEoUklENJYrnyp/jolEXUTG2At5eAKu7\nJEzj0L2Iw286nMqqSp76/lPstP1OWf4EIlvLuWK2me0MnAjcz5YxnE8CHg6fPwwMzWQMkh4F1w59\nMFz630sZedZIeJkwSSQymAvjfjyOIb2HMPD+gUytmBpFpJEruH2jAGW6RnEncA2wfcJrnd29Inxe\nAXTOcAwijXPQ32AgvHX+W+zSfpekk5oZ1x9xPbt22JXjHj2OseeOpd+O/bIUqEh2ZCxRmNlgYJG7\nTzKz0rqmcXc3s3rbl4YlHKqUlpZSWlrnYiQLCuaosc8IOOJmeAh2+UvyJJHozL3P5JvKbxjyxBA+\nuPADdth2hwwGGS8Fs2/EVFlZGWVlZRldR8ZqFGZ2C3AusAloTXBW8SxwEFDq7gvNrCvwurv3qWN+\n1Sgko7aqUXQ0+MkO8OhLsGDA5s50tTvZJetwd93Y63h/3vuMOXcMJUW6qFCyL6dqFO7+K3fv7u69\ngLOA19z9XOB54LxwsvOAkZmKQdIn748aizfA94Gym2BB/yYv5uZjbqbYivnD239IX2wxl/f7hmS1\nw131odetwLFmNhM4JvxbJFqlN8FyYPwlzVpMcVExD538EHe9dxeTFkxKT2wiEdNYT1KwNjcp7TgV\nzvs23LsYVm/drNSYpqdq/57yb+58704mXDhBfSwkq3Kq6UkkJ1gVDLkYXvstrE7fYs/d91zatWrH\n3z/8e/oWKhIRJQpJSd62Q+/9HyjaBBMvTOtizYy7T7ibYWXDWLJ2SVqXHTd5u2/IZkoUUriKgWNu\ngFf+CJ7+r8I+nffhzH5n8ts3fpv2ZYtkk2oUUrDsUINdvwePv1D9CnXVH5pSo6hWsbqCvvf0ZfLP\nJtOjXY+0xi9SF9UoRJrAzGo8AFZuWAmHA2N/n9F1d27bmYv7X7z5rKJ2LLXjEokjJQpJSe63Q4cD\n+YXum3AffA4s2ifja75m0DWMKB/BrK9n1RFLzbhyUe7vG9IQJQopOOs2ruPO9+6EN7Ozvo7bdOSy\ngZdx29u3ZWeFImmmGoXkvdo1hrvfv5sxn43h+bOfJ5V7ZjenRlHt67Vfs8fde7Ds5mWwqnnLEklG\nNQqR5iqCP77zR2444oasrrbTtp04d99z4eCsrlYkLZQoJCV50w69F/Rq34uBOw1scNJ0F5mvPPRK\nOBBotSJty4yDvNk3pF5KFFJYDoYrDr4ixYnTW2ju2b4nfAoceH/alimSDapRSN7bXGPoNgHOOIiN\nt2+kpKikwVuhpvK8sfuodTc4dTe4eyZ4cbOWJVIX1ShEmmPg3fAB0d4n4itgw/aw2yvRxSDSSEoU\nkpKcb4duUwF7Pg+T0l97aLQPLoWD7olu/WmW8/uGNEiJQgrDgQ/AJ6fDOoi8k9vHZ0P3d6F9dCGI\nNIZqFJL3rMjgsl3h6f/A/IHUXW+o/XeGahTVdZHvXgWVd8JY1SgkvVSjEGmKXYCNbWD+gKgj2WLC\nz2B/oGhj1JGINEiJQlKS0+3QBwITf0JwNhATX/eGpcAe/406kmbL6X1DUqJEIXlt2bpl0Bv46Jys\nrjelkWEnAwc8lNW4RJpCiUJSkqtHjY9PfRxmA+s6RbD2Borm04CeZdBmUZbiyYxc3TckdUoUktfu\nn3Q/TIw6inpsAMpPhn0fjToSkaSUKCQluXjUOGXhFJauWxrcdyKuJp8P++d281Mu7hvSOEoUkrce\nm/oYP9znh/G+L9CcI6HlGugWdSAi9VM/CslLVV7FLnftwks/fIm9O+9Nw30ikr3X+H4Ute9hkfTe\nFqXDoPVN+Gjt79J86kchkqJxc8bRaZtO9NuxX9ShNGzqD6AfVFZVRh2JSJ2UKCQludYO/dhHYbNT\nLvi6N6yC1794PepImiTX9g1pPCUKyTvrN63nmenPcPY+Z0cdSuqmwhNTn4g6CpE6qUYheefZ6c9y\n9wd38/p5wRF6sntex6JGAbCd0eGGDiy4egGtSlql/mFFalGNQiQFm692yiWrYL8u+zF69uioIxHZ\nihKFpCRX2qFXrF/B2M/Gclrf06IOpdHO3vvsoCd5jsmVfUOaTolC8sqLs17kyF2OpMM2HaIOpdFO\n63saL3/6Mqs2rIo6FJEalCgkJbly1Pjs9Gc5pc8pUYexlVTuqtdp204ctctRjCwfmaWo0iNX9g1p\nOiUKyRvrNq5jzGdjGNJ7SNSh1CG1u+qd0e8Mnp7+dObDEWkEJQpJSS4cNY75bAwHdj2Qb7X5VtSh\nNNmQ3kMo+6KMlRtWRh1KynJh35DmUaKQvDGifEQsm50ao13rdhzR4whenPli1KGIbJaxfhRm1hp4\nA2gFtASec/frzawjMJzgBpVfAGe4+/I65lc/CknZpqpNdPlTFyZePJEe7XrUeC8O/Sgas6x/Tf4X\no2aO4pkznknyiUXqllP9KNx9PXC0u+8P7AscbWaHA9cBY9y9N/Bq+LdIs4ybM46e7XtulSRy0Ul7\nnsTYz8ay+pvVUYciAmS46cnd14ZPWwLFwDLgJODh8PWHgaGZjEHSI+7t0COm536zU7WO23Tk0J0P\nZfSs3Oh8F/d9Q5ovo4nCzIrMbDJQAbzu7tOAzu5eEU5SAXTOZAyS/9ydkTNGcmrfU6MOJW1O63ua\nrn6S2Mj0GUVV2PS0M3CkmR1d6/3UrhmUyMX5qHHC/Am0adGGvt/qG3UoaTO0z1Bemv0SazeubXji\niMV535D0KMnGStx9hZm9CPQHKsysi7svNLOuQL13lh+WsAeWlpZSWlqa6VAlB9V1tVNDndvibHPs\nP4I2+7aBcuotmouUlZVRVlaW0XU0eNVTWIC+EejJlsTi7r5rA/PtAGxy9+Vmtg3wMnAT8F3ga3e/\nzcyuA9q7+1YFbV31FC/DhsX3yLHPX/vw71P+zcCdBm5+rfFXHaU6Xeaveto874B7ocfb8OxjsU4U\ncd43ClEmrnpK5YziAeD/AROBxtyCqyvwsJkVETRxPeLur5rZJOBJM/sJ4eWxjQtZZIvpi6ez+pvV\nDOg2IOpQ0q/8FPj2r7J03i9Sv1TOKN5394OzFE/ienVGIQ265c1bWLBqAXefeHeN1/PijALg/CPg\nrbfwmfouSGoycUaRSqK4leDS1meBDdWvu/vEdAZSx3qVKCQpM4MLgbHA58FrDd4gKNcSxaF3wA5X\n48/ruyCpiarD3SHAAOAW4PaEhxSQWLZBtwM6dII5G8nbi+fKT4Y9obKqMa2+2RXLfUPSqsHWT3cv\nzUIcIo3XB5g5GKryuBF/2W6wBt6f9z6HdT8s6mikQNX7DTOzc939ETO7mjrOz939joxHJ7ERy6PG\nPsB7+dEbO6lyGFk+MraJIpb7hqRVsqanbcN/t6vnIRKZJWuXBNfVfXpc1KFkXnnQV0Q1O4lKxkaP\nbS4Vs+MlLtfKb+6Mtj/QG3iy5sluVMXsujv4paGYXT3dlcCjwOL4db6Ly74hgUiK2Wa2m5mNMrMl\nZrbYzJ4zs6Sd7UQyy6HvYJgedRy1ecIjzcovgz43p3+5IilI5aqnx4EnCU70uwFPAU9kMiiJn1gd\nMbZcBT3fgFlRB5JF5UOhz4ioo6hTrPYNyYhUEsU27v6Iu28MH48CrTMdmEi9dn8J5h4K66MOJIvm\nHAEdPoPtow5EClG9icLMOppZJ2C0mV1vZj3Dx7VAbgyUL2kTq6PGviNgev4MKV7NzOofzLCqBcz6\nHuyZ3ZhSEat9QzIi2QXoE6nZ2HpR+G91pU13ppPsKwZ2Hw0v3wH8LOpo0iyxyF2H8qEw4JGsRSNS\nTVc9SU6xPQyOPAwefJu6rlqK9qqn5i2rwbharIH/acvSXy+lwzYdEKlLTt0zWyQj+hKMqlqINraB\nz+G/s/4bdSRSYJQoJCVxaIeurKoM2uinF2iigKCX9oyRUUdRQxz2DcmspInCAt2zFYxIMu9+9S6s\nJhj/qFDNhFc+fYX1mwrpki+JWipnFLrCSWJx1Dhi+ggojzqKiK2F/bvsz6ufvRp1JJvFYd+QzEqa\nKMJq8odmNjDZdCKZ5u48W/5sDHtjZ9/QPYcysjxezU+S31K9H8W7ZvaZmU0NHx9lOjCJl6iPGqdU\nTMEwqIg2jjgY2mcoz814Ljb3qIh635DMSyVRfBfYDTgGGBI+TspkUCK1jZg+glP7xq+TXdJOchnS\nq0Mvum7XNajZiGRBg4nC3b8AugNHh8/XUG+PIMlXUR81jigfwSl94ni1U4YGAWzAKX1OCWo2MRD1\nviGZl8roscOAXwLXhy+1JBjwWCQrZi+dzaI1izi0+6FRhxIbQ/sMZeSMkbEbclzyUypNT6cAJxOc\nSeDu89CNiwpOlEeNI6aP4OQ9T6bI1O2n2n6d96PKq5i6aGrUoeiMogCk8s3b4O5V1X+YWZsMxiOy\nlRHlIzilbxybnaJjZrr6SbKmwbGezOwaYHfgOOD3wAXA4+7+l4wGprGeCtrmAnFb4FLYcPMGWha3\nTDKGU/B3tsd6imJZ1Z9x3JxxXPHSFUy6eBIi1SIZ68nd/wg8Ez56A7/OdJIQCTj0uRdmQcvillEH\nEzuDug9i3sp5fLH8i6hDkTyXaqPvVOBNYFz4XApMZO3QfdQbuz7FRcUM6T2E58qfizQO1SjyXypX\nPf0UeB84FTgNeN/MfpLpwERovQy6vwuzow4kvob2GcqI8nhcJiv5K5UaxUzgUHf/Ovy7E/Cuu/fO\naGCqURQ0M4N9H4F+T8ITo1KoPQR/F1KNAmDdxnV0ub0LK3+7EtZumUPfncIV1f0olhCM2Vltdfia\nSGb1yc9bnqbTNi224dhdjw2qhxF1/pP8l0qi+BR4z8yGhZ3v3gNmmdnVZnZVRqOT2Mh6O3QLYNex\nMGNIllece07pcwr0iW79qlHkv2T3zK72afioPlR5LnzeNlNBibAbsKA/rOsUdSSxd+IeJ0Ivglul\nblQ3J0k/3TNbYslOMZj/F/jgMlKrPZDidPlVo9g8xY8MJjwTNtXVPY0UBt0zW/Ja9UisVmxBm3v5\n0KhDyh3lBDUdkQxQopCUZK8d2qHnK7AUWKm78KasHOj9IhRtzPqqVaPIf0oUEj99dSe7RlsFfL0H\n9Hwj6kgkD9VbozCzG+uZxwHc/TeZCipcv2oUBcbMwDbB1TvBgxWwdOt2edUo6qlRmMHhv4ftv4L/\n3qMaRQHLdo1iDUGficSHAz8Brk1l4WbW3cxeN7NpZvaxmV0evt7RzMaY2Uwze8XM2jfvY0je6P4O\nrO4cND1J45QPhT4jwRLqPRHcgU/yT72Jwt3/5O63u/vtwD+BbYDzgf8QXIyXio3Ale7ej+De25ea\nWV/gOmBM2Lv71fBvibGstUP3fRamn5alleWZJX1gw3bQFbZ0vsv8mYVqFPkvaY3CzDqZ2e+AKQRd\noA5092vdfVEqC3f3he4+OXy+mqDleSeCe24/HE72MKDLWyTQ91n1xm6O8qHQN+ogJN8kq1H8ieDu\ndv8A/ubuq5q1IrOewBvA3sCX7t4hfN2ApdV/J0yvGkWBsZ0MTu0Nfy0nOIZRjaKu9+qtUeCw0wcw\n9GC4p+7tIvkv2zWKqwiO/v8XmG9mqxIeKxuzEjNrS3A/iytqJ5wwG2gvluBIOOwwJk00fwC0AnbQ\n2OySPvUO4eHuabl01sxaECSJR9y9+r6NFWbWxd0XmllXoM6mrGEJjZ+lpaWUlpamIyRpgmHDMtsW\n7e6wF/BM8+oTBV+49aKggXevp2Hc/2ZllZneNyS5srIyysrKMrqOVMZ6arKwWekB4BN3vyvhreeB\n84Dbwn/rvPHvMO19BWPa4mlQDMzv38wlJTbfFKhpwIlPZS1RSLRqH0TfdNNNaV9HpjvcDQLOAY42\ns0nh43jgVuDY8F4Xx4R/S4xlOmc/88kzYSe7Av6BT5e5wLZLoNOMrKxOx3P5L6NnFO7+FvUno+9k\nct2SW54tV2/stHGCS4z76axC0kNDeEhKMnnUOHvpbCpWVwRHwpIe074Pez2VlVXpjCL/KVFI5IZ/\nPJzT9zpd176l09xB0GZx1pqfJL/pfhQSuX3v3Zd7TryHI3seSX39ClLtRxHXvg9Z60eROP0Jl8Oa\nHWHcr9WPooDofhSSdz5Z/AlL1y1lUI9BUYeSf7LY/CT5TYlCUpKpduh+Z/Rj3ivzKC4qzswKCtnm\n5icyOkCgahT5T4lCIuPuwYAuH7+HChQZ4EXwyenQD7I1QKDkJ9UoJDKTF07mgFsPgD9XEbSr199m\nrxpFE2oUAD3ehBOPhPuSzy/5QzUKySvDPx4e9CJWJ7vMmTsI2qCxn6RZlCgkJeluh3Z3hk8bDh+n\nd7lSixcF23jvJzK2CtUo8p8ShWRVdUG1qHsRn3/6OSxs3HzSBFOBfR9DNQppKtUoJKs2t6UfdzVs\n3BZe/x3xqAs0d/6Y1iiq//5Fbxjxb5h3iGoUeU41CskPVgn9noRpZ0YdSeGY+sPwrEKk8ZQoJCVp\nbYfuWQZrd4BFe6dxoZLU1B9Av+EZ+carRpH/lCgkIxI7eG1VW9jvEfjo3GgCK1RLd4flPWHXzHa+\nk/ykGoVkRO028839IFoaXN0uuC/26i7Epy7Q3PljXqPA4eC/QLcrYIT6VOQz1Sgk9/UB5h4aJgnJ\nqo/PhD2BFmuijkRyjBKFpCRt7dD7AVN+lKaFSaOs6QxfAXs+n9bFqkaR/5QoJGsWrFoAOwEzTo46\nlMI1Bdjv31FHITlGNQrJiK3bzIFDgR2B5+JYF4hTLA0ta4tGj4FVYnB1B7h3CqzsoRpFHlKNQnKY\nw377Bke00kxOk3tZbyKoVeisQhpBiUJS0ux26M5TYJtlMCcd0UizTLoADngwbWMxqkaR/5QoJDsO\nvB8mna/hhuJg/oBg+JQeUQciuUI1CsmIGm3mJQZXdYS/T4QVPYlnXSBOsTRmWYkaMf8hd0KXq/AR\n+o7lG9UoJDftBcw/CFbsEnUkeaiJ9YqPzoE+sHLDyrRHJPlHiUJS0qx26P7AhxemKRJJi7Xfgs/D\nm0c1k2oU+U+JQjJrh3LoBMwcEnUkUtskeGDSA1FHITlAiUJS0uSjxgPvh8lAZcs0RiNpMRvmrZrH\n5IWTm7UYnVHkPyUKyZziDcH1+hOjDkTqVAUX97+Yv43/W42Xk478KwVJiUJS0qSjxr4jgntOLE13\nNJIuFx54IU998hTL1y+v9U7qRXKdUeQ/JQrJnIF3wwe/iDoKSaJz286csPsJ/Gvyv6IORWJM/Sgk\nI6ybwZk94C+fQlULou9vEKe+D/H5XO7OW1++xQXPXUD5L8opsqJ67yUiuUH9KCR3DAQmXAJVJVFH\nIg0Y1H0Qsz6ZRfHuxapJSJ2UKCQljWmHXrxmMfQFJv40U+FIGpkZjAcGnkxTOu+pRpH/lCgk7f45\n8Z8wHVi7Q9ShSKqmAj3egg6fRh2JxJBqFJJWGys3sutfduWrP3wFC/OnLT93l5V8uhr3s/j29dBy\nFYz+a53TSG5QjUJi74mPn6B3p96wMOpIpNHevwz2fQy2iToQiZuMJgoze9DMKsxsasJrHc1sjJnN\nNLNXzKx9JmOQ9EilHdqKjPP+cR6v/ea1jMcjGbC6K5QPhYMaN5tqFPkv02cUDwHH13rtOmCMu/cG\nXg3/lnywO1C5P3xaFXUk0lTvXB1csVayPupIJEYyXqMws57AKHffJ/y7HDjK3SvMrAtQ5u596phP\nNYocYxcYjH8cPj6bfGvLz91lJZ+uzntu/9Bg+j9g4oU1ppHckC81is7uXhE+rwA6RxCDpNm7c9+F\n7YFPvh91KNJcbwGH3wZFm6KORGIi0t5Q7u5mVu/hyrCExs/S0lJKS0uzEJXUZdiw5G3Rt7x1C7yD\nOtjlgznAyp1hn8dgSs23anfIc/cG9w3JrLKyMsrKyjK6jii+1RVm1sXdF5pZV2BRfRMO096XEz6Y\n90EwVPWkqCORtCm7EYZcFPSv2Ep9t2KVKNQ+iL7pppvSvo4omp6eB84Ln58HjIwgBmmkZDn7xrIb\nueGIG0AtFfnji9LgKqi9G55Ux3P5L9OXxz5B0CCxp5nNNbPzgVuBY81sJnBM+LfkqHfmvsP0xdO5\n4IALog5F0sqCs4ojobKqMupgJGIZTRTufra7d3P3lu7e3d0fcvel7v4dd+/t7se5e+2B8CWG6jtq\nvLHsRv73yP+lZbHuYJd3Pj8G1sCjHz2adDKdUeQ/9cyWJnvjizcYO2EsFx50oUYdzUsGY+HXr/+a\ndRvXRR2MREhjPUmTVHkVA/85kA//8iFMy//+Brm7rOTT1dmPotY0pw4/lYHdBnLt4dfqXhU5IF/6\nUUgeeOzGMebPAAAQcklEQVSjx2hR3AKmRR2JZNrvv/17/vTun1iydknUoUhElCgkJYnt0Gs3ruVX\nr/2KO467I7J4JHt6d+rNmf3O5OZxN9f5vmoU+U+9o6TRbn/ndgZ1H8Sh3Q+NOhTJkv876v/o97d+\nsAOgE4uCoxqFNMqXK77kwL8fyPgLx9OrQ6+kbdv51Jafu8tKPl0qNYrqae5+/24uv/dyeLgqnEY1\nijhSjUIid9noy7ji4Cvo1aFX1KFIll1y0CXQGtjn8ahDkSxTopCUDBsGI8tHMmPJDH456JdRhyMR\nKCkqgReB466B1lu6P6lGkf+UKCQlG1jFZaMv4++D/06rklZRhyNR+QqYOTi4baoUDNUoJCUXj7qY\nTVWbeODkB2q8rhpF3JfV0HSJktcoIPz/br0ULtkXRn6Ff5ZY40hYkr67kVGNQiLx31n/5eVPX+aO\n7+py2Pzj1EwqKVjfAUb9E06GFetXNG9ZkhN0eawktWTtEi4cdSHHrnyMdq3bRR2OxMXs42E2XPny\nlfSY9GDU0UiG6YxC6uXuXDTqIs7Y6wx6Uhp1OBI3r8CbX77JxwyPOhLJMNUoClyytuU7372Txz9+\nnAmXTIDKuqdRjSLuy0pHLLVteW/i/Ikc9+hxLLltCXxdd10jkWoZmacahWTI1m3Lb3/5Nre+fStP\nff+pMEmo/blwOfX9/x/Q9QB+d/Tv4PtASaojzGpfyjVKFLKV+avmc9YzZ/HgSQ/Ss33PqMORmJv/\nwkVQAZx8AUoA+UmJQmpY/c1qBj8+mJ8P+Dnf6/29qMORHGAYjALafwFH/SbqcCQDVKNIo1xsf61R\nYzBj8GOD2XHbHbn/pPs3f55k9yBQjSLuy8psLDXGimqzEC48GF6dA1O3zJFsf8mF70hjRf07oBpF\nTsjR9lergiGwbuM67h18r+5YJ423pjM8/gJ8F+g9ipz8HqRNjv4O1EOJQgCHEy6DHWDkWSN1/2tp\nlBpjPS3aG54gqFf0ejWiiCTdlCgKnQHHXwk7jYfHoG3LtlFHJLluHvDk03D6WbBr1MFIOuR0jWLh\nwoXccssfqKoK/i4uhjvv/BNFRdHkv1xrf91YuZGW328JHQ4LmgzWd6wzZtUocnlZmY0l6f0serwF\nZx7BUz9+itP3Or3O6eL+HWmKqD9jJmoUOZ0opk2bRv/+x7Bhw7XhK1ezadMmiouLMx9gHaLeQRpj\n5YaVnPX0WYx+cTQ8vQY2bkt9MW/9I1BbPH/EcjeWXPpcieqYp4vR9X+6cu2ga7n84MvDg7i650/X\n9yUOxeR8SxQ5P9ZTq1Y7sGHDVQCYXRNxNLlhxpIZDB0+lKN2OQqGA1XbNnIJtX84pHAlO4AAFsLb\nF7zN0OFDmbRwUvCLs6kR82cqLmkU1SgKzFPTnuKIh47gqkOu4r7B90FV1BFJvuvVoRfvXPAOazeu\nhfOBjrOjDkkaSYmiQCxfv5xznj2HG167gRd+8AIX9r8w6pCkgLRp2Ybhpw8P+lf89BDo//eoQ5JG\nyPmmp3zS3LbVevs+7EVwbXs5MBYOvvzgBpetfhSSbmYG7wGfjoNTzoW+wOgZ8PWeW0+XIJoaQ3Tr\nr0+UcemMInaa21EnYf7Ok+G8UjgSeLYMRjtsbMyy86vTkMTE4r3g/vfgU+Ang+DYa2Cru+tGve9F\nvf76RBOXEkU+6jwFzgDO/S58cjr8A5hzVNRRiWxR1QLeBe6ZBtssgytgWNkwlq1bFnVkUgclijyx\nqWoT9AHOOR7OOQG+BP78GYy/VAVria81neH5++F+mLtiLrvfvTucCOz4cdSRSQIlihzm7oyfN57r\nxl5Hz7t6wmHAR+cECeI9wr4RIjlgKTxw8gNM+dkUWAuc8124YBAcBAtWLYg6uoKXd8XskpKaH6lm\nz9GtX2+uTBZ964p5+frljJszjlc/e5WRM0bSuqQ1p/c9ndE/HM2+XfYFzknrOkWypca+N24O7D4a\n+p1Et5u7wSJgNrz7+LsM6DaAkqL8+emq6zsXlwJ6tfzZ2jWk0nM0G+trppJ1wSl4l0nQ9SIG/GMA\nM76ewSE7H8LRPY/mxR+8SL9v9Uvzj7s6KklUEva9qhKYOQRmAsXroddrsNuJXPzCxcxZPoeBOw1k\nQLcB9O/an/7d+tOjXQ+KLJcbSOLdiTVPE0X8uTsrNqygYnUFFWsqWLh6IRwKdLwEOn4KHYDtOsDX\nvWHhAbAA7jr+Lg7qdhCtSra6REQkf1W2gtknwGyY8tIUFq1ZxAfzPmDC/An8a8q/uPyly1m2bhm7\nd9ydPTrtAd8Blt8Lq7rB6qD20aVtF1oUt4j6k+SsWCeKqRVTcXzzaVj1cw+z7+xls6nsvA7ajg/e\ntzAr23ubl/HO3HeC+bsD9hbgYDBuzrjNy6pr+fWts8qr+Kbym80PDgCK/g7F30AxUPz74HkJXD76\nclZ9s4pVG1axcsNKVn0T/Ltyw0oWr1lMy+KWdGnbhc5tO9O5TWdoByzuBzNOgmVjYPkKqKwe8vth\nDu9xeAa3tkhu2LHNjgzuPZjBvQdvfm3VhlXMXjqbWUtn8eyGZ6HLZNhjNGwHhzxwCIvXLKZNyza0\na9WOdq3b0a5VO9q3bk+71u1o26ItrUtab34wCNj0Z9jUGjbB41Mfp9iKKS4qTvpvkRVRXFQMOwF8\nsDm28fOC36fEM39LPGvoCjAREoZnmrxw8tbTdgb4KHjuwe9j4nItg2cikQ0KaGbHA3cR/Lze7+63\n1Xrf+90TNKsYVmNjVL+2fv16Zsz4nKrKfuFGnhDM7AMJTt/e33JG5xBUew38bY444ggA3hz3ZsL7\n1Hzu8J1jv1NjnWbGSy+8BJUkPC4KftAr/wqV1wXPq37DXbfdxXattmO7lttxxslnwDfAhvCxFtgY\nribZCJxbtki927Lh+RtaVr4OWJerseTb56qtObGkquagfJVVlazcsJLl65ezYsOK4N/1wb9rNq7h\n0isuDQ6bSwh+kUouh5L1UPIPzjrnLCqrKqn0ynr/rfKqzc/fe/894KBw/eMZcNAA3J0PP/ywRoQH\n9j8Qd2fSpEnA/lvesMk1ptt3v31xd6ZOnQrsE362j9l7n71rHNBW++TST/Jj9FgzKwZmEJwkzgPG\nA2e7+/SEaVIaPfaww85g5cpp4TzFuFeRyg6X6o9zaqOpJl9HQ/M0HEsZcHQz5o/bD4diKczPFU0s\nqfzGpfL9TFV9o8em9nr96091VNp8uhXqQGC2u3/h7huB/wAnRxRLDiiLOgARKWBRJYqdgLkJf38V\nviYiIjETVTE7be1d69bNYfvthwCwcqW6IIuIpFtUiWIewXVI1boTnFXUkGr/gI0bX6g9Z4PPay67\nvufJYmjsOpofS/PmT21ZjX8e9fz5Gku+fq7sx5J6P6Pmzl/3sur7ftb/vW3K/JkVVTG7hKCY/W1g\nPsG1ZDWK2SIiEg+RnFG4+yYz+wXwMsHFaA8oSYiIxFNk/ShERCQ3xG5wFDM73szKzWyWmV0bdTyZ\nYGbdzex1M5tmZh+b2eXh6x3NbIyZzTSzV8ysfcI814fbpNzMjkt4vb+ZTQ3f+3MUnycdzKzYzCaZ\n2ajw74LcFmbW3syeNrPpZvaJmR1cwNvi+vA7MtXMHjezVoWyLczsQTOrMLOpCa+l7bOH23J4+Pp7\nZrZL0oDcPTYPgmao2UBPoAUwGegbdVwZ+JxdgP3D520J6jV9gT8Avwxfvxa4NXy+V7gtWoTbZjZb\nzgY/AAaGz/8LHB/152viNrkKeAx4Pvy7ILcF8DBwQfi8hGBgl4LbFuHn+QxoFf49HDivULYFcATB\nAEFTE15L22cHfg78LXx+JvCfpPFEvUFqbZxDgZcS/r4OuC7quLLwuUcS9FIvBzqHr3UBysPn1wPX\nJkz/EnAIwSgx0xNePwu4L+rP04TPvzMwlqD7+ajwtYLbFmFS+KyO1wtxW3QkOIDqQJAwRwHHFtK2\nCH/0ExNF2j57OM3B4fMSYHGyWOLW9FRwHfHMrCfBkcP7BDtBRfhWBeEwYEA3al4+XL1dar8+j9zc\nXncC11DzXnyFuC16AYvN7CEzm2hm/zSzNhTgtnD3pcDtBPdqnA8sd/cxFOC2SJDOz775t9bdNwEr\nzKxjfSuOW6IoqMq6mbUFngGucPdVie95kOrzfnuY2WBgkbtPYuuLyYHC2RYER3YHEjQJHAisITir\n3qxQtoWZ7Qb8P4Kj6m5AWzOrcVeuQtkWdcn2Z49bokipI14+MLMWBEniEXcfGb5cYWZdwve7EtzX\nC7beLjsTbJd54fPE1+dlMu4MOAw4ycw+B54AjjGzRyjMbfEV8JW7jw//fpogcSwswG0xAHjH3b8O\nj3ifJWiaLsRtUS0d34mvEubpES6rBGgXnsXVKW6JYgKwh5n1NLOWBEWW5yOOKe0s6FL5APCJu9+V\n8NbzBAU7wn9HJrx+lpm1NLNewB7AB+6+EFgZXhljwLkJ8+QEd/+Vu3d3914Ebaivufu5FOa2WAjM\nNbPe4UvfAaYRtM8X1LYgaI8/xMy2CT/Dd4BPKMxtUS0d34nn6ljW6cCrSdccdcGmjgLOCQRFrNnA\n9VHHk6HPeDhBe/xkYFL4OJ6ggDeW4AaQrwDtE+b5VbhNyoHvJrzeH5gavveXqD9bM7fLUWy56qkg\ntwWwH8Gw+1MIjqLbFfC2+CVBopxKcDVYi0LZFgRn1/MJ7mIzFzg/nZ8daAU8CcwC3gN6JotHHe5E\nRCSpuDU9iYhIzChRiIhIUkoUIiKSlBKFiIgkpUQhIiJJKVGIiEhSShQiIpKUEoWIiCSlRCFSS3hT\nlzcs0DPx5jFNXN59ZnZYknWNMzN9FyW2tHOKbO2HwAuevmELDgberesNd98AvAkMTdO6RNJOiUJk\na2ezZfC0zcxs1/A+EQPCW04+ZGYzzOwxMzvOzN4Ob1N5UMI8fQnG5tnGzF40s8nhrSnPSFj08+E6\nRWKpJOoARDLNzL4H7AgcR3ALySHhYwoww90fTJi2GNjb3WfWWsaeBAO1nQesAnYDTiMY0XQ8cKa7\nDzKzkwgGaDslnPUEYDTBoI/z3P174fK2T1j8ZILh1kViSWcUktfCIbt/5O4PAT929y/d/R7gIoLh\nmP9da5YdCBJBoh0JhnT+gbtX1ys+d/dpYfPUNIJRPQE+JrjZTrXjCG47ORU41sxuNbPD3X1l9QRh\n81ORmbVu5scVyQglCsl3PwYehc0/yJhZe+Ae4GIPbopTW+077S0H5hDc8L7ahoTnVQTDQVc/LwnX\nsy3BUNAL3X0WwS1vpwK/M7Nf17FODeUssaSmJ8l3JQT3XcbMdib4Qf49wW02N5hZH3cvT5h+CdC2\n1jK+AU4FXjaz1dRTmK7D0cBr4bq7Asvc/TEzWwH8pHoiM2sFVFYnMpG4UaKQfHcfcKaZ9SA4Yq8E\nbgKuIkgIP02c2N0rzexjM9vT3WdsednXhvf3HkPQPFX76N/reH4Cwc1hAPYB/mhm1WcflyRMfwCp\nJx+RrNONi0RqMbMfA53d/bZmLudDYKC7VzYw3S3AeHcf0Zz1iWSKEoVILeH92scCR6WxL0V962pF\ncJaS8XWJNJUShYiIJKWrnkREJCklChERSUqJQkREklKiEBGRpJQoREQkKSUKERFJSolCRESSUqIQ\nEZGk/j+xXcxs67hdHgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x113319710>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x1131d6b90>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"print(\"Here are the data and the best fitting model\")\n", | |
"plot_data_and_model(data, true_mean, true_sigma, maxmean, maxsig, maxfrac)\n", | |
"show()\n", | |
"clf()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": { | |
"collapsed": true, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"def do_all(input_mean = 5000., input_sigma = 1000., nclus=None,\n", | |
" dmin=0., dmax=10000., nfield=100,\n", | |
" ndatabins=50,\n", | |
" doclip=False):\n", | |
" \n", | |
" if not nclus: nclus = 1000.*(input_sigma/1000.)**3\n", | |
"\n", | |
" true_frac = float(nclus)/float(nclus+nfield)\n", | |
"\n", | |
" (data, true_mean, true_sigma) = makedata(input_mean, input_sigma, nclus,\n", | |
" dmin, dmax, nfield)\n", | |
"\n", | |
" if doclip: (clip_mean, clip_std, select) = clip_loop(data, true_mean)\n", | |
"\n", | |
" frac = array([true_frac])\n", | |
" (maxmean, maxsig, maxfrac, maxlike) = findmax(data, frac)\n", | |
" print(maxmean, maxsig, maxfrac, maxlike)\n", | |
"\n", | |
" meanlike = []\n", | |
" means = arange(4500.,5500.,10.)\n", | |
" for mean1 in means:\n", | |
" meanlike.append(loglikelihood(mean1, maxsig, maxfrac, data)-maxlike)\n", | |
"\n", | |
" xlab=\"Mean $cz$(km/s)\"\n", | |
" plot_title=\"Probability of mean\"\n", | |
" plotlike(means, meanlike, true_mean, xlab, plot_title=plot_title)\n", | |
"\n", | |
" siglike = []\n", | |
" sigmas = arange(10.,1500.,10.)\n", | |
" for sigma1 in sigmas:\n", | |
" siglike.append(loglikelihood(maxmean, sigma1, maxfrac, data)-maxlike)\n", | |
"\n", | |
" xlab = r\"$\\sigma$\"+\" (km/s)\"\n", | |
" plot_title = \"Probability of \"+r\"$\\sigma$\"\n", | |
" plotlike(sigmas, siglike, true_sigma, xlab=xlab, plot_title=plot_title)\n", | |
"\n", | |
" print(\"Here are the data and the best fitting model\")\n", | |
" plot_data_and_model(data, true_mean, true_sigma,\n", | |
" maxmean, maxsig, maxfrac, ndatabins=ndatabins)\n", | |
" show()\n", | |
" clf()\n", | |
" " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"198 galaxies selected range from: 1872.63164167 to: 8539.18173639\n", | |
"mean: 5118.18713944 and sigma: 1261.02625174\n", | |
"193 galaxies selected range from: 1872.63164167 to: 8081.72499219\n", | |
"mean: 5032.77196328 and sigma: 1158.49958123\n", | |
"188 galaxies selected range from: 2312.95683426 to: 7880.43503305\n", | |
"mean: 4986.15993998 and sigma: 1064.62156753\n", | |
"184 galaxies selected range from: 2436.56061172 to: 7665.35684\n", | |
"mean: 4983.6672595 and sigma: 994.893002433\n", | |
"179 galaxies selected range from: 2635.80560429 to: 7428.18861022\n", | |
"mean: 4939.16720809 and sigma: 908.196642615\n", | |
"176 galaxies selected range from: 2823.16382014 to: 7267.33780483\n", | |
"mean: 4950.80051849 and sigma: 863.172095152\n", | |
"173 galaxies selected range from: 2891.40502887 to: 7107.30908127\n", | |
"mean: 4936.49409206 and sigma: 818.770867003\n", | |
"169 galaxies selected range from: 2981.82145023 to: 7012.46024854\n", | |
"mean: 4959.68915527 and sigma: 764.62825122\n", | |
"165 galaxies selected range from: 3136.22141612 to: 6839.87999185\n", | |
"mean: 4934.83428306 and sigma: 706.983195642\n", | |
"161 galaxies selected range from: 3374.86100587 to: 6746.20283865\n", | |
"mean: 4955.72439557 and sigma: 657.089870325\n", | |
"159 galaxies selected range from: 3374.86100587 to: 6515.26804589\n", | |
"mean: 4933.42837589 and sigma: 630.21942534\n", | |
"158 galaxies selected range from: 3483.55581931 to: 6515.26804589\n", | |
"mean: 4943.29272633 and sigma: 619.853804867\n", | |
"158 galaxies selected range from: 3483.55581931 to: 6515.26804589\n", | |
"mean: 4943.29272633 and sigma: 619.853804867\n", | |
"4960.0 520.0 0.555555555556 -1965.32569705\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEKCAYAAADjDHn2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8lWW5//HPxQaMQFFERCZBBgMF0xStk7odEip/Uvoz\nc6ZORZnV6Zdldhp2WZwM65zO8VQeU0sbsMFeB8tUSncOqQjiiEzKllFExFDm4fr9cT9LFou92dN6\n1jN936/Xeu21nnXvZ103a7Oudd33/TyPuTsiIiJ70yXpAEREJP2ULEREpFVKFiIi0iolCxERaZWS\nhYiItErJQkREWqVkIZlhZjvN7LAO/m6TmZ3WwnMnmtn8iranRve/YmY3dCzidsf4QTNbZmavm9lR\ntXhNkbZSspBYRR+8G6MPwJfM7GYz65lAKB7d9nzC/QF3f1tF29JzU9394wBmNjRKWHH9v7kWuMzd\n93X3J2N6DZEOUbKQuDlwprvvCxwDHAt8tbKRmXWtdWCdYFXfoZkBQ4B51d63SDUoWUjNuPtK4C7g\nCHhzWOkyM1sELIi2fdzMFpnZWjP7XzM7pGI37zez581sjZl9L/qQxcyGm9m9ZvZK9NwvzKx3xe+O\nN7NnzexVM7vJzPaJfrfezJY1F7OZNZjZrdHD+6Ofr5nZejM7KYrzyLL2/cxsg5kd2My+zMy+GlVb\nq83s52a2XxTH60Ad8GT079FcLDvN7FPRv896M/tW1O+Hzew1M5tuZt3K2p9pZk+Y2Toze8jMxpY9\n92UzWxzt51kz+0DZc5PN7EEzmxb9W71gZhObi0mKQ8lCaqH0gT4YeC8wt+y5ScBxwJhonmAqcC5w\nCPAiML1iXx8A3kGoUiYBHy177jvR740GBgMNFTFcAJwBDAdG0UyF04zyoasTo5+93X0/d78/iu+i\nsjbnA39x97XN7OsjwKVAPXAY0Au4zt23uHuvqM04dx+5l3jOAI4GTgCuBG6IXnMIMDa6j5kdDdwI\nfBzoA1wPzChLJouBd7v7fsA3gV+Y2cFlrzMemA8cCHwv2pcUmbvrpltsN6CJ8K15XXT/OmCf6Lmd\nQH1Z2xuB75Y97glsBYaUtT+j7PlPET6Ym3vdDwCPlz1eAnyi7PF7gcXR/XpgWUXbU6P7DcCt0f2h\nUQxdytoeD7xY9ng28H9biOmvwCfLHo+K+telrH+H7eXfcifwzorX+mLZ42uBf4/u/xj4VsXvzwdO\namHfc4GzovuTgUVlz701eu1+Sf896ZbcLUvjxJJNDkxy93tbeL58+OcQwgdg+EX3DWa2FhgILG2m\n/VJgAED0rfiHwLuBfQlV86t7ea03f7cz3P1RM9tkZvXAS4SqZUYLzUvVUnkMXYGDgVVtfMnVZfc3\nVTzeDPSL7h8KXGJmnyl7vlsUA2Z2CfB5QgKEUOWUD529VLrj7huj0b5ewMttjFNyRsNQkrTyYZ6V\n7PrwIlo1dSCwoqzNkIr7peemAjuAI929N3Axe/59V/7uyk7EWu7nhKGoi4HfuvvWFtrt1r8ohu3s\n/oHfGeXxLQW+4+4HlN16ufttZnYo8D/Ap4E+7n4A8AwxTNxLfihZSJr8GviImR0VTfpOBR5x96Vl\nba4ws/2j+Y/PArdF23sBG4D1ZjYQ+GLFvg34tJkNNLM+wL+y53xIa9YQhmOGV2z/BXA2cCFwSyv9\n+3y0BLdX1L/p7r6znXGUs4r7pcc3AJ80s/HRxHpPM3t/9Lo9CYnlFaCLmX0EOBKRvVCykCTt9k3d\n3f8KfA34PeFb+DDgwxW/87/AHMIY+x+Bm6Lt3yRMev8DuCPaR/n+HfglcA/wPLAI+HZLsVRs9yi+\njYRJ9IeiFUbjo+3LgMeBne7+4F76exNwK2FV1QvARqB8mKi1i8s093xlH0uxziFMbl9HGI5bBFwS\nPTcP+D7wMGG46Ujgweb2047YJOfMPd6/ATO7CXg/8LK7j22hzX8SJhw3ApPdfW5z7UTSysxuBFa4\n+9eTjkUkDrWoLG4GWlyjbWbvA0Z4WC74CcIqDpHMMLOhhGEoLS+V3Io9Wbj7A4Rlky05izBBiLs/\nCuxfsd5bJLXM7GrgaeB77v5ia+1FsioNcxYD2X1J43JgUEKxiLSLu3/Nw7mc/i3pWETilIZkAXsu\n2dNkmohIiqThoLwVhFMzlAxi93X1AJiZEoiISAe4e6ePoUlDZTGDaEmfmZ0AvObuzR6klPTh7nHe\nvvGNbyQeQ5H7t26dM3Soc8UVztatTmOjM3iw8/rr2e9b3t879W/vt2qJPVmY2a+BvwOHW7iwy0fN\nbIqZTQFw9zuBF8xsMeFkZ5fFHZNIpTvugHHjYNo06NYNTj453K6+uvXfbWyMPTyRxMU+DOXu57eh\nzeVxxyGyN7ffDuecs/u2adNg7Fi49FIYMyaZuETSIg3DUALU19cnHUKs0ty/DRvgr3+FM8/cfXv/\n/vDZz8KPWznyp6GhPrbY0iDN71015L1/1RL7EdzVYmaelVglW37/e7j+erjnnj2fmz0bJk+GZ56p\neVgiVWFmeE4muEUS9Yc/wNlnN//c0UfDihWwei/nhW1oiCUskVRRspBC27oV/vQnmDSp+efr6uDE\nEzWJLaJkIYV2771h8vqQyit9lznlFLjvvpafV2UhRaBkIYV2++0tD0GVnHrq3pOFSBEoWUih/fGP\nLQ9BlYwdC2vXhrmL5qiykCJQspDCWrUqzFkMr7zuXYUuXcIBeqoupMiULKSw5s4Nq52sDYsK9zZv\nocpCikDJQgrr8cdDsmgLzVtI0SlZSGGVKou2GD0aNm6EF5u5vJEqCykCJQsprLlz4Zhj2tbWDN71\nLnjkkXhjEkkrJQsppNdegzVrYOTItv/O2LHw7LN7bldlIUWgZCGF9MQT4ZTkXdrxP+CII3SOKCku\nJQsppPbMV5QceaQqCykuJQsppPashCoZORKWLoVNm+KJSSTNlCykkNozuV3SrVtIGPPn775dlYUU\ngZKFFM6mTfDCC2EOor00byFFpWQhhfP003D44dC9e/t/98gj90wWqiykCJQspHA6Mrld0tIkt0je\nKVlI4XRkcrukuWEoVRZSBEoWUjjz5oUKoSOGDQsH861fX92YRNJOyUIKZ9EiGDWqY79bVxfOEzVv\n3q5tqiykCJQspFDWr4c33oABAzq+D81bSBEpWUihLFoEI0a07RoWLamct1BlIUWgZCGFsnBhx4eg\nSppbPiuSd0oWUiiLFrXvTLPNqUwWqiykCJQspFCqUVkMGgQbNsCrr1YnJpEsULKQQqlGZWEW5j2e\nfz48VmUhRaBkIYXhXp3KAmD48F3JQqQIlCykMNauDT8PPLDz+ypPFqospAiULKQwSlVFZ5bNlqiy\nkKJRspDCqMZ8Rcnw4bB4cbivykKKQMlCCmPhwuomC1UWUiRKFlIYnTknVKVBg8IcyKZNqiykGJQs\npDCqWVnU1cHQoeGKeyJFEHuyMLOJZjbfzBaZ2ZXNPN/XzO4ysyfM7Bkzmxx3TFI87mGOoVrJAnYN\nRamykCKINVmYWR1wHTARGAOcb2ajK5pdDsx197cD9cD3zaxrnHFJ8axcCT17Qu/e1dun5i2kSOKu\nLMYDi929yd23AdOBSRVtVgH7Rff3A9a6+/aY45KCqeZ8RYkqCymSuJPFQGBZ2ePl0bZyNwBHmNlK\n4EngczHHJAVUzfmKElUWUiRxD/d4G9p8BXjC3evNbDgw08yOcvfXKxs2lH2Fq6+vp76+vlpxSs49\n/3z4cK+mUrL485+ru1+RzmhsbKSxsbHq+zX3tnyed3DnZicADe4+MXp8FbDT3a8pa3Mn8B13fyh6\n/FfgSnefXbEvjzNWybfzzoNJk+CCC6q3z82bwxzIhg3QVbNsklJmhrt3+rwFcQ9DzQZGmtlQM+sO\nnAfMqGgzHzgdwMwOBg4HtCBRqqqpCYYNq+4+3/IW6NcPvvCF6u5XJI1i/T7k7tvN7HLgbqAOuNHd\nnzOzKdHz1wNTgZvN7ElC8vqSu+tKAVJVS5aE4yKqbfhwWLeu+vsVSZtYh6GqScNQ0lEbNkDfvrBx\nY3VOIljuYx+D446DKVOqu1+RasnKMJRI4pqa4NBDq58oQCuipDiULCT3mpriGYKCkCzuuCOefYuk\niZKF5F4ck9slmrOQolCykNyLa3IbQhLavDmefYukiZKF5F6clcUBB8COHfDaa/HsXyQtlCwk9+Ks\nLMygRw948cV49i+SFkoWkntxVhYA+++vZCH5p2QhubZ+fZhT6Ns3vtd4z3tCQhLJMyULybXSstk4\njrEoGTpUlYXkn05/JrkW9xAUwKxZsHNnvK8hkjRVFpJrcU5ul/TurcpC8k/JQnKtFpXFd76jZCH5\np2QhuRbnqT5K+vWDN94IJywUySslC8m1WgxDffObMGSIqgvJNyULybVaDEOBVkRJ/ilZSG6tWxdW\nKR1wQLyv09AQToGuYy0kz5QsJLdKVUWcx1iUHHqoKgvJNyULya3SRY/i1tCgYSjJPyULya2lS2uT\nLEDDUJJ/OoJbcuvFF8Mqpbg1NMCyZaosJN9UWUhu1bKyGDAA1q6FLVtq83oitaZkIbm1dGntKou6\nOhg4MLymSB4pWUhuvfhi7SoL0IooyTclC8mlTZvgH/+Agw+O/7UaGsJPrYiSPFOykFxatgwGDYIu\nNfwL14ooyTMlC8mlWs1XwK7KQsNQkmdKFpJLtZ6vgPB6muCWvFKykFxKorIYMkTJQvJLyUJyqVYH\n5JUbPBhWrIAdO2r7uiK1oGQhuVTLA/JKlcU++0CfPvDSS7V5XZFaUrKQXKrlMFQ5DUVJXilZSO7s\n3AnLl4dhoVooVRagZCH5pWQhubN6NfTuDT161P61tXxW8krJQnKn1stmVVlIEShZSO4kNV8BShaS\nX7EnCzObaGbzzWyRmV3ZQpt6M5trZs+YWWPcMUm+qbIQqb5YL35kZnXAdcDpwArgMTOb4e7PlbXZ\nH/hvYIK7LzezvnHGJPm3dCmMGJHMa2vOQvIq7spiPLDY3ZvcfRswHZhU0eYC4PfuvhzA3V+JOSbJ\nuSQriz59YOtWWL++dq8vUgtxJ4uBwLKyx8ujbeVGAn3M7D4zm21mF8cck+RcknMWZuG1ly1rva1I\nlsSdLLwNbboBxwDvAyYAXzOzkbFGJblW61N9lFcWoHkLyadY5ywI8xTlh0YNJlQX5ZYBr7j7JmCT\nmd0PHAUsqtxZQ9n/yvr6eurr66scrmTd66+HYaADD0wuBs1bSJIaGxtpbGys+n7NvS1f/ju4c7Ou\nwALgNGAlMAs4v2KC+22ESfAJwD7Ao8B57j6vYl8eZ6ySD888A+eeC88913rbamlo2L26+Pa3YeNG\nmDq1djGItMTMcHfr7H5iHYZy9+3A5cDdwDzgNnd/zsymmNmUqM184C7gKUKiuKEyUYi0VS1PINgS\nDUNJHsU9DIW7/xn4c8W26yseXwtcG3cskn9JXPRIcxZSBDqCW3IlietYVNKcheSRkoXkShLDUJWV\nxcCBsGoVbN9e2zhE4qRkIbmShsqie3c46KCQMETyQslCciUNlQVo3kLyR8lCcmPbtnAti4GV5whI\ngOYtJG+ULCQ3li+H/v2ha+xr/HbXUmWhZCF5omQhuZGGYyxKVFlI3ihZSG4kcYwFNF9ZKFlI3ihZ\nSG4kebbZSkoWkjdKFpIbaawsdDozyQslC8mNNBxjUbLffuF4i7Vrk45EpDqULCQ3kprgbq6yAA1F\nSb4oWUguuKdrzgKULCRflCwkF9asgR49oFev2r+2KgspAiULyYU0HWNRomQheaJkIbmQ5OS2Kgsp\nglaThZkdaGY9K7adaGZviS8skfZRZSESr7ZUFvOA/6jYtgq4rPrhiHRMUsdYQMuVxdChShaSH21J\nFj9y94+Xb3D3xcD4eEISab80HWNR0rcvbN4Mb7yRdCQindeWZPEXM5tqZm+e+NnMugBj4gtLpH2S\nXDbbUmVhprPPSn60ejJnd3/IzDYDPzGzPsCfgHsJw1MiqdDUBMOGJR3FnkrzFkcckXQkIp3TptVQ\n7j7H3f8PcDawEmgA9H1JUmH9etiyJQz7JKGlygJCsmhqqlUkIvFp19JZd1/t7j9z94nA/THFJNIu\nTU1hMtks6Uj2pBVRkhcdPs7C3f9UzUBEOmrJkpAsktJaZaFkIXmgg/Ik89I6XwFKFpIfShaSeaos\nROKnZCGZl+bKYsCAcE2LLVuSjkSkc5QsJPPSXFnU1YWEsWxZzcIRiYWShWSae7orCwiJTMtnJeuU\nLCTT1q0LP/ffP7kY9lZZABx2WKh+RLJMyUIybcmSUFWk8RiLkmHD4IUXko5CpHOULCTTSgfkJakt\nlYWShWSdkoVkWqmySDMNQ0keKFlIpqmyEKkNJQvJtCxUFgcdFK5rsX590pGIdJyShWRaFioLs5DQ\nNBQlWRZ7sjCziWY238wWmdmVe2l3nJltN7Oz445J8iELx1iUaChKsi7WZGFmdcB1wETClfXON7PR\nLbS7BrgLSPEiSEmTNWugRw/Yd99k42itsgBVFpJ9cVcW44HF7t7k7tuA6cCkZtp9BvgdsCbmeCRH\nkj7NR3uospCsiztZDATKz4qzPNr2puja3pOAH0ebPOaYJCfSMgTVlspCyUKyLu5k0ZYP/v8Avuzu\nThiC0jCUtEmWKgsNQ0nWdY15/yuAwWWPBxOqi3LvAKZbOF9DX+C9ZrbN3WdU7qyh7CtcfX099fX1\nVQ5XsmTJEhg3LukoQmXRWnUxbFiohHbuhC5agygxamxspLGxser7tfCFPh5m1hVYAJwGrARmAee7\n+3MttL8ZuMPdb2/mOY8zVsme00+HL34RJkxINo62JAuAQw6B2bNh4MDW24pUi5nh7p0esYn1O467\nbwcuB+4G5gG3uftzZjbFzKbE+dqSf4sXw4gRSUfRtkQBGoqSbIu1sqgmVRZSbssW6N0b3ngDusY9\nmFolF10EZ5wBl1ySdCRSJJmoLETi8sILMGRIOhJFWysLrYiSLFOykExKyxBUe2gYSrJMyUIyKU3J\nQpWFFIGShWTSokUwcmTSUbSPkoVkmZKFZFIWK4sBA+DVV2HTpljDEYmFkoVkUpqSRVvV1YXqYvHi\npCMRaT8lC8mcrVthxYr0nOqjrZUFwKhRsHBhbKGIxEbJQjJnyRIYPBi6dUs6kvYbNQoWLEg6CpH2\nU7KQzEnb5LYqCykCJQvJnCzOV5QoWUhWKVlI5qQtWaiykCJQspDMSdswVHv06wfbt8PatUlHItI+\nShaSOVmuLMxUXUg2KVlIpmzdCsuXp2fZbEcoWUgWKVlIpjQ1waBB0L170pHs0p7KApQsJJuULCRT\n0jYE1RFKFpJFShaSKYsWpS9ZqLKQIlCykEyZNw/GjEk6is4ZNSokvZ07k45EpO2ULCRTnn0Wjjgi\n6Sh2197KolcvOOCAMFEvkhVKFpIZ7vmoLEBDUZI9ShaSGS+9FE7z3a9f0pHsrr2VBShZSPYoWUhm\n5KWqAJ19VrJHyUIyI63JQpWFFIGShWRGGie3O2r06JD8RLJCyUIyI0+VxWGHhZMJ/uMfVQ9HJBZK\nFpIJ7vmqLLp0CYnvmWeSjkSkbZQsJBNefjn8TNtKKOhYZQEwbhw89VRVQxGJjZKFZEKpqjBLOpLq\nGTsWnn466ShE2kbJQjIhrfMV0PHKQslCskTJQjIhzcmio0rJwj3pSERap2QhmZDmye2OVhYHHQQ9\nesCyZVUNRyQWShaSCXmsLEBDUZIdShaSei+/DDt2QP/+SUfSvI5WFhCShVZESRYoWUjqPf10/lZC\nlYwbp8pCskHJQlJvzhw49tiko2hZZysLJQvJAiULSb3Zs+Ed70g6iniMHh2umrd1a9KRiOxdTZKF\nmU00s/lmtsjMrmzm+QvN7Ekze8rMHjKzcbWIS7Ihz5VFjx4wbBjMn1+1cERiEXuyMLM64DpgIjAG\nON/MRlc0ewE4yd3HAVcD/xN3XJINr74Ka9aEU3rnlYaiJAtqUVmMBxa7e5O7bwOmA5PKG7j7w+5e\nOv/mo8CgGsQlGTBnDhx9dDjxXlp1prKAkCyefLIqoYjEphb/BQcC5YcdLY+2teSfgTtjjUgyI+1D\nUNVw7LFhXkYkzbrW4DXafDIDMzsF+CjwT80931D2Fa6+vp76+vpOhiZpN3s2nH120lHsXUND56qL\n8ePhscfCsSR1ddWKSoqqsbGRxsbGqu/XPOYT05jZCUCDu0+MHl8F7HT3ayrajQNuBya6++Jm9uNx\nxyrpM3Qo3HNPuucsOpssAA4/HH7723DchUg1mRnu3umjlGoxDDUbGGlmQ82sO3AeMKO8gZkNISSK\ni5pLFFJMr7wC69bBiBFJR7J3nU0UACecAI880vn9iMQl9mTh7tuBy4G7gXnAbe7+nJlNMbMpUbOv\nAwcAPzazuWY2K+64JP3mzIFjjkn35Ha1KFlI2sU+DFUtGoYqnqlTQ2UxbVrSkexdNYah5s6FCy8M\nJ0wUqaYsDUOJdEiej9yuNHYsLF0Kr72WdCQizVOykNSaPTsby2arMWfRtWtIjLM0ACsppWQhqbR8\nOWzcCIcdlnQktaN5C0kzJQtJpfvug/r6bExuV6OyACULSbcM/FeUIrrvPjjllKSjqK3jjw/JQus4\nJI20GkpSaehQuPPOfF5KdW8OPRRmzkz3QYiSLVoNJbm1ZAls3hyu9VA0J5wADz2UdBQie1KykNQp\nDUFl5TKq1ZqzADj99FBZiKSNkoWkzr33Fm++omTChHAurB07ko5EZHeas5BUcYdBg+Bvf0v/OaHi\ncsQR8LOfwXHHJR2J5EEh5yzM9ry1NATQ0KD2WWzfpQusXAkjR6YjniTaT5wId92VnnjUPvvtq0GV\nhaTK9deHCd5bbkk6krarxrmhys2cGfaniW6phkJWFpJ/994Lp56adBTJOvHEcE3udeuSjkRkF1UW\nkhpbt0L//uGDcuDeLrxbAO9/P0yeDOeem3QkknWqLCR3Zs4Mk7tFTxTQ/LyFSJKULCQ1fvMb+NCH\nko6i/eKYVCwlCxXTkhZKFpIKW7bAjBlwzjlJR5IOI0ZAjx7hokgiaaBkIalwzz0wbhwMGJB0JO0X\nR2VhBhdcALfeWv19i3SEkoWkQlaHoOJ06aXwy1+GiX+RpClZSOI2b4Y//jG7Q1BxHQg1fDi87W3h\n7LsiSVOykMTdfTccdVRYNiu7mzw5nPpDJGk6zkIS98EPhhPoffKTSUeSPq+/DoMHw8KF0K9f0tFI\nFuk4C8mFhQvDaS0uvjjpSNJp333hrLPgV79KOhIpOiULSdQPfhAqip49k46k4+I8eRuEoaibb9Yx\nF5IsJQtJzOrVcNttcPnlSUeSbvX14foWmuiWJGnOQhLzta/BmjXwk58kHUn63X47XH01zJkTTuMu\n0laas5BM27AhJIkvfCHpSLLhgx+EurqQNESSoGQhifjhD+Hkk8NFjrIu7jkLCEd0f/vb8PWv65Kr\nkgwlC6m5BQvCxPa11yYdSbZMmAB9+oSjukVqTXMWUlM7d4YJ23POgc99LulosufBB+HDH4bHH9dx\nF9I2mrOQTLr+eti2TSugOurd7w7HpFx6aUi8IrWiZCE1s3BhGHP/6U/DZG1e1GLOoty3vgXr12sY\nT2qra9IBSDEsXQrveQ9cc024Gp50XLduMH06HHssvOtdodoQiZvmLCR2L70EJ50El10G//IvSUeT\nH3ffHYakfvUrOP30pKORtNKchWTCggXhg+zii5Uoqm3CBPjd7+DCC8OR8CJxij1ZmNlEM5tvZovM\n7MoW2vxn9PyTZnZ03DFJ/NzhRz8KQySf/jR89atJRxSfWs9ZlDvpJPjLX+CKK8Jt/frkYpF8izVZ\nmFkdcB0wERgDnG9moyvavA8Y4e4jgU8AP44zprRqbGxMOoSqcIeZM+G008LJ7x58ED71Kfjb3xqT\nDi02TU2Nib7+2LEweza8+iqMHg233ALbt1dv/3n522xJ3vtXLXFXFuOBxe7e5O7bgOnApIo2ZwE/\nB3D3R4H9zezgmONKnSz/wbqHlU7/9V/w9rfD5z8PF10Ef/87HH54aJPl/rVm6NDGpEPg4IPhppvC\n6UBuuCFcA+OKK+CJJzq/xDbP7x3kv3/VEvdqqIHAsrLHy4Hj29BmELA63tCkvbZsCWeKXbUKli+H\nefPg2Wdh1qzw3IQJYbXThAnh9BRSe8cfDw88EOaKfv5zOPdceOUVeOc7w+qp4cPDbeBA6NsXevXS\neyVtE3eyaOvypco/10SXPU2bBvffX9vXXLAgnFG0GppbNFba5r7nbefOcNuxIwxfbN8eDpzbvDnc\n3ngjjIXv2BG+wfbvD4MGhSGPM88MZ48dM6a4Hzpp/GJ6+OEwdWq4rV4NDz8cjvqeOTOcwHHlSli7\nNrzP++4brifSsyfss09Ymtu9ezgWpq4OmppCldily6732Gz397ul9z4LfxPV/L/XkkmT4GMfi/c1\n4hbr0lkzOwFocPeJ0eOrgJ3ufk1Zm58Aje4+PXo8HzjZ3VdX7EvrZkVEOqAaS2fjrixmAyPNbCiw\nEjgPOL+izQzgcmB6lFxeq0wUUJ3OiohIx8SaLNx9u5ldDtwN1AE3uvtzZjYlev56d7/TzN5nZouB\nDcBH4oxJRETaLzNHcIuISHISP4LbzOrMbK6Z3VGx/QtmttPM+pRtuyo6eG++mZ1Rtv0dZvZ09NwP\naxl/a5rrn5l9xsyeM7NnzKx8/iZT/avsm5mNN7NZ0bbHzOy4srZZ61uTmT0V9WVWtK2Pmc00s4Vm\ndo+Z7V/WPg/9mxb9XT5pZrebWe+y9pnvX9lzmf9saal/sX62uHuiN+D/Ab8EZpRtGwzcBSwB+kTb\nxgBPAN2AocBidlVGs4Dx0f07gYlJ96ul/gGnADOBbtHjg7Lav2b61ghMiO6/F7gvw31782+vbNv3\ngC9F968Evpuz/r0H6BLd/27e+hdtz8VnSwvvX6yfLYlWFmY2CHgf8FN2Xz77A+BLFc0nAb92923u\n3kTo8PFmdgiwr7uXsustwAdiDbyNWujfp4B/83CQIu6+Jtqeqf610LdVQOnb6P7Aiuh+pvpWpnJR\nxZsHkEbzj5ciAAACuklEQVQ/S7Hmon/uPtPdS4fwPUo43gly0r9ILj5bIpX9i/WzJelhqH8Hvgi8\neYypmU0Clrv7UxVtBxAO2CtZTjigr3L7imh7GuzRP2AkcJKZPWJmjWZ2bLQ9a/1rrm9fBr5vZkuB\nacBV0fas9Q3CsT5/MbPZZvbxaNvBvmul3mqgdKaBvPSv3EcJ3zQhJ/3L2WdLc+9frJ8tiV3PwszO\nBF5297lmVh9teyvwFUI5/GbTBMLrtOb6F+kKHODuJ0Rj+r8BDksixo7aS99uBD7r7n8ws3OBm9j9\nvcySf3L3VWZ2EDDTwvE/b3J3t2wf+7NH/9z9AQAz+1dgq7v/KtkQO6W59+8q4IyyNpn8bIk0179Y\nP1uSvPjRu4CzLJxI8C3AfoQyaCjwpIVDPwcBc8zseELWG1z2+4MIWXEFu8rl0vYVJG+P/pnZrYSY\nbwdw98eiiba+ZKt/LfVtvLuXrqzwO8IQFWSrbwC4+6ro5xoz+wPhPGerzay/u78UlfAvR83z0r8H\nzGwyYXjxtLLmeejfycAw8vHZ0tL7F+9nS9ITNdHEysnAHXubxGHXJE13wpv+PLsmaR4lnHPKSNEk\nVHP9A6YA34zujwKWZrl/FX17nHD0PYQPm8ey2DfgrYSxXICewEOEb6TfA66Mtn+ZPSeAs96/icCz\nQN+K9rnoX0WbzH627OX9i/WzJU2XVW2upH9zm7vPM7PfAPOA7cBlHvUWuAz4GdADuNPd74o51o4o\nxXoTcJOZPQ1sBS6BzPevFOcngP82s32ATdHjLPbtYOAP0TfQrsAv3f0eM5sN/MbM/hloAj4Euerf\nIsIHyszouYfd/bK89K+iTZY/W1p6/7oR42eLDsoTEZFWJb0aSkREMkDJQkREWqVkISIirVKyEBGR\nVilZiIhIq5QsRESkVUoWIiLSKiULERFp1f8HjECH0HUlQK0AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x113090210>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEfCAYAAACAm/v/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8lGX9//HXh0U0cF9Qcd8tTEFFSLPjGhSKSu4iolm5\nZJu55Nc49iu/lj8t/ZZamYrmkqmpfI1cgpOWWgYIyKIeEvBALOICsoTA5/vHdR8ZDufAOXNm5rrv\ne97Px2MezNxzz8x7zuHMZ67ruu/rMndHRESkGB1iBxARkexSERERkaKpiIiISNFUREREpGgqIiIi\nUjQVERERKZqKiIiIFE1FREREiqYiIlXJzGaY2THleKyZvWZmRxbse3TT7eVmZvua2atmtsjMLq3E\na0p16hQ7gEhrmdkMYDtgFbAEGAVc6u5Ling6Ty7FWO9j3b1nk32b2974fs5399FF5lifK4A/u/tB\nZXhukY+pJSJZ4sBAd98U6A0cAvxX053MLCtfjhywMj33rsCUMj23yMdURCST3H0O8CfgU/Bxt9EV\nZjYRWGxmHcxsfzOrM7P3kq6kE5o8TR8zm2xm75rZXWbWpfEOM7vKzOqT7qDJZnZSGx77cRdWoSZd\nW/cBuwAjzWxxkv2RJvvfamY/a+79r++9mdlooAb4eZJ/rw39PEWKpSIiWWMAZrYzMAAYX3DfGcm2\nLYCOwEhCodkW+Dpwv5ntXfA8ZwHHA3sC+7B2q6YeOMLdNwOuA35rZt1b+diWuroKu7aGALNY07K6\nF+hvZpsn768TcDowYp0fgFnnFt7bPslzHw28AFzi7pu5e30LeUTaTUVEssSAx83sPcKHZB1wfXKf\nA7e6+2x3/w/QF+jq7je4+0p3HwP8L+HDv3H/nyf7vwf8CDiz8YXc/RF3n5tcfxh4E+jTmscWI3mt\nF4BTk039gQXuPr6Z3Vt6b00ztNhVZmb7mNnDZjYmaQmNNLOvtec9SHXKSt+xCIQP70HrGYh+u+D6\njk1uA8xMtje3/6zC+8zsXOBbwG7Jpm7ANq15bDuMAL4G3AmcA9zXwn4tvbceTbY12yIys62AO4Av\nuPtyM3scGOruHxQbXKqXWiKSJ4UfmnOAnc2s8Nv4rsDsgtu7NLk+B8DMdgV+BVwCbOXuWwKvsfY3\n+2Yf2468AE8AnzaznsAXgftbeFxL762hla97CfALd1+e3O4CLG3lY0XWoiIiefUy4YPxCjPrbGY1\nwEDgoeR+Ay4xsx7JN/NrCu7rSviAfwfoYGbDgMLDc9f32LaYRxhTAcDdlwGPAg8Af3f3lorCht5b\nYc7mbEpy5JaZfQqY7O4fFZFfREVE8in5UDyBMNC+APg5MMTd32jchfBN/xlgOmHM44fJY6cANwEv\nAXMJBeSvhU/f0mPb6L+B/0qOsPp2sm1E8notdWW15r0V5mzO7cDxZjYYOBa4qojsIgCYlscVSY/k\nqLNpQHd3/zB2HpENUUtEJCXMrAPwHeBBFRDJCh2dJZICZtaVMEbyFuHwXpFMUHeWiIgUTd1ZIiJS\ntEx3Z5mZmlEiIkVw95JM/pn5loi7p/4yfPjw6BmUUzmVUxkbL6WU+SIi6VdbGzuBiJSLioiIiBRN\nRaQCampqYkdolXLlLHVLpNp/nqWmnKWThYyllulDfM3Ms5xfRCQGM8M1sC5ZoTERkfxKdRExs/5m\nNs3M3jSzK2PnERGRtaW2O8vMOgKvE2YZnQ28Apzp7lML9lF3lohIG1VLd1YfoN7dZ3iY+vohYFDk\nTCIiUiDNRaQHay8B2sC6y39KBtTWwrJlMHs2vP02rF4dO5GIlEqai0ir+qnMagsudZi1PJBbWwtm\n6160f3n2nzULhg+H22+HLbaAffeFXXaBjh2zkV/7a/+87F9XV0dtbe3Hl1JK85hIX6DW3fsnt68G\nVrv7jwv20ZhICi1dCj/+MfziFzBkCHzpS9C3bygeAIsWwcsvw333wVNPwUUXwdVXQ7ducXOLVItS\njomkuYh0IgysHwPMAf6BBtZTr6EBBg6EvfeGm24KLY8N7X/11TBmDIwYAcccU5mcItWsKgbW3X0l\ncCnwNDAF+F1hAZH0mTgR+vWDs8+Ghx9eU0DW13reaafQIhkxIrRarrtOYyYiWZLqqeDdfRQwKnYO\n2bCZM2HAgND6OOOMtj/+mGNg7Fg49VR44w245x7o3LnkMUWkxFLbndUa6s5Khw8+gMMPh698BS67\nrH3PtWwZnHZaaI088ghssklpMorIGlUxJtIaKiLxucOgQaHr6uc/L81zfvRR6NpauhQefVQtEpFS\nq4oxEcmGESPCuR8//WnL+7T1iMLOncM4ycqVcMEFGiMRSTMVESlaQwN897vlGb/o3Dl0Z02fDt//\nfmmfW0RKR91ZUrQTToBDDy3vh/z8+dCnD/zkJ2GsRETar5TdWak+OkvSa/RomDIljFmU03bbweOP\nw3HHwT77wEEHlff1RKRt1J0lbbZ6NVxxBfzoR7DRRhvev72zLBx0ENxyS2iJLF7cvucSkdJSEZE2\n+/3vw7+V7F466yz47Gfh0ksr95oismEaE5E2WbUK9tsP7rij8lOULFkChxwC11wD55xT2dcWyRMd\n4ivRPP44bLMNHH105V+7a1d44AH49rfDtPIiEp+KiLTJTTfB5ZeHKaZbq5QzT/fqBZdcAhdeGE50\nFJG4VESk1V58EebNg5NOipvje9+DuXPh7rvj5hARjYlIGwweDEcdlY7B7YkT4dhjYdIk6N49dhqR\nbNHcWQkVkcppaIBPfzpMcdK1a+w0wZVXhlz33x87iUi2aGBdKu7ee8MhvcUUkBKvxvmx738/dLE9\n80x5nl9ENkxFRDbIPYw/nH9+7CRr69o1zBx86aWwYkXsNCLVSUVENuivfw1nph96aHGPL1dLBOCL\nX4S99grruYtI5WlMRDZo2DDo2RO+853YSZo3dSoceWT4d5ttYqcRST+NiUjFLFkSTjBszxni5WyJ\nAOy/P5x5JgwfXt7XEZF1Zb6ImK17aelDq7ZW+7d1/27dYOutmz+MNk35a2vDuiZpyaP9tX/a9y8V\ndWfJep1+epiG/ctfjp1kw/7nf2DkSHj66fDHIyLN03kiCRWR8lq6FHbcEerrszHW8NFH4VyWG2+E\ngQNjpxFJL42JSEU8/XSYNbe9BaTczelGnTvDzTeHAwBWrqzMa4pUOxURadEjj8CXvhQ7Rdv07x9a\nT/feGzuJSHVQd5Y0a/ly2GEHmDYte3NTvfhiWMTq9dehS5fYaUTSR91ZUnZ1dfCpT2WvgAB85jMh\n+69/HTuJSP6piEizRo2CAQNK81yVGhMp9MMfwvXXh4MDRKR8VESkWX/6U+mKSAy9esHhh4e5tUSk\nfDQmIuv4179Cl9CcOdAhw18zpk6Fz30O3nwTNt88dhqR9NCYiJTVqFHhKKcsFxAI06EMGAA//Wns\nJCL5lfGPCSmHxiJSKjHGRBoNHx66tN59N14GkTxTEZG1LF8Ozz8Pxx8fO0lp7LFHWBP+1ltjJxHJ\nJ42JyFqeew6uvRZeeil2ktKpr4d+/WD6dNhss9hpROLTmIiUTV0dHH107BSltddeoWV1++2xk4jk\nj4qIrOUvf4GamtI+Z8wxkUZXXx0G2HXeiEhpqYjIx5YuhfHjw+G9edOzZ3hfd94ZO4lIvmhMRD72\n5z+H8ZAXX4ydpDzGjg2D7PX1mlNLqpvGRKQsytGVlSYHHxxaJJrhV6R0VETkY3V15SkiaRgTaXTN\nNXDDDVpvRKRUVEQEgGXLYNy4fI6HFDriCNhpJ3j44dhJRPJBRUQAePllOOAA6Nat9M+dppYIwBVX\nhCV0NZwm0n4qIgLA3/4WvqVXgwEDYMUKGD06dhKR7FMRESC0RPr1K89zp60l0qFDWIf9xhtjJxHJ\nPhURwT0Ukb59YyepnLPPhokTw0VEiqfzRIT6+jDVyaxZsZNU1g03wJQpOuRXqk8pzxPpVIonkWx7\n6aXqaoU0+upXYc89oaEhHLElIm2n7iwp63gIpG9MpNGWW8LQoXDLLbGTiGSXiohU3XhIoW9+E+66\nCz74IHYSkWzSmEiVW7IEttsOFi6EjTeOnSaOs86C3r3h8stjJxGpDM2dJSUzdmyYT6paCwjAt74V\nltDVVCgibZfaImJmtWbWYGbjk0sJV/2WRn//Oxx2WHlfI61jIo0OPRR69IAnnoidRCR7UltEAAdu\ndvdeyeVPsQPl0bhxcMghsVPE941vaIBdpBhpLiIAJemzk5aNGwe9epX3NdLeEgE45RSYMSP8PESk\n9dJeRL5uZhPM7DdmtkXsMHmzeHE4R2L//WMnia9TJ7jkErVGRNoq6smGZvYssH0zd10D3A78ILn9\n/4CbgAua7lhb8DW3pqaGmjyvqlRiEyaEQfVOZf5fUFubjdbIhReGkw/nzoXtm/tfKZJRdXV11NXV\nleW5M3GIr5ntBox09wOabNchvu1w660wdSrcfnt5XycrRQTga1+D7t3huutiJxEpn6o4xNfMdii4\neTIwKVaWvBo3LpwfUW5ZKSAAl10Gv/wlLF8eO4lINqS2iAA/NrOJZjYB+BzwrdiB8qZSRSRLPvlJ\nOPBAeOih2ElEsiET3VktUXdW8ZYtg623hvfegy5dyvtaWerOAvjjH+Haa+Gf/wTT8YGSQ1XRnSXl\nNWkS7Ltv+QtIFvXvD++/H07EFJH1UxGpUpU4P6RRllohEFY+vOgi+MUvYicRST+tJ1KlJkyAgw6K\nnSK9zj8f9tgD5s8PE1SKSPPUEqlSkybBAQdseL9SyFpLBGCrrcJZ7HfdFTuJSLqpiFQhd3jttXCi\nobTs4ovhjjtg1arYSUTSS0WkCjU0hKnft922Mq+XxZYIhIkpu3eHp56KnUQkvVREqpBaIa13ySUa\nYBdZHxWRKvTaa5UbD4HstkQATjsNxo+HN96InUQknVREqtCkSWqJtNbGG4cjtco9v5hIVumM9SrU\nu3cYMO7TJ3aSbJgxAw4+GGbNgq5dY6cRaT+dsS5FW7kSpk0Lc0RJ6+y2Gxx+ODz4YOwkIumjIlJl\npk+HHXaAbt0q95pZHhNp1DjAroavyNpURKqMxkOKc9xx8OGH8NJLsZOIpIuKSJWp9JFZkI+WiObT\nEmmeikiVmTxZ4yHFGjYsnHi4YEHsJCLpoSJSZV5/Hfbfv7KvmYeWCMCWW8JJJ8GIEbGTiKSHikgV\nWbUK3nwT9tkndpLs+upX4Ve/0gC7SCMVkSoyc2aY1rzS5zrkpSUC0LdvWMhrzJjYSUTSQUWkikyb\nFlYzlOKZhdbIL38ZO4lIOqiIVJFp02C//Sr/unlqiQCccw48/XRYsEqk2qmIVJHXX49TRPJmiy3C\nglX33BM7iUh8KiJVRC2R0vnKV8IA++rVsZOIxKUiUkViFZE8OuywcIDC6NGxk4jEpSJSJd59F5Yt\nC/NmVVoeWyIaYBcJVESqxOuvhyOzrCSTPwvA2WfDc8/BvHmxk4jEoyJSJWIOquexJQKw+eYweDDc\nfXfsJCLxqIhUCY2HlMdXvgK//rUG2KV6qYhUiZgnGua1JQJw6KGw2WahW0ukGqmIVIn6eth779gp\n8qdxgP1Xv4qdRCSOVq2xbmZbA8vdfUnBts8Cr7j78jLm21AurbHeCqtXh5UM58+v7IqG1WLRIth1\nV5g6FbbfPnYakQ2Lscb6FOBnTbb9G7i4FCHaw2zdS0vdJ7W11bl/x47h8N5NN01Hnrztf/PNYYC9\n6RTxWcmv/atz/1JpbUtkuLtf18z2h9z9jLIkawW1RFrnL3+Ba66Bv/41zuvX1uZ7XATg5Zfh3HPD\nUXBmsdOIrF+MlshzZna9mfUoCNEB0Bp5GVBfD3vtFTtFvh12GHTuDC+8EDuJSGV1as1O7v43M1sO\n3GFmWwFPAaMJ3VyScrGLSN5bIRBaH1/+Mtx5Jxx5ZOw0IpXT6qOz3H2su58AnALMAWqBmWXKJSU0\nfTrsuWfsFPk3ZAg8+SS8/37sJCKV0+ZDfN19nrvf4+79gefLkElKTC2RythmGzj+eHjwwdhJRCqn\nXeeJuPtTpQoi5eEev4hUk8YuLZFq0aqjs9JKR2dt2IIFYbqThQtjJ6kOq1fDHnvAH/4AvXrFTiPS\nvBhHZ0lG1ddrPKSSOnSAYcPgN7+JnUSkMtpVRMxMU/qlXBq6sqplTKTRsGFhXGTZsthJRMqvVYf4\nNjKzgcCJQOdkU2/gwFKHktKZPj1+Eak2u+wCffrAY4+FNUdE8qytLZGewI3Adcnl4ZInkpJKQ3dW\ntbVEAC64QAPsUh3aWkQmAv9y9xnuPgN4pfSRpJTSUESq0YknwuTJ4ecvkmdtLSL/BYwzszFmNga4\nrwyZpIRmzAhHC8VUjS2RjTYKJx/edVfsJCLl1dYi8iN3P9Ddj3L3o4Ch5QglpbFsWTh7WtOTx3HB\nBXDPPbByZewkIuWzwfNEzOxiQrFY2szd+7n7DuUI1ho6T2T9pk6FQYPgjTdiJ6lehx8OV10FJ5wQ\nO4nIGqU8T6Q1R2e9ARzh7h81E2RAKUJIecyYAbvvHjtFdWscYFcRkbzaYHeWuz/XXAFJ7htV+khS\nKjNmwG67xU5RnWMijU47DZ5/Hv7979hJRMpDZ6znWFqKSDXr1g1OPXXdVQ9F8iJqETGzU81sspmt\nMrPeTe672szeNLNpZnZ8rIxZlpYiUs0tEVjTpaXhO8mj2C2RScDJNJlS3sw+CZxOWDmxP3BbspKi\ntEFaiki169MHNtkkLFMskjdRP5jdfZq7N3fs0CDgQXf/KDmpsR7oU9FwOfDWW+koItXeEjELrRFN\nyih5lNZv9zsCDQW3G4AeLewrzViyBBYv1jkiaXH22TByJHzwQewkIqVV9iJiZs+a2aRmLm096FE9\nym0wcybsumv4FhxbtbdEALbdFo45Bh7WbHOSM22axbcY7n5cEQ+bDexccHunZNs6ags+oWpqaqip\nqSni5fJH4yHpM2wYXH89XHhh7CRSberq6qirqyvLc6diZcNkHq7L3X1scvuTwAOEcZAewHPAXk1P\nT9cZ6y277TaYOBHuuCN2ktASUWskTH+y884wZkxYbVIkltysbGhmJ5vZ20Bf4CkzGwXg7lMI08xP\nAUYBF6tatI1aIunTqVOYlPGee2InESmdVLREiqWWSMtOOw1OOQXOOCN2Eik0dSoce2wYs+pU9s5k\nkeblpiUi5fPWW5o3K4323z90aT3zTOwkIqWhIpJTjUdnpYHGQ9Y2bJjWGZH8UBHJoeXLYdEi2G67\n2EmkOWecAc89B++8EzuJSPupiORQQwPsuCN0SMlvVy2RtW2+OQwcCA88EDuJSPul5GNGSmnWrNDv\nLuk1bBjcfXfsFCLtpyKSQ2+/na4iopbIuo46Ct57D159NXYSkfZREcmhtBURWVeHDjB0qFojkn0q\nIjmUtiKilkjzzjsvjIusWBE7iUjxVERyKG1FRJq3++7Qs2eY3Vckq1REcihtRUQtkZbpnBHJOhWR\nHEpbEZGWDR4ML74Ic+bETiJSHM2dlTOLF0P37mFRqjSsJSIbduGFsNdecOWVsZNItdDcWdKixlaI\nCkh2NJ4zou9DkkUqIjmTxq4sjYmsX79+4d+XX46bQ6QYKiI5k8YiIutnFg731TkjkkUaE8mZ4cND\nt8gPfhA7ibTFnDnhcN+GBvjEJ2KnkbzTmIi0SC2RbNpxR+jbFx57LHYSkbZREcmZNBYRjYm0jiZl\nlCxSEcmZNBYRaZ0TT4QJE8KqlCJZoTGRHHGHTTcN/eubbRY7jRTjsstgq63UepPy0piINGvRonCk\njwpIdg0bBvfcA6tXx04i0joqIjkyZw706BE7xbr0rbr1evUKKx8+/3zsJCKtoyKSI7Nnh6N8JNvO\nOy+0RkSyQEUkR+bMSWcRUUukbc46C554Aj78MHYSkQ1TEcmRtBYRaZvu3eGII+DRR2MnEdkwFZEc\n0ZhIfpx3HowYETuFyIapiOSIWiL5MXAgTJwIM2fGTiKyfioiOZLWgXW1RNquSxc4/XS4997YSUTW\nT0UkR9QSyZfzzgtFROfTSpqpiOTE6tUwd246i4haIsU55BDo3DksnyuSVioiObFwYZjypEuX2Emk\nVMxg6FCdMyLpprmzcmLCBBgyJAzGSn7Mng0HHKB1RqS0NHeWrCOtg+rSPj16QJ8+8PjjsZOINE9F\nJCfSeo4IaEykvXTOiKSZikhO6Mis/Bo0CP75z9DaFEkbFZGcSHMRUUukfTbZBAYPhvvui51EZF0q\nIjmR5iIi7dfYpaXjSCRtVERyYvZsjYnkWb9+sGoVvPJK7CQia1MRyQm1RPLNDM49V+eMSProPJEc\nWLkynEOwdCl06hQ7jZTLrFnQu3dodeqkUmkPnScia5k/H7beWgUk73bZBQ48EEaOjJ1EZA0VkRyY\nOxd22CF2ipZpTKR0NA2KpI2KSA7MnRtWw5P8GzwY/va38DsXSQMVkRyYOxe23z52ipapJVI6XbvC\nSSfB/ffHTiISqIjkwLx56S4iUlpDh+qcEUkPFZEcSHt3lloipXXkkbB4Mbz6auwkIioiuZD27iwp\nrQ4ddM6IpIeKSA6kvYioJVJ6554LDz4IK1bETiLVTkUkB9JeRKT09twT9tsPRo2KnUSqnYpIDsyb\npzGRaqRzRiQNohYRMzvVzCab2Soz612wfTczW2Zm45PLbTFzptmyZeGyxRaxk0ilnXoqjBkDCxbE\nTiLVLHZLZBJwMvB8M/fVu3uv5HJxhXNlRuPhvVaSWXDKQy2R8thsMxg4MIyNiMQStYi4+zR3fyNm\nhqzTeEh1azxnRCSW2C2R9dk96cqqM7MjYodJq7SPh4BaIuV09NFhAs5Jk2InkWpV9iJiZs+a2aRm\nLies52FzgJ3dvRfwbeABM9u03FmzSC2R6taxIwwZotaIxFP2ycPd/bgiHrMCWJFcH2dm04G9gXFN\n960t+JpbU1NDTU1NsVEzKQtFRC2R8ho6FGpq4IYbtByANK+uro66urqyPHcqFqUyszHA5e4+Nrm9\nDfCeu68ysz0IA+893f39Jo+r+kWpLroIDjgALtahB1WtXz+49lr4whdiJ5EsyM2iVGZ2spm9DfQF\nnjKzxlOnPgdMMLPxwO+BrzYtIBKkfd4sUEukEnTOiMQStfHr7n8A/tDM9keBRyufKHs0g68AnH46\nXHUVvPcebLll7DRSTdJ8dJa0gsZEBELh+Pzn4Xe/i51Eqo2KSIa5Z6M7SypDXVoSg4pIhi1eHKYF\n79YtdpL1U0ukMo4/HmbOhGnTYieRaqIikmFqhUihTp3gnHN0zohUlopIhs2fn40iopZI5QwdCvfd\nB6tWxU4i1UJFJMMWLIDttoudQtKkZ89woMXo0bGTSLVQEcmw+fOzUUTUEqksDbBLJamIZNiCBbDt\ntrFTSNqceSY89RQsWhQ7iVQDFZEMU0tEmrPNNnDUUfD738dOItVARSTD5s9XS0Sad955OkpLKkNF\nJMOyMrCulkjlDRgQzheZPj12Esk7FZEMy0p3llTeRhuFsZF7742dRPIuFVPBF6vap4LffnsYPx52\n2CF2EkmjceNg8ODQGumgr4tSIDdTwUvxVq+GhQvDIKpIc3r1gk03hRdeiJ1E8kxFJKPefTd8QHTu\nHDvJhmlMJA4znTMi5aciklFZGVSXuM4+Gx5/HJYsiZ1E8kpFJKOyNKiulkg8228Pn/kMPPZY7CSS\nVyoiGaWz1aW1hg7VOSNSPioiGaWWiLTWiSeGo/hmzYqdRPJIRSSjdLa6tNbGG8Npp4Up4kVKTUUk\no7I0sK6WSHyNXVpVfFqVlImKSEZlqTtL4jvssHDI78svx04ieaMiklFZGlhXSyQ+M03KKOWhIpJR\naolIWw0ZAg8/DMuWxU4ieaIiklFZGlhXSyQddtoJDj4YnnwydhLJExWRDFq5Ej74ALbeOnYSyRqd\nMyKlpiKSQQsXwpZbQseOsZO0jloi6XHyyfDSS/Dvf8dOInmhIlIBdXV1JX2+cg2qlzpnuShn8bp2\nhVNOgd/+ds22NOZsThZyZiFjqamIVECp/2OVazykXH8ApW6JZOUPNa05m54zktacTWUhZxYylpqK\nSAa98052BtUlfY44ApYuDYtWibSXikgGLVyYrUF1jYmkS4cOGmCX0sn88rixM4iIZFGplsfNdBER\nEZG41J0lIiJFUxEREZGiZbaImFl/M5tmZm+a2ZWRs+xsZmPMbLKZvWZmlyXbtzKzZ83sDTN7xsy2\nKHjM1Un2aWZ2fAWzdjSz8WY2MsUZtzCzR8xsqplNMbPDUprz6uR3PsnMHjCzLmnIaWZ3mdk8M5tU\nsK3Nuczs4OS9vWlmt1Qo543J732CmT1mZpunMWfBfd8xs9VmtlXMnC1lNLOvJz/P18zsx2XJ6O6Z\nuwAdgXpgN6Az8Cqwf8Q82wMHJde7Aa8D+wM/Aa5Itl8J3JBc/2SSuXPyHuqBDhXK+m3gfuDJ5HYa\nM44Azk+udwI2T1vO5LX+BXRJbv8OGJqGnMBngV7ApIJtbcnVOFb6D6BPcv2PQP8K5Dyu8ecC3JDW\nnMn2nYE/AW8BW8XM2cLP8ijgWaBzcnvbcmTMakukD1Dv7jPc/SPgIWBQrDDuPtfdX02ufwhMBXoA\nJxI+EEn+PSm5Pgh40N0/cvcZhF9in3LnNLOdgC8AdwKNR2akLePmwGfd/S4Ad1/p7h+kLSewCPgI\n+ISZdQI+AcxJQ053fwF4r8nmtuQ6zMx2ADZ1938k+91b8Jiy5XT3Z919dXLz78BOacyZuBm4osm2\nKDlbyHgR8N/JZyTuvqAcGbNaRHoAbxfcbki2RWdmuxG+Efwd6O7u85K75gHdk+s7EjI3qlT+nwLf\nBVYXbEtbxt2BBWZ2t5mNM7Nfm1nXtOV093eBm4BZhOLxvrs/m7acBdqaq+n22VT+b+x8wrdhmskT\nNaeZDQIa3H1ik7vSlHNv4Egze9nM6szskHJkzGoRSeVxyWbWDXgU+Ia7Ly68z0P7cH25y/qezGwg\nMN/dx7OmFbJ2gMgZE52A3sBt7t4bWAJctVaIFOQ0sz2BbxK6A3YEupnZOWuFSEHOZl90w7miM7Nr\ngBXu/kABFjF7AAAEcklEQVTsLE2Z2SeA7wHDCzdHirM+nYAt3b0v4cvjw+V4kawWkdmE/shGO7N2\nBa04M+tMKCD3ufvjyeZ5ZrZ9cv8OwPxke9P8OyXbyukzwIlm9hbwIHC0md2XsowQfo8N7v5KcvsR\nQlGZm7KchwAvuvtCd18JPAb0S2HORm35PTck23dqsr0iec3sPEK369kFm9OUc0/Cl4cJyd/TTsBY\nM+uespwNhP+XJH9Pq81sm1JnzGoR+Sewt5ntZmYbAacD0ZbaMTMDfgNMcfefFdz1JGGwleTfxwu2\nn2FmG5nZ7oRm5z8oI3f/nrvv7O67A2cAo919SJoyJjnnAm+b2T7JpmOBycDINOUEpgF9zWyT5Pd/\nLDAlhTkbten3nPweFlk4Ms6AIQWPKRsz60/41jzI3Zc3yZ+KnO4+yd27u/vuyd9TA9A76S5MTc7k\n+Y8GSP6eNnL3d0qesVRHB1T6AgwgHAVVD1wdOcsRhHGGV4HxyaU/sBXwHPAG8AywRcFjvpdknwZ8\nvsJ5P8eao7NSlxE4EHgFmED4JrV5SnNeQShwkwiD1Z3TkJPQ0pwDrCCMHQ4rJhdwcPLe6oFbK5Dz\nfOBNYGbB39FtKcr5n8afZ5P7/0VydFasnM1lTP4/3pe85ligphwZNe2JiIgULavdWSIikgIqIiIi\nUjQVERERKZqKiIiIFE1FREREiqYiIiIiRVMRERGRoqmIiIhI0VRERNrAwsJTf7Fgt+YWKiriOe8w\ns8+08FrPm5n+TiW19J9TpG3OBv7XSzvVw2HAS003uvt/gBco8foYIqWkIiLSNmcCTzTdaGZ7JOuf\nHJy0UKYla6K8bmb3m9nxZvY3C8vTHlrwuP0J81ltYmZPmdmryfKkpyW7PJm8pkgqqYiIFDCzgWY2\n0szmmtkYM7uo4L6OQE93f6PJY/YlTFk/1N3HJpv3BP4/sB+wL3C6ux8OXE6Y/K7RAGAUYcLO2e5+\nkLsfQFh2FcKknut0dYmkRafYAUTSwsx2AU5w9xPM7CTCutN/KNhlG2Bxk4dtR5gu+2R3n1aw/S13\nn5w872TCDLoArxHWomh0PHAesClwk5ndQOgu+yuELi0z62BmG/vaU6OLpIJaIiJrnAvcklzfGvig\nmX2armD3PmHq8s822f6fguurCdOdN17vBB+vkLeFu8919zcJyypPAn5oZtc2eU1Nty2ppJaIyBpb\nEtZMh7BK4b1N7n8H6NZk2wrgFOBpM/vQ3R9sw+sdBYyGj1cbfM/d7zezD4ALku1dgFXJILtI6qiI\niKxxJ2HFNwNucfePCu9091Vm9pqZ7evur6/Z7EuTNeyfNbPFhNZE05aDN3N9AGvWvT4AuNHMVgMf\nAV9LtveimSO3RNJCi1KJtEGy/nd3d/9xCZ5rLNDH3VetZ5/rgVeajM2IpIaKiEgbmNlGhEHyz5X4\nXJHmXqsL8GwlXkukWCoiIiJSNB2dJSIiRVMRERGRoqmIiIhI0VRERESkaCoiIiJSNBUREREpmoqI\niIgUTUVERESK9n9aAq1hdfVA2wAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x110b8d650>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Here are the data and the best fitting model\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEdCAYAAAASHSDrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8VXW9//HXh1kEDiIzR0ARBUEFVCTLy3GGNMuh0lJz\nqOzerG6Zqf3qesgyvWmDdr1W18gyS01TsTTNOmSG4sDsgKgg4znMk8j4+f2x1oZ9DmfvM7DXsPd+\nP3lszt5r/Oz12Ht/1vf7Xev7NXdHREQklzZJByAiIummRCEiInkpUYiISF5KFCIikpcShYiI5KVE\nISIieSlRiBSAmf3KzG5MYL+DzWyXmTX5XTazS83s2TjiktKiRCGJMLOFZvaemW0ws7Vm9pyZXWlm\n1sz1m/0DGRMPHyIlJy1fMik/Dpzl7t2AgcDNwLXA3S3cTrMSS0zSFItIwShRSOLcfaO7TwE+CXzG\nzEYAmNmZZjbDzNab2btmdkPWav8I/64zs41mdryZDTGzv5nZKjNbaWb3mllFrv2a2U/C7a43s5fM\n7ENZ86rN7AEzuycs9cw1s2Oy5o82s1fCeb8HOuXZz6VhiemHYelpgZmdYGaXhfuvNbNLspavMLNf\nm1ldWPL6f5mSlpm1MbNbw/f3FnBmg31VmNndZrbMzJaY2Y0pKnVJkdIHSFLD3V8ElgCZH+xNwEXu\nXkHwg/jvZvbRcN6J4d8Kd+/q7i+Er78H9AOGAwcB1Xl2OR04GjgAuA940Mw6ZM3/CPA7oAJ4DPgp\nQLjMI8A94boPAueRv+ppLDAL6BFu8wFgDDAEuAj4qZl1Dpe9A+gKHAyMBy4BLgvnfT48FqOAY4Hz\nG+z3V8C2cLujgdOBz+aJS6RJShSSNssIfkxx96nuPi98Pgf4PcEPJzRSzePub7n7M+6+3d1XAT/K\nWn4v7v5bd1/r7rvc/YdAR+DwrEWedfcnPegQ7V6CpAIwDmjn7j9x953u/hDwYhPv6x13vyfc1gNA\nf+A7YaxPE/y4H2pmbQlKVte7+2Z3XwTcBlwcbucTwI/cfam7rwVuyhwLM+sDTAS+6u5b3H0l8GPg\ngiZiE8mrXdIBiDQwAFgDYGbHE7RdjAA6EPyQP5BrxfCH8icEJZKuBCdCa/Is/3XgcoIfbQe6AT2z\nFqnNev4e0CmsxukPLG2wuUXkb6PI3tYWgPCHPHtal3D/7cPtZbxLcFwgKC0tbjAvY1C47vKsawLa\nNFhGpMVUopDUMLPjCH4Q/xlOuo+giqfS3bsDd7HnM9tYNc9NwE5gZFhddTE5PuNmdiJwDfBxd+/u\n7gcA62leg/Ry9vxwZwzKEVNLrQK2A4Ozpg0kqJLL7Htgg3kZi4GtwIHufkD4qHD3IwsQl5QxJQpJ\nUqbKpJuZnUVQd/+bTHUTwRn2WnffZmZjgU+x58d4JbCLoC6erOU3AxvMbABBIsilK7ADWGVmHczs\nvwhKFM0xDdhhZl82s/Zmdi5wXDPXzcvddxKUmr5nZl3MbBDwVYKqL8J5XzazAWZ2AHBd1rrLgaeA\nH5pZ17Dhe4iZ/VshYpPypUQhSZpiZhsIqkauJ6iLvyxr/n8A3wmX+TZwf2aGu79H0HD9nJmtCRPJ\nJIIG4vXAFOAhcp/lPxk+5gMLCap+sqtoGrsvwsN9bwPOBS4FVhO0GzyU533m3FYOXyJIeG8DzwK/\nBSaH834B/IWgYfwl9n6PlxBU071KUO32INA3TxwiTbKoBi4ys4OAXwO9CT6cP3f3282smuAqjEz9\n7PXu/mQkQYiIyD6LMlH0Bfq6+0wz6wK8DHyM4OxrY3iViYiIpFxkVz25+wpgRfh8k5m9xp4GQN3B\nKiJSJGJpozCzwQQ3/zwfTvqSmc0K7yDtHkcMIiLSOpEnirDa6Q/AV9x9E/C/BHecjiK41O+2qGMQ\nEZHWi6yNAsDM2gOPA0+4+48bmT8YmNLwOm8z05UZIiKt4O4Fr9qPrEQRdmJ2N/BqdpIws35Zi50D\nzGlsfXfXw50bbrgh8RjS8tCx0LHQscj/iEqUVU8fJOjs7KSwB9AZZjYRuMXMZpvZLIJ+eL4aYQxS\nQmpqko4gUF2ddASBtMQhpS/Kq57+SeOJ6Imo9ikiIoWnTgFTrqqqKukQUqO6uirpEIB0nMlXVVWh\nj0ZA35HoRdqY3Vpm5mmMS0QkzcwML6bGbJFCS8OZPCgOKT9KFCIikpeqnkRESoSqnkREJBFKFFI0\n0lInrzik3ChRiIhIXmqjEBEpEWqjEBGRRChRSNFIS5284pByo0QhIiJ5qY1CRKRERNVGoU4BRULB\nECq56eRFypWqnqRoxFMn7zkeccfRtLTEIaVPiUJERPJSG4VIKKh6yvW5M1U9SerpPgoREUmEEoUU\njbTUySsOKTdKFCIikpfaKERCaqOQYqc2ChERSYQShRSNtNTJKw4pN0oUIiKSl9ooREJqo5BipzYK\nERFJhBKFFI201MkrDik3ShQiIpKX2ihEQmqjkGKnNgqRpOxfB+fAkNuH8OmHP82KTSuSjkgkVkoU\nUjQSqZPvvAou/xBsgscvfJxBFYM44tYPUre5LoFg6lMbhcRFiUIkn4lfhjc/DE/D8F7DuemUmxjG\nuXzxz19MOjKR2KiNQiS0VxvFwc/A2Z+DO+fC9v13t1Fs2b6Fo+46ijsm3sGEQyckE6xII9RGIRK3\n8TfC326E7Z3rTd6v/X5896TvcuM/blQDt5QFJQopGrHWyVc+DxWLYN4nG43j/CPOp3ZTLf98958x\nBrV3HCJxUKIQacyY/4OXvgC72jU6u22btlw19ip+/srPYw5MJH6RtVGY2UHAr4HeBBW/P3f3282s\nB3A/MAhYCHzC3dc1WFdtFBK73W0U7bbA1f2DtomNAzJz96pmWrl5JUPvGMqi/1xERaeK2OMVaagY\n2yi2A1919xHAOOCLZjYcuA542t0PA54JX4ukx7BHYenYrCTRuF779+Lkg0/modceiikwkWRElijc\nfYW7zwyfbwJeAwYAZwP3hIvdA3wsqhiktMRWJ3/kfTD7ombFcf4R5/PI649EH1MTcYhEKZY2CjMb\nDIwGXgD6uHttOKsW6BNHDCLN0v49GFwD889q1uIfHvphahbWsHnb5mjjEklQ5PdRmFkXYCpwo7s/\nYmZr3f2ArPlr3L1Hg3X8hhtu2P26qqqKqqqqSOMUMTM4bAqccCv8qqbh3EYvhTUzuBh4EXh9722q\nrU2iVFNTQ01Nze7XkyZNiqSNItJEYWbtgceBJ9z9x+G014Eqd19hZv2Av7v7sAbrqTFbYmdmcNaV\nsHooTLu64dzcieK4n8KA6fDIPc1aRyQqRdeYbcElJHcDr2aSROgx4DPh888AyVTwStGJpU7+sMeb\nrHbaK44FE2HIU+TueTYaaqOQuETZRvFB4CLgJDObET4mADcDp5nZfODk8LVI8noS3Dex+rCWrbf2\nENjRCXq9FklYIklTX08iITvOYMCl8OjkxubmrnrC4ezPQu1R8MKXm1xHJCpFV/UkUnQGA4vGt27d\nt08JOhEUKUFKFFI0oqyTd/cgUSysal0c75wMg6dCmx2FDaylcYhEQIlCBHhj9RuwA1g3uHUb2NwH\nNvaH3nMKGZZIKqiNQgT42Us/4wvf+wI80rIxs+uNYXH2Z2H5aHjxi3nXEYmK2ihEIjR10dSgi8o8\nzGyvRz2LT4CD/hVZjCJJUaKQohFlnfy0JdNgcVNLeSOPLItPgIHPRRFeo9RGIXFRopCyV7e5jnXv\nr4M1+7ihVYdDh43QdWlB4hJJCyUKKRpRnUFPXzqd4/ofV4Abqy2sfppWiLCapBKFxEWJQsre9KXT\nOX7A8YXZmNoppAQpUUjRiOoM+oWlLzB2wNjCbGzJB6BSJQopLUoUUtZ2+S6mL51euESxfDT0mR3r\njXciUVOikKIRxRn0gjULqOhYQZ8uBRo/a2sFbKiEntF3EKgShcRFiULK2gtLXuD4ygK1T2QsPwb6\nv1zYbYokSIlCikYUZ9DTl05nbP8CVTtlLDsG+kWfKFSikLgoUUhZe2n5Sxzb/9jCblQlCikx6utJ\nytbOXTupuLmCpV9bSkWnivr9Nu0l17xGpndcD1cPgJs34zv1OZb4qK8nkQJbsGYBfbr0oaJTRWE3\nvLUCNgwIRswTKQFKFFI0Cl0nP2PFDEb1HVXYjWYsPwb6RbPpDLVRSFyUKKRszVwxk1F9IkoUy46B\n/tFsWiRuShRSNAp9Bj1zxcwISxRjVKKQkqFEIWVr5oqZjO43OpqN1x4FvdHARVISlCikaBTyDHr5\nxuXs2LWDAV0HFG6j2bYcCNtg4bqF0WwflSgkPkoUUpYy1U57jVJXSCtgdu3s6LYvEhMlCikahTyD\njrR9IqM22kShEoXERYlCytLM2pmM7htR+0RGLcyqnRXtPkRioEQhRaOQZ9Azlkd4D0WGShRSIpQo\npOxs2raJJRuWcHjPw6Pd0WpYsmEJm7dtjnY/IhFTopCiUagz6FdXvsqwnsNo16ZdYTaYyy4Y1nMY\nc+vmRrJ5lSgkLkoUUnbm1s1lZO+RsezrqD5H6conKXpKFFI0CnUGXSqJQiUKiYsShZSdOBPF0X2O\n1pVPUvQ0HoWUnf639WfaFdMY1H1QvekFG48ie15n4MvAzfXn6PMtUdB4FCIFsGbLGjZt28TAioHx\n7PA9h+19oWIRQUJRgpDio0QhRaMQdfLz6uYxoveIaLvuaGjlCOg1r+CbVRuFxEWJQsrK3Lq5jOwV\nT/vEbnUjoHfhE4VIXCJNFGb2SzOrNbM5WdOqzWyJmc0IHxOijEFKRyHOoONsyN6tbiT0Lvy9FCpR\nSFyiLlFMBhomAgd+6O6jw8eTEccgstvclQkkioiqnkTiEmmicPdngbWNzIqxglhKxb6eQbt7QiWK\nEdDrNbBdBd2sShQSl6TaKL5kZrPM7G4z655QDFJmVmxaQRtrQ+/9e8e7460VsOUA6L4w3v2KFEgS\nieJ/gYOBUcBy4LYEYpAitK9n0JnSRKxXPGVEUP2kEoXEJeJe0fbm7nWZ52b2f8CUxparzvoWVFVV\nUVVVFXVoUuISueIpo25kcOXT/I8ks38pSTU1NdTU1ES+nybvzDazDwE3AIPZk1jc3Q9p1g7MBgNT\n3P3I8HU/d18ePv8qcJy7f6rBOrozW/ZSXb1vZ9FXPHoFYweM5cpjr2x0fiR3ZmfmjZoMhzwDD98L\nWEHuzN7X4yGlJ6o7s5tTorgb+E/gFWBnSzZuZr8DxgM9zWwxQcKpMrNRBN+gd4DGv7UiBTZ35Vwu\nH315MjtfOQKOvz2ZfYvso+aUKF5w9+NjiiezT5UopKB2+S66fb8bS762hO6dGr9+ItISRYdNcE1v\nuGkjeDv19SSRSLJE8Xcz+wHwMLA1M9HdXyl0MCJRWbRuEd07dc+ZJCK3rQts6gM93oLVyYQg0lrN\nueppHHAscBPBFUqZh0is9qU+PpH7JxqqG1nQK5/UPiFxabJE4e5VMcQhEqlUJIqVYZ9PrycbhkhL\n5UwUZnaxu//GzK6mfiWsEVz19MPIoxPJsk8lipVzOe2Q0woWS6vUjYDD/lSwzalEIXHJV/XUOfzb\nNcdDpGikokRR4KonkbjkLFG4+8/Cv9WxRSOSR2vvG9ixawfzV89neM/hhQ6pZVYNgx4LCtYfgu6j\nkLg0+ZE1syFmNsXMVpnZSjN71MyadbOdSBosWLOA/l37s3+H/ZMNZMd+sOEgODDZMERaqjnnNvcB\nDwD9gP7Ag8DvogxKpDGtPXtORbVTRt0I6FWYTak0IXFpTqLYz91/4+7bw8e9QKeoAxMplHl18xjR\na0TSYQRWjoCYO68V2Vc5E4WZ9TCzA4EnzOx6MxscPq4FnogvRJFAq0sUSQxWlEvdyIIlCpUoJC75\n7qN4hfqXxX4+/Jvpl+C6qIISKaR5dfP41onfSjqMQN2IoPczkSLSZF9PSVBfT1IoW3dspeLmCtZd\nt45O7fLXmEba11NG261wXSfer36fju065o1HpKWi6uspqRHuRGIxf/V8Bncf3GSSiM3OjrAO3lj9\nRtKRiDSbEoUUjdbUyc9bOS897RMZdcGVWPtKbRQSl7x9PVlQFq9098UxxSNSELuHOz0Z2AX2yQSG\nP82lQIlCJC7NKVHoCidJhZafQTv0+hjUPRA8391e4DkeMalViUKKS95EEbYov2xmY2OKR6Swes8N\n7l1IE5UopMg0dzyKaWb2tpnNCR+zow5MpKEWn0G32wLdlsDqoVGE03proXZzLZu2bdqnzahEIXFp\nzgh3Z0QehUgUer0Gaw6FXe2TjqQ+h2E9h/HqylcZO0CFdUm/JksU7r4QOAg4KXy+meACcZFYtfgM\nute84E7oFBrZe+Q+Vz+pRCFxaU7vsdXAN4Drw0kdgHsjjEmkMHrPS1/7RGhkr31PFCJxaU4bxTnA\nRwlKErj7UjRwkSSgxWfQvecGXWakkEoUUkyakyi2uvuuzAszS7hTf5FmKvGqJ5G4NCdRPGhmPwO6\nm9nngWeA/4s2LJG9tegMugPQpRbWpnOMrcpulWzevpnV761u9TZUopC4NKcx+wfAQ+HjMODb7n57\n1IGJ7JNeBEOPetukI2mUmalUIUWjuX09zQGeBf4RPheJXYvOoHuT2vaJjH1t0FaJQuLSnKuePgu8\nAJwLnAe8YGZXRB2YyD7pRWrbJzJUopBi0eR4FGY2H/iAu68OXx8ITHP3wyILSuNRyD6yiw2mT4H5\nZzWcQ8vHnMg3r3XruDt/f+fv/FfNf/HsZc/mWF+kZZIcj2IVkN3XwKZwmkh69aZoShQ6KZK0a06i\neAt43syqw5vvngfeNLOrzexrkUYnkqW5dfLr3l8HHYH1A6MMZ5/12r8XHdp2YNnGZa1aX20UEpfm\n9PX0VvjInPY8Gj7vElVQIvtiTu0cqAM8/eNyZUoVA7oNSDoUkZyaTBTuXh1DHCJNau4Z9KzaWVAb\naSgFk7ny6YxDW973pkoUEpfmlChEisrs2tmpTxS7R+AbAxwEX3/067vnqc1C0ib9ZXORUHPPoIsh\nUeweVa/uX9D7WFozyp5KFBIXJQopKTt37QzuTUh9ogitHAG9XgXb1fSyIgnJWfVkZjfkmOUA7v6d\nSCISyaE5Z9Bvr32bXvv3YvPWzZHHUxBbu8F7PeGAt2BNy0biU4lC4pKvRLGZ4J6J7IcDVwDXNmfj\nZvZLM6s1szlZ03qY2dNmNt/MnjKz7q0PX6S+2bWzOarPUUmH0TIrRkHfWUlHIZJTzkTh7re6+23u\nfhvwC2A/4DLg98DBzdz+ZGBCg2nXAU+Hd3Y/E74WaVJzzqBn1c7iqN7FmChmtng1lSgkLnnbKMzs\nQDP7LjALaA+Mcfdr3b2uORt392eBtQ0mnw3cEz6/B/hYy0IWyW127WyO7nt00mG0TCsThUhc8rVR\n3Eowut3PgaPcfWOB9tnH3TNNjbVAnwJtV0pcc86gi7bqqU/Lq55UopC45CtRfA0YAHwLWGZmG7Me\nGwqx87DnP100LgWxYesG6jbXMeSAIUmH0jLrBkPHjdBZXahJOuUsUbhH1v9BrZn1dfcVZtaPoLOF\nvVRnnS5VVVVRVVUVUThSLKqr859Fz6mdw4jeI2jbJp2DFeVmsOLooFTxTtbNeA00vBGvqeMhpa+m\npoaamprI95PEndmPAZ8Bbgn/PtLYQtX6BkgLza6dXXwN2RmZdop3IHd35iL1NTyJnjRpUiT7ifSG\nOzP7HfAv4HAzW2xmlwE3A6eF41ycHL4WaVJT5w6zamcVX0N2Ru3RLW7Q1rmUxCXSEoW7X5hj1qlR\n7lfK06zaWXzqyE8lHUbrrBgF436UdBQijVIXHlI08p1B79i1gzm1cxjVd1Rs8RTUyiOgx4IWnbqp\nRCFxUaKQkvD6qtcZ0G0A3Tp2SzqU1tnRKejCo1fSgYjsTYlCika+M+iXl73MMf2OiS2WSKwYBX2b\nv7hKFBIXJQopCS8vf5kx/cYkHca+aWGiEImLEoUUjYZn0Ga2+3HHH+7gmk9fs/t1UVKJQlJKiUKK\nnIPtgD5dYMVaWjMAUGosHxMkCtuZdCQi9Vgah100M09jXJIuQcnBg4F/Ljwbbl+QPZfcN67l+my1\nZl6B1/mSwf1zoG7kXuvoOyFNMTPcveBFapUopPj1exmWFXlDdsZSoP+LSUchUo8ShRSNnHXy/V6B\n5SWSKJYBA5qXKNRGIXFRopDi1//loH6/FKhEISmkNgopWmYWNPxe1x1+vBC29MieS1G2UbQ3uKYz\n3LIGdnast46+E9IUtVGINObAN+C9ng2SRBHbDqw5FPrMTjoSkd2UKKRoNFonX/k8LBkXdyjRWnZc\ns9op1EYhcVGikOJW+Tws/kDSURTW0uPUTiGpokQhRUMlivpUopC4KFFI8epA0DV3bZEOVpRL3Ujo\n/g502JR0JCKAEoUUkb3OoAcQ9I+0s0MC0URoZ4cg+Q2YnncxlSgkLkoUUrwqgSUl1j6R8e6H4KDn\nko5CBFCikCKy1xl0JaXXPpHx7gdhYP5EoRKFxEWJQoqSu5d2olh8AlROU0+ykgpKFFI0ss+g31r7\nFuwENlQmFU603usFm/pB77k5F1GJQuKiRCFFaerCqbAo6Sgi9u4HYeA/k45CRIlCikf2GfTURVNh\nYVKRxGRx/nYKlSgkLkoUUpSmLiqHEsWHVKKQVFCikKKROYNeuG4hW3dshVWJhhO91UOh3ftQ8W6j\ns1WikLgoUUjRmbpwKv826N+SDiMGBgur4OC/JR2IlDklCikamTPoqYumMn7Q+ERjic3bp8DBzzQ6\nSyUKiYsShRSdqYumMn5wmSSKd06BQxpPFCJxUaKQolFdDYvXL2bD1g0c0euIpMOJx5ohQd9PPfee\npRKFxEWJQorKX976C6ceciptrFw+uhZUPx2SdBxSzlI7ZvZTTz3V6LzKykqGDx8ec0SSFh9/8OOc\nOfRMLh11aTBmdixjXBd6ey1c58j7YMSn8d+l77sq6RLVmNmpTRQVFSfTsMCzbdtiLrzwZO6++85k\nApPIBD/6ubk7O3btoPcPejP3P+bSv2v/8kkUXVbAF/ux/abttGvTLsd6ItElitSW39evf4L165+u\n99iy5cvs2pV0ZBIdz/EIXPmdF6nsVkn/rv2TCS8pm/rCBpi+tP74FGqjkLikNlGINPQWf2HCoROS\nDiMZ8+FP8/+UdBRSppQopGi8X/kkZww5I+kwkjEfpsyfUm+SShQSFyUKKQrLNy5n/ur5nDjoxKRD\nScYSWL5pOYvWlXoHV5JGiSUKM1toZrPNbIaZ5R8cWMreY288RuWWiXRoW2LjYzeXw4eHfpjH5z++\ne5JKFBKXJEsUDlS5+2h3H5tgHFIE/vj6HxnGOUmHkaizhp61V/WTSBySrnoq+GVcUoI6wr8W/4tf\nfrNMG7JDEw6dwLQl01izZQ2gEoXEJ+kSxV/N7CUz+1yCcUjaDYXxg8fTpUOXpCNJVNeOXTn1kFP5\n42t/TDoUKTNJ3r3zQXdfbma9gKfN7HV3f3bP7BuBtuHzqvAhZWkknD/8fKqrdRZ9wYgL+MUrv+CK\nMVfoeESoOTeApkFNTQ01NTWR7yexROHuy8O/K83sj8BYICtRfBso04ZL2aPzKhgM5w4/l9seSTqY\n5J152Jl8bsrnWLl5JdAr6XBKXL6759OhqqqKqqqq3a8nTZoUyX4SqXoys85m1jV8vj9wOjAniVgk\n5Y54EN4Mql109gyd23dm4tCJ/OHVP+h4SGySaqPoAzxrZjOBF4DH3b3xXgClvB11L8xOOoh0ueSo\nS5g8c3LSYUgZSSRRuPs77j4qfIx09+8nEYekXI834cA34a3gpc6gA6cPOZ3lm5bzhepZSYciZSLp\ny2NFcjv2LphxGagjyHratmnL5aMuZwZ3Jx2KlAklCkmn9u/BqHvgpS/snqQSxR6Xj76ctzrfx5bt\nW5IORcqAEoWk08jfw5JxsO7gpCNJpUHdBzGuchz3zr436VCkDChRSAo5jL0Dpn+x3lSVKOrrOf/r\n3DrtVna56uYkWkoUgpnlfcSxr3qG/hna7IS3zqi33qRJ1ZHFVYwGMZ5uHbvx2BuPJR1KbAr9WY3j\nM99acX4vm6JEIaH8o8tFv6+seeNvhH98C7xNg3WqY4iteEyqNq454Rpuee6W1NwpHI9Cf1bj+ty3\nRpzfy9yUKCRdDvkrdFwPr56XdCRF4bzh57Fx68Z63Y+LFJoShaSH7YTTroWaavC2TS5e7qqrg0tl\nbz71Zq575jp27tqZdEhSopQoJD1GT4btnWHeJ5KOpKicOfRMDtzvQH4181dJhyIlSolC0qETcNK3\n4YmfkKZO19IscxWYmfGjM37EN//2Teo21yUak5QmJQpJh4nAa+fC8mOSjqQoHdP/GC456hK+8uRX\nkg5FSpAShSTviD9AJfD0fycdSVFpeF/JpJMm8eLSF7l/7v2JxCOlS4lCknXgfPjwF+FhYPv+SUdT\n1Dq378wDH3+Aq564itdWvpZ0OFJClChySNPNLsWm2cet01q48CPwt+/C0mRiLSYNj+WkSXsf1zH9\nxnDzKTdzzv3nsOq9VQXZT3MfUrqUKPJKx80uxamJY9dxPXzqLHjzTHhFQ6Y3T/M+j1eMuYJzhp3D\nhHsnsP799QXcV/NjkNKiRCHx67wKLj4dVoyGp25NOpqSdNMpNzGuchyn/PoUlm9cnnQ4UuSUKCRe\n/YDPHwtvnwp/vqNBNx1SKGbGHRPv4KOHf5Rxd4/jhSUvJB2SFLF2SQcgZaLd+3Di9+BY4PHb4DV1\n0RE1M+Pb47/NEb2O4Ozfn83nxnyOb574TTq375x0aFJkdDon0Wq3Bcb+FL40FHq9CnehJBGz8444\njxlXzuDNNW9y2B2HceeLd7Jp26akw5IiokQhhdcOOORpOOtK+FolDHkK7n8YHngINiYdXHnq37U/\n959/Pw994iH++vZfGfijgVw55Ur+/OafeX/H+0mHJymnqidptU3bNrFs4zKWbVzG/NXzmVs3l5kr\nZsI3gBXVMP8jcNdM2HBQ0qFK6PjK43n4kw/z7vp3eXDeg9zy3C184sFPcGSfIzmu/3Ec2ftIOARY\ntwA2DIAz6pNnAAAJpUlEQVQd+yUdsqRAehPFxK8Cbal/6d0cnu+xmqv+fNXuKdn98HuDy/Qa9tGf\nPT/fPAA+AhBetmmNXIL46BWNb7eAMRRq3aa2y8d3/7f3ezWY+NuJbN62mc3bN+/+u+79dezctZMB\n3QbQr0s/Du1xKCN7j+Ssw87ijC+cAdueQ9JrYMVArj7haq4+4Wo2bt3IK8tf4aVlLzFtyTQ4Eeh+\nGnRdFlxs8P4BsKUHbAV2VsGOjrCzA+zsGDzf1Q4cLn/0cozwvorwbxtrs9e07L8tNgEgdzclX3mi\nhV2Y5N1eAffTGoV+r/sgvYlizRB2h+eZD1QtFdt3MqznsHqLZj5wV111FXsJf/fuvPPOYNmsG4Ma\nflCz5/1i2S/Ax9bbyx5388tJv8wde47LyidPntzkfvPNy55/0UUX5dzvfffd1+h2L7jggjwxZ/fY\nmrVPf4gnX3kStgHb2fP3fWArLAj/PcuzubctkWvNDW+ZE4auHbsyfvB4xg8eD8Dkj00G3gEc2m+B\n/dYEN0d2PAra3gDttkLbbdB2a/C8zQ7g10yeNHnPRyf7b2PT9skhOefcPun2Am4v934OOSD3vIJZ\nm4IYQpbGkbHMzIPTlw4N5tzJpZfOZfLkO3OtR+O/0tbiEcBybyvYXq795FunkMe6Ne813zotf6/5\n5pXaOmmIofBxx/M5Scd7TfN3OZemfoMai8HMcN99Zl0waswWEZG8lChERCQvJQoREclLiUJERPJS\nohARkbyUKEREJC8lChERySu9N9yVkXw3S7Xmem2NNibNoc9J6+U6dqX6fVWiSI1cN/0Ualv7sj0p\nTfqctF4hv69RbK+wVPUkIiJ5KVGIiEheiSQKM5tgZq+b2Ztmdm0SMYiISPPEnijMrC3wU4JOdI8A\nLjSz4XHHUSxqamqSDiFFapIOIEVqkg4gRWqSDqDkJVGiGAsscPeF7r4d+D3w0QTiKApKFNlqkg4g\nRWqSDiBFapIOoOQlkSgGAIuzXi8Jp4mISAolcXlssy407tbtHBrmsW3bFtKmzYlRxCQiIjnEPnCR\nmY0Dqt19Qvj6emCXu9+StUz6RlMSESkCUQxclESiaAe8AZwCLAOmAxe6+2uxBiIiIs0Se9WTu+8w\ns6uAvwBtgbuVJERE0iuVY2aLiEh6pO7O7FK/Gc/MDjKzv5vZPDOba2ZfDqf3MLOnzWy+mT1lZt2z\n1rk+PB6vm9npWdOPMbM54byfJPF+CsHM2prZDDObEr4uy2NhZt3N7A9m9pqZvWpmx5fxsbg+/I7M\nMbP7zKxjuRwLM/ulmdWa2ZysaQV77+GxvD+c/ryZDWoyKHdPzYOgKmoBMBhoD8wEhicdV4HfY19g\nVPi8C0F7zXDgv4FvhNOvBW4Onx8RHof24XFZwJ6S4HRgbPj8z8CEpN9fK4/J14DfAo+Fr8vyWAD3\nAJeHz9sBFeV4LML38zbQMXx9P/CZcjkWwInAaGBO1rSCvXfgP4A7w+efBH7fZExJH5QGB+gDwJNZ\nr68Drks6rojf8yPAqcDrQJ9wWl/g9fD59cC1Wcs/CYwD+gGvZU2/ALgr6ffTivdfCfwVOAmYEk4r\nu2MRJoW3G5lejseiB8EJ1AEECXMKcFo5HYvwRz87URTsvYfLHB8+bwesbCqetFU9ldXNeGY2mODM\n4QWCD0FtOKsW6BM+709wHDIyx6Th9KUU57H6EXANsCtrWjkei4OBlWY22cxeMbNfmNn+lOGxcPc1\nwG3AuwRXRq5z96cpw2ORpZDvfffvrLvvANabWY98O09boiiblnUz6wI8BHzF3Tdmz/Mg1Zf8sTCz\ns4A6d59Bjs73y+VYEJzZjSGoEhgDbCYoUe9WLsfCzIYA/0lwVt0f6GJmF2UvUy7HojFJvPe0JYql\nwEFZrw+iflYsCWbWniBJ/MbdHwkn15pZ33B+P6AunN7wmFQSHJOl4fPs6UujjDsCJwBnm9k7wO+A\nk83sN5TnsVgCLHH3F8PXfyBIHCvK8FgcC/zL3VeHZ7wPE1RLl+OxyCjEd2JJ1joDw221AyrCUlxO\naUsULwFDzWywmXUgaGh5LOGYCsrMDLgbeNXdf5w16zGCBjvCv49kTb/AzDqY2cHAUGC6u68ANoRX\nxhhwcdY6RcHdv+nuB7n7wQR1qH9z94spz2OxAlhsZoeFk04F5hHUz5fVsSCojx9nZvuF7+FU4FXK\n81hkFOI78Wgj2zofeKbJvSfdaNNII85EgoasBcD1SccTwfv7EEF9/ExgRviYQNCA91dgPvAU0D1r\nnW+Gx+N14Iys6ccAc8J5tyf93vbxuIxnz1VPZXksgKOBF4FZBGfRFWV8LL5BkCjnEFwN1r5cjgVB\n6XoZsI2gLeGyQr53oCPwAPAm8DwwuKmYdMOdiIjklbaqJxERSRklChERyUuJQkRE8lKiEBGRvJQo\nREQkLyUKERHJS4lCRETyUqIQEZG8lChEsoSDuky1wODswWNaub27zOyEPPv6h5npeyippg+oSH2f\nBh73wnVZcDwwrbEZ7r4VeBb4WIH2JRIJJQqR+i5kT+dpu5nZIeE4EceGQ05ONrM3zOy3Zna6mT0X\nDlN5XNY6wwn65tnPzP5kZjPDoSk/kbXpx8J9iqRWu6QDEImSmZ0J9AZOJxhC8iPhYxbwhrv/MmvZ\ntsBId5/fYBuHE3TU9hlgIzAEOI+gR9MXgU+6+wfN7GyCDtrOCVedCDxB0OnjUnc/M9xet6zNzyTo\nbl0ktVSikJIVdtl9ibtPBi5193fd/X+AzxN0x/zrBqv0JEgE2XoTdOn8KXfPtFe84+7zwuqpeQS9\negLMJRhsJ+N0gmEn5wCnmdnNZvYhd9+QWSCsfmpjZp328e2KREaJQkrZpcC9sPsHGTPrDvwPcKUH\ng+I01HCkvXXAIoIB7zO2Zj3fRdAddOZ5u3A/nQm6gl7h7m8SDHk7B/iumX27kX2qG2dJLVU9SSlr\nRzDuMmZWSfCD/H2CYTa3mtkwd389a/lVQJcG29gGnAv8xcw2kaNhuhEnAX8L990PWOvuvzWz9cAV\nmYXMrCOwM5PIRNJIiUJK2V3AJ81sIMEZ+05gEvA1goTw2eyF3X2nmc01s8Pd/Y09k/29cHzvpwmq\npxqe/XsjzycSDA4DcCTwAzPLlD7+PWv50TQ/+YgkQgMXiWQxs0uBPu5+yz5u52VgrLvvbGK5m4AX\n3f2P+7I/kSgpUYhkCcdq/yswvoD3UuTaV0eCUkrk+xLZF0oUIiKSl656EhGRvJQoREQkLyUKERHJ\nS4lCRETyUqIQEZG8lChERCQvJQoREclLiUJERPL6/82b7MDSjzzdAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x113539bd0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x113116750>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"do_all(input_sigma=500., doclip=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": { | |
"collapsed": false, | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"102 galaxies selected range from: 315.339284767 to: 9681.80144958\n", | |
"mean: 5086.63405445 and sigma: 2418.27994001\n", | |
"108 galaxies selected range from: 16.1070503215 to: 9681.80144958\n", | |
"mean: 4812.09505155 and sigma: 2608.64517272\n", | |
"108 galaxies selected range from: 16.1070503215 to: 9681.80144958\n", | |
"mean: 4812.09505155 and sigma: 2608.64517272\n", | |
"5250.0 280.0 0.0740740740741 -991.49851304\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEKCAYAAADjDHn2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVMW5x/Hvy4CAoIKIS1hEDRpRcUcwVxmXqyNueKNR\nXAFREsRs3qtiYoJGc8W4X0QRQRCMiAaUuCGRTCSiKIqismPYUVEjImBYpu4fdUaaZobZ+nT16f59\nnqef6T5d0/0WM/Q7Ve+pOuacQ0REZEfqhQ5ARERyn5KFiIhUSclCRESqpGQhIiJVUrIQEZEqKVmI\niEiVlCwkMcyszMz2r+X3LjazUyp57gQzm5vW9uTo/k1mNqx2Edc4xvPMbJmZrTWzw7PxniLVpWQh\nsYo+eNdHH4CfmNljZtYkQCguum3/hHNTnXM/SGtb/twfnHNXAZhZuyhhxfX/5i6gn3NuF+fc+zG9\nh0itKFlI3BxwlnNuF+Ao4BjgN+mNzKx+tgOrA8v4C5oZ0BaYnenXFskEJQvJGufcSuBl4BD4blqp\nn5ktAOZFx64yswVm9oWZPWdm+6S9zJlmtsjMVpvZndGHLGZ2gJlNMbPPo+fGmNluad/bycw+MrMv\nzWyEmTWMvrfYzJZVFLOZDTSz0dHD16KvX5nZ12Z2YhTnoSnt9zSzdWbWooLXMjP7TTTa+tTMRpnZ\nrlEca4Ei4P3o36OiWMrM7KfRv8/XZnZr1O83zOwrMxtrZg1S2p9lZu+Z2b/M7HUzOyzluRvNbGH0\nOh+ZWfeU53qa2T/M7I/Rv9XHZlZSUUxSOJQsJBvKP9DbAGcAM1OeOxc4FugQ1Qn+AFwA7AMsAcam\nvVZ34Gj8KOVcoHfKc7dH33cw0AYYmBbDxcBpwAHAgVQwwqlA6tTVCdHX3ZxzuzrnXoviuzSlTQ/g\nr865Lyp4rV7AFUAxsD/QFBjsnPu3c65p1Kajc679DuI5DTgS6AzcAAyL3rMtcFh0HzM7EhgOXAXs\nDgwFJqYkk4XAfzjndgVuAcaY2V4p79MJmAu0AO6MXksKmXNON91iuwGL8X81/yu6PxhoGD1XBhSn\ntB0O3JHyuAmwEWib0v60lOd/iv9gruh9uwPvpjz+J3B1yuMzgIXR/WJgWVrbk6P7A4HR0f12UQz1\nUtoeByxJeTwDOL+SmF4FfpLy+MCof/VS+rf/Dv4ty4Auae/1PymP7wLuje4/BNya9v1zgRMree2Z\nwDnR/Z7AgpTndo7ee8/Qv0+6hbslaZ5YkskB5zrnplTyfOr0zz74D0D/jc6tM7MvgFbA0graLwW+\nBxD9VXw/8B/ALvhR85c7eK/vvrcunHPTzWyDmRUDn+BHLRMraV4+WkqNoT6wF7Cqmm/5acr9DWmP\nvwX2jO7vC1xuZtemPN8gigEzuxz4JT4Bgh/lpE6dfVJ+xzm3Pprtawp8Vs04Jc9oGkpCS53mWcnW\nDy+is6ZaACtS2rRNu1/+3B+ALcChzrndgMvY/vc7/XtX1iHWVKPwU1GXAU875zZW0m6b/kUxbGbb\nD/y6SI1vKXC7c655yq2pc+4pM9sXeAS4BtjdOdcc+JAYCveSP5QsJJc8CfQys8Ojou8fgDedc0tT\n2vy3mTWL6h8/A56KjjcF1gFfm1kr4H/SXtuAa8yslZntDvya7eshVVmNn445IO34GOC/gEuAx6vo\n3y+jU3CbRv0b65wrq2EcqSztfvnjYcBPzKxTVFhvYmZnRu/bBJ9YPgfqmVkv4FBEdkDJQkLa5i91\n59yrwM3An/F/he8HXJT2Pc8B7+Dn2J8HRkTHb8EXvdcAf4leI/X1HfAE8AqwCFgA3FZZLGnHXRTf\nenwR/fXoDKNO0fFlwLtAmXPuHzvo7whgNP6sqo+B9UDqNFFVF5ep6Pn0PpbH+g6+uD0YPx23ALg8\nem42cDfwBn666VDgHxW9Tg1ikzxnzsX7O2BmI4Azgc+cc4dV0uYBfMFxPdDTOTezonYiucrMhgMr\nnHO/DR2LSByyMbJ4DKj0HG0z6wZ83/nTBa/Gn8Uhkhhm1g4/DaXTSyVvxZ4snHNT8adNVuYcfIEQ\n59x0oFna+d4iOcvMfg98ANzpnFtSVXuRpMqFmkUrtj2lcTnQOlAsIjXinLvZ+b2c/jd0LCJxyoVk\nAdufsqdimohIDsmFRXkr8FszlGvNtufVA2BmSiAiIrXgnKvzGppcGFlMJDqlz8w6A1855ypcpBR6\nuXuct9/97nfBY1D/1Lfq9u+zzxy9ejm+9z3HmDGOjRt3/Bpff+24+27fvl8/x/r14ftVKD+/TIk9\nWZjZk8A04CDzF3bpbWZ9zawvgHPuReBjM1uI3+ysX9wxidTVwIGhIwjn7bfhiCOgWTOYMwcuuQQa\nNNjx9+yyC/zqVzB7NnzxBXTqBB9+mJ14JTNin4ZyzvWoRpv+ccchInU3YQJcfTUMHw7nnFPz799t\nN3jySRg5Ek46yd8/9dSMhykxyIVpKAGKi4tDhxCrfOtf6sgi3/qWrrx/Dz0E114LL79cu0RRzgx6\n9YLx4+Hii/3rhZTvP79MiX0Fd6aYmUtKrCL55qmn4LrrYOpU2G+/zL3utGnQvbsfqZx9duZeV7Yy\nM1yeFLhFEqeQahavvupHFC++mNlEAXD88fD889C7N8yYUXV7CUfJQkQqNWsW9OgBTz8NHTvG8x6d\nOsHQoXDeebCqulf1kKzTNJSIVGjtWjjmGLj5Zrj00qrb19Wtt/rRS2kpNGoU//sVikxNQylZiMh2\nnIPLLvMf2o8+mp33LCuDCy+EFi3g4Yez856FQDULkYDyvWYxciTMnAkPPJC996xXzxe6J02CF17I\n3vtK9ShZiMg25s+H66+HceNg552z+9677uoT1VVXweefZ/e9Zcc0DSUi3ykrg5NP9qez/uIX4eK4\n7jpYssQX1k1XBq8TTUOJSMaNGAHr1/tTZUO6/XaYOxfG1vQq6RIbJQuRWsjHmsWqVTBggC9oFxWF\njaVRI3jkET/C+PrrsLGIp2QhIgD87Gd+36e41lPU1PHHQ0lJfibmJFLNQkSYMgX69IGPPoLGjUNH\ns9Xq1XDIIX4V+WGHhY4mmVSzEJGM2LIFfvlLGDQotxIFQMuWcMstcM01fu2HhKNkIVIL+TQ1MnKk\nP2X1/PNDR1Kxq6+Gb76BZ54JHUlhU7IQKWBr1/rtPO65J3dPUS0qgjvvhJtugk2bQkdTuFSzEClg\nv/kNLF0Kjz8eOpKqnX66X//x05+GjiRZtDeUiNTJp59Chw7w3nvQpk3oaKo2cyZ06wYLFkDTpqGj\nSQ4VuEUCyoeaxaBB/vrZSUgUAEce6VeX33NP6EgKU+zX4BaR3LNyJYwaBR9+GDqSmrntNr9t+jXX\n+N1pJXs0DSVSgPr396uk77ordCQ1d/XVsNde8Pvfh44kGVSzEJFaWbrUT+nMnevXMSTNP/8Jxx7r\naxfNm4eOJvepZiESUJJrFnfc4f86T2KiAH8d8HPPhfvvDx1JYVHNQqSAfPKJ38l17tzQkdTNTTfB\nccf5lee77RY6msKgaSiRAjJggF+IN3hw6Ejq7oor4Pvf94sKpXKqWYhIjaxZA/vvD++8A+3ahY6m\n7ubNgxNOgMWLs39FvyRRzUIkoCTWLIYM8Yva8iFRABx0EPzwh/DYY6EjKQxKFiIFYMMGXxC+4YbQ\nkWTW9dfD3XfD5s2hI8l/ShYitZC0kcXjj/vTTQ89NHQkmdWlC3zvezB+fOhI8p+ShUieKyuDe+/1\nlyjNR9df73elVUkzXkoWIrWQpJHFyy/7ixp17Ro6knicdRasWwd/+1voSPKbkoVInrv3XvjFL3L3\nehV1Va+eHzVpg8F46dRZkTz2wQdw2mn+9NKGDUNHE58NG6BtW5g2Ddq3Dx1NbtGpsyJSpfvug379\n8jtRgJ9m69MnPxYb5iqNLERqYeDA3K9brF4NBx4I8+cndx+omli2DA4/3I+idt01dDS5QyMLEdmh\nRx+F884rjEQB/iJO//mfWqQXl9hHFmZWAtwHFAGPOucGpT2/BzAG2Bu/seFdzrmRFbyORhYi1bRl\ni9/aY/x4OPro0NFkz7RpcPnlfiuQoqLQ0eSGRIwszKwIGAyUAB2AHmZ2cFqz/sBM59wRQDFwt5lp\nN1yROnj+edhnn8JKFOAX6TVvDi+9FDqS/BP3NFQnYKFzbrFzbhMwFjg3rc0qoHyGcVfgC+ecFu9L\nTsv1esWDD/pLjxYaM9/vIUNCR5J/4k4WrYBlKY+XR8dSDQMOMbOVwPvAz2OOSSSvzZ8P770HF1wQ\nOpIwLrwQ3noLFi0KHUl+iXu6pzpFhpuA95xzxWZ2ADDZzA53zq1Nbzgw5c+54uJiiouLMxWnSI3k\n8shiyBC48kp/je1C1Lgx9OwJQ4f6bUAKTWlpKaWlpRl/3VgL3GbWGRjonCuJHg8AylKL3Gb2InC7\nc+716PGrwA3OuRlpr6UCt0gV1q/3ZwW9+y7su2/oaMJZuBCOP95fb7xQk2a5RBS4gRlAezNrZ2Y7\nARcCE9PazAVOBTCzvYCDgI9jjkukTnJ1ZDFuHHTuXNiJAvwV9I46Cp5+OnQk+SPWZBEVqvsDk4DZ\nwFPOuTlm1tfM+kbN/gAcY2bvA38FrnfOfRlnXCL5auhQ6Nu36naFoF8/FbozSSu4RfLErFn+SniL\nF0N9nXzOli2w337w3HNw5JGhowknKdNQIpIljzziC9tKFF5Rkd8vatiw0JHkB40sRGoh1/aGWrfO\nF7bfe8/vvireihVw2GF+36gmTUJHE4ZGFiLynXHj/Nk/ShTbatUKTjgBxo4NHUnyaWQhkge6dIEB\nA+Ccc0JHknteeAFuvRWmTw8dSRgaWYgIALNnw5Ilvrgt2yspgVWr/BSd1J6ShUgt5FK9YvhwuOIK\nFbYro0J3ZihZiCTYxo0wejT07h06ktzWuzc8+aRf4S61o2QhUgu5MrKYOBE6dNB1p6vSurWv6zzz\nTOhIkkvJQiTBhg/3UyxStT59/NUDpXaULERqIRdGFsuW+a24f/Sj0JEkw1ln+e3b588PHUkyKVmI\nJNTIkf7aDY0bh44kGRo08JdcHT48dCTJpHUWIglUVuZ3Vh03Do45JnQ0yTFvHhQX+63LGzQIHU12\naJ2FSAF77TW/fUWhXWO7rg46yJ8M8MILoSNJHiULkVoIXbN47DHo1ctfc1pq5sorVeiuDSULkYRZ\nu9Zvu33ppaEjSabzz4dp02DlytCRJIuShUgthBxZjBsHJ50Ee+4ZLoYka9LEJ4zRo0NHkixKFiIJ\nM2KEn4KS2uvd2/876pyZ6lOyEKmFUCOL+fNh0SI444ww758vjjvO7xk1bVroSJJDyUIkQUaOhEsu\nKZzTPuNi5kcXWnNRfVpnIZIQW7ZAu3bw4ov+6m9SN59+Cj/4gV9zscsuoaOJj9ZZiBSYKVN8UVuJ\nIjP22gu6doWnnw4dSTIoWYjUQoiaxciR0LNn9t83n/Xq5desSNWULEQSYM0av+q4R4/QkeSXbt1g\nwQJ/kx1TshCphWyPLJ5+Gk4+GfbYI7vvm+8aNPAnDIwcGTqS3KdkIZIAmoKKT69eMGqUP4FAKqdk\nIVIL2RxZLFzop0m0tiIehx4K++wDkyeHjiS3KVmI5LjHH/e1Cq2tiI8K3VXTOguRHFZWBvvvDxMm\nwJFHho4mf/3rX7DffvDxx7D77qGjySytsxApAK+9BrvuCkccETqS/Na8OZSUwJNPho4kdylZiNRC\ntmoWo0bBFVfouhXZoKmoHVOyEMlR69bBs8/6Uzslfqee6rcA+eCD0JHkJiULkVrIxshi/Hg4/njY\ne+/430v8LrSXX67RRWWULERyVPkUlGRPz57wxBOwaVPoSHKPkoVILcQ9sli2DGbOhHPOifd9ZFvt\n28OBB/qtVWRbShYiOWj0aLjgAmjUKHQkhUeF7orFvs7CzEqA+4Ai4FHn3KAK2hQD9wINgM+dc8UV\ntNE6CykIzvnrLIwcCV26hI6m8KxdC23bwty5fhvzpEvEOgszKwIGAyVAB6CHmR2c1qYZ8CBwtnPu\nUOD8OGMSyXVvvukTRufOoSMpTLvsAt27w5gxoSPJLXFPQ3UCFjrnFjvnNgFjgXPT2lwM/Nk5txzA\nOfd5zDGJ1FmcNQutrQivVy8YMcInbfHiThatgGUpj5dHx1K1B3Y3s7+Z2QwzuyzmmERy1rff+u3I\nL9P/gqBOOAE2boS33w4dSe6IO1lUJy83AI4CugGnAzebWftYoxKpo7hGFhMn+j2g2raN5/Wlesz8\nabQqdG9VP+bXXwG0SXncBj+6SLUMX9TeAGwws9eAw4Htrl01MOV/aHFxMcXFxRkOVyQsra3IHZdf\nDocfDvfcA40bh46m+kpLSyktLc3468Z6NpSZ1QfmAacAK4G3gB7OuTkpbX6AL4KfDjQEpgMXOudm\np72WzoaSnDFwYOZHF6tWQYcOsHw5NGmS2deW2ikp8Unj4otDR1J7iTgbyjm3GegPTAJmA0855+aY\nWV8z6xu1mQu8DMzCJ4ph6YlCpBA88QScd54SRS4pL3SLrmchkhOcg44dYfBg6No1dDRS7ttvoXVr\nmDED2rULHU3tJGJkISLV8+67fpfZE04IHYmkatTIT0Gp0K1kIVIrma5XjBzpC9v19D8y51x5pU8W\nW7aEjiQs/WqKBPbvf8PYsb6QKrnn8MOhZUt49dXQkYSlZCFSC5kcWbzwAhxyiL8GtOSmK6+E4cND\nRxGWCtwigZ1zjj8Lqlev0JFIZb76yhe4Fy2CFi1CR1MzKnCLBJSpkcUnn8DUqX47csldzZrBmWf6\n05sLlZKFSEBjxvgdTps2DR2JVKVPH3j00cLdXFDTUCKBOAeHHQZDhsCJJ4aORqpSVuavovenP0Gn\nTqGjqT5NQ4kk3IwZftGX1lYkQ716vtD96KOhIwlDyUKkFjJRs3jsMb+zqa5bkRw9e8Izz8A334SO\nJPuULEQC+PZbeOopra1Imn328VOGTz0VOpLsU7IQqYW6jiyefRaOOkrXrUii8kJ3oVGyEAlgxAg/\n/y3JU1ICS5fChx+GjiS7lCxEaqEuI4slS/zGgd27ZywcyaL69aF3bxg2LHQk2aVkIZJlI0dCjx5+\nR1NJpj59/AK9DRtCR5I9WmchkkVlZbD//jBhgr/WtiRXt25w0UW5f5JC1tZZmFkLM2uSduwEM9Pf\nRSI1NGUKNG+uRJEP+vaFoUNDR5E91ZmGmg3cl3ZsFdAv8+GIJENtaxbDh6uwnS/OPBMWLy6cQnd1\nksUQ59xVqQeccwuBBC14Fwnvyy/hpZf8ldck+erX94n/kUdCR5IdVdYszOyHwJnAg865FdGxesB7\nzrmO8Yf4XRyqWUii3X8/TJ/u9xaS/LB0qZ9SXLYMdt45dDQVy1rNwjn3OvBn4GEze93MbsKPKmbX\n9c1FCoVzfiHXVVdV3VaSo21b6NKlMFZ0V+vUWefcO865s4H/AlYCA4ElMcYlktNqWrOYPt1v8VFc\nHEc0ElK/fn7n4HxXo3UWzrlPnXMjnXMlwGsxxSSSd4YN8+fma9PA/HP66fD55/D226EjiZfWWYjE\n7Ouv/XTF3Lmw996ho5E4DBoE8+b5bVxyTaZqFkoWIjEbOhQmTYLx40NHInFZvRrat4ePP4bddw8d\nzbZ08SORgGpSsxg2TIXtfNeyJZx1FowaFTqS+ChZiMRoxgw/n33aaaEjkbj16wcPPeS3dMlHShYi\ntVDdkcXQoXD11VBUFGs4kgO6dIEmTWDy5NCRxEM1C5GYrFkD7drBnDkqbBeK4cN9beqFF0JHspVq\nFiIBVWdk8cQTcOqpShSF5OKL4a23YOHC0JFknpKFSAycg4cfhp/8JHQkkk2NG/v9oh58MHQkmadp\nKJEYvPEGXHGFX1tRT3+SFZQlS/z11ZcsgaZNQ0ejaSiRnPbww76wrURRePbdF7p2hdGjQ0eSWfpV\nFqmFHdUsVq+GiRP9dZqlMF17LTzwQH6dRqtkIZJhw4fDeefl3kpeyZ7iYthpJ3jlldCRZI5qFiIZ\ntGULHHAA/PnPcPTRoaORkEaN8tcumTQpbByJqVmYWYmZzTWzBWZ2ww7aHWtmm83sv+KOSSQuL7zg\nT5VVopCLLoJZs/LnsquxJgszKwIGAyVAB6CHmR1cSbtBwMuANnGWnFdZzeLBB/22DyING/rfhfvu\nCx1JZsQ9sugELHTOLXbObQLGAudW0O5a4BlgdczxiMRm/nyYORN+/OPQkUiu+MlP/JTkZ5+FjqTu\n4k4WrYBlKY+XR8e+Y2at8AnkoeiQChOS8yoaWQwe7BdkNWqU9XAkR7VsCeef70+lTrr6Mb9+dT74\n7wNudM45MzM0DSUJtGYNjBnj56hFUv32t/7Eh6SLO1msANqkPG6DH12kOhoY6/MEewBnmNkm59zE\n9BcbmPLnXHFxMcW6oLEEMnDgtqOLxx7z25C3bh0qIslVbdpU3SaTSktLKS0tzfjrxnrqrJnVB+YB\npwArgbeAHs65OZW0fwz4i3Nuu2uK6dRZySWpyWLLFjjwQD+y6NIlZFQi28vUqbOxjiycc5vNrD8w\nCSgChjvn5phZ3+j5oXG+v0hcUkcVzz8PLVpA587BwhGJnRblidTRySdDnz5+e2qRXJOYRXki+ah8\nZDFrFsyb5894EclnShYidXD33X7TuJ12Ch2JSLw0DSVSS8uXQ8eOsGgRNG8eOhqRimkaSiSwBx6A\nyy9XopDCEPc6C5G8NGCA34r8nXdCRyKSHRpZiNTCu+/6RXjt2oWORCQ7NLIQqaFNm2DOHBi/3dJR\nkfylkYVIDT3xhF+xfcwxoSMRyR4lC5Ea2LIF7rgDWrWquq1IPlGyEKmBZ5+F3XZTrUIKj9ZZiFST\nc3DssXDzzXBuRZfwEslBWmchkmWTJ8OGDXD22aEjEck+JQuRarr9drjxRqhXr/JrcIvkKyULkWoo\nLYWVK6FHj9CRiIShmoVINRQXQ69ecMUVoSMRqRnVLESypLTUbxp4ySWhIxEJR8lCpAq33OLPgKqf\nst+BahZSaJQsRHbg73+HZcs0qhBRzUKkEs7BiSf6S6aqViFJpZqFSMxeegm+/BIuvTR0JCLhKVmI\nVKCsDG66CW67DYqKtn9eNQspNEoWIhUYNw4aNoTu3UNHIpIbVLMQSbNpE3ToAA8/DKecEjoakbpR\nzUIkJsOHw777KlGIpFKyEEnx9dd+XcUf/7jjdqpZSKFRshBJcccdcPrpcOSRoSMRyS2qWYhEliyB\no46CWbN0JTzJH6pZiGTYTTfBNdcoUYhURMlCBHjzTb9h4PXXV6+9ahZSaJQspOBt2QL9+8OgQdC0\naehoRHKTahZS8B55BEaPhtdeA6vzzK5IbslUzULJQgraF1/4BXiTJsERR4SORiTzVOAWyYCbb4YL\nLqh5olDNQgpN/aqbiOSnN9+ECRNg9uzQkYjkPk1DSUHatMmvqfj1r+Gii0JHIxIfTUOJ1MFdd0Gb\nNnDhhaEjEUmGrCQLMysxs7lmtsDMbqjg+UvM7H0zm2Vmr5tZx2zEJYVpwQK4+24YMqT2Zz+pZiGF\nJvZkYWZFwGCgBOgA9DCzg9OafQyc6JzrCPweeCTuuKQwlZXB1Vf71drt2oWORiQ5Yq9ZmFkX4HfO\nuZLo8Y0Azrk7KmnfHPjAOdc67bhqFlJnDzwAY8fC1KkVXwFPJN9kqmaRjbOhWgHLUh4vB47bQfsr\ngRdjjUgK0rx5cOut8MYbShQiNZWNZFHt4YCZnQT0Bn5Y0fMDUyaKi4uLKS4urmNoUig2b4aePX2t\noX37ur/ewIGqW0huKi0tpbS0NOOvm41pqM7AwJRpqAFAmXNuUFq7jsB4oMQ5t7CC19E0lNTa7bfD\nlCkweTLUy0ClTslCkiIx232YWX1gHnAKsBJ4C+jhnJuT0qYtMAW41Dn3ZiWvo2QhtTJtGpx3Hrzz\nDrRuXXV7kXySmJqFc26zmfUHJgFFwHDn3Bwz6xs9PxT4LdAceMj8uYybnHOd4o5N8t9XX8HFF/vN\nApUoRGpPK7glbzkHP/4x7L03/N//Zfa1NQ0lSZGYkYVIKEOG+AV4o0eHjkQk+TSykLw0bRp07+6/\nfv/7oaMRCUd7Q4lU4pNP/PTTY48pUYhkipKF5JWNG32i6NMHzjwzvvdRvUIKjZKF5A3noF8/aNYM\nfvvb0NGI5BfVLCRv3HknPPmk3/epadPQ0YjkBp0NJZJi/Hi/SeCbbypRiMRB01CSeFOnQt++8Nxz\n2Vt4p5qFFBolC0m0996DH/0I/vQnOPro0NGI5C/VLCSxFi6Erl3h/vvh/PNDRyOSmwpynYXZ9rfK\npgMGDlT7fG7/85/7rcZXroQLLggfj9qrfS63zwSNLCRxPv4YTjoJbrjBnyobgvaGkqQoyJGFyKJF\n4ROFSCHSyEIS4/33oVs3v+Cub9/Q0Ygkg9ZZSEF57TVfxB482G/nISLZpWkoyXnPPLP19NhcSRSq\nV0ih0chCcpZzcNttMGwYvPIKHHlk6IhECpdqFpKT1q2Dq67yBe1nn4V99gkdkUgy6WwoyVtz58Jx\nx0H9+lBaqkQhkguULCSnjB0LJ5zgF92NGgWNG4eOqGKqWUihUc1CcsJXX8G118L06TBpEhx1VOiI\nRCSVRhYS3JQpcPjhsOuuMHNmMhKFRhZSaDSykGC++AL++799snj4YTjjjNARiUhlNLKQrCsrgxEj\n4JBDYLfd4MMPk5coNLKQQqORhWTV1Knwi19Ao0bw/PNwzDGhIxKR6tA6C8mK99+Hm2/2XwcNggsv\n9Fsqi0i8tM5CEuH9931iKCmBU06BefPgoouUKESSRslCMs45v5iuWzdfizjmGH9Vu5//3E8/5QPV\nLKTQqGYhGfPNNzBmjN8ZdssWuO46mDABGjYMHZmI1JVqFlInzsHrr/uzmyZMgOJi6N8fTj5ZU00i\nuSBTNQslC6kx5/ziuaee8redd4ZeveCyy2DvvUNHJyKpdPEjyapvv/UXIPrLX2DiRGjQwF9b4rnn\noGPHwhtF6BrcUmiULKRCmzf70cPf/w5//aufajrsMDj7bHjpJTj44MJLECKFTNNQAsDq1TBjBrzx\nBrz5pt9p85jMAAAGl0lEQVTQr00bOPFEOPVUX4No1ix0lCJSU6pZSK1s3AgLFsBHH8EHH8CsWfDu\nu7B2LRx9NHTuvPXWsmXoaEWkrhKTLMysBLgPKAIedc4NqqDNA8AZwHqgp3NuZgVtlCyq6ZtvYMkS\nWLwY/vlPv8Zh4UKYPx+WLoW2beHQQ/200mGH+V1e99tP00o1oZqFJEUiCtxmVgQMBk4FVgBvm9lE\n59yclDbdgO8759qb2XHAQ0DnOOPKRaWlpRQXF1f6/JYt8K9/weefw2efbb2tWuVvK1fC8uX+tmED\n7LsvtGvnk8ABB0DXrnDQQf5+iHUPVfUvyfK5b6D+iRd3gbsTsNA5txjAzMYC5wJzUtqcA4wCcM5N\nN7NmZraXc+7TmGOLlXOwaZP/4N6wAdav91/Xrdt6++Ybf1u7FiZOLOX554tZswbWrPEXA/rqK/jy\nS58k1qzxO7TusQfsuae/tWzpLznaqZP/2rq1rzO0aJF7o4R8+w+ZOqrIt76lU/8E4k8WrYBlKY+X\nA8dVo01rIFiyGDbMF3o3b/a3TZu23jZu3Pb+v/+9/e3bb/3XevX8ZUEbN/ZrEXbe2d9v2hSaNPFf\ny29lZX6NQvv2vpDcrJlPDi1awO67+8dFRaH+RUSk0MWdLKpbZEj/OzhocWL//f0Hff36/tagwdbb\nTjttvd+woX+8005+z6OGDf2t/H79GvzrDhzoLwQkyaCahRSaWAvcZtYZGOicK4keDwDKUovcZvYw\nUOqcGxs9ngt0TZ+GMjNVt0VEaiHnC9zADKC9mbUDVgIXAj3S2kwE+gNjo+TyVUX1ikx0VkREaifW\nZOGc22xm/YFJ+FNnhzvn5phZ3+j5oc65F82sm5ktBNYBveKMSUREai4xi/JERCSc4Bc/MrMiM5tp\nZn9JO36dmZWZ2e4pxwaY2QIzm2tmp6UcP9rMPoieuz+b8Velov6Z2bVmNsfMPjSz1PpNovqX3jcz\n62Rmb0XH3jazY1PaJq1vi81sVtSXt6Jju5vZZDObb2avmFmzlPb50L8/Rr+X75vZeDPbLaV94vuX\n8lziP1sq61+sny3OuaA34FfAE8DElGNtgJeBfwK7R8c6AO8BDYB2wEK2jozeAjpF918ESkL3q7L+\nAScBk4EG0eOWSe1fBX0rBU6P7p8B/C3Bffvudy/l2J3A9dH9G4A78qx//wnUi+7fkW/9i47nxWdL\nJT+/WD9bgo4szKw10A14lG1Pn70HuD6t+bnAk865Tc4v8lsIHGdm+wC7OOfKs+vjQPdYA6+mSvr3\nU+B/nXObAJxzq6PjiepfJX1bBZT/NdoMv2ofEta3FOknVXy3gDT6Wh5rXvTPOTfZOVcWPZyOX+8E\nedK/SF58tkTS+xfrZ0voaah7gf8Byn9BMbNzgeXOuVlpbb+HX7BXbjl+QV/68RXR8VywXf+A9sCJ\nZvammZWa2THR8aT1r6K+3QjcbWZLgT8CA6LjSesb+LU+fzWzGWZ2VXQsdWeBT4G9ovv50r9UvfF/\naUKe9C/PPlsq+vnF+tkS7HoWZnYW8JlzbqaZFUfHdgZuwg+Hv2saILw6q6h/kfpAc+dc52hOfxyw\nf4gYa2sHfRsO/Mw5N8HMLgBGsO3PMkl+6JxbZWYtgcnm1/98xznnLNlrf7brn3NuKoCZ/RrY6Jz7\nU9gQ66Sin98A4LSUNon8bIlU1L9YP1tCXvzoeOAc8xsJNgJ2xQ+D2gHvm9/cqDXwjvkNBlfg5xvL\ntcZnxRVsHS6XH19BeNv1z8xG42MeD+CcezsqtO1BsvpXWd86OedOjdo8g5+igmT1DQDn3Kro62oz\nm4Df5+xTM9vbOfdJNIT/LGqeL/2bamY98dOLp6Q0z4f+dQX2Iz8+Wyr7+cX72RK6UBMVVroCf9lR\nEYetRZqd8D/0RWwt0kzH7zll5FARqqL+AX2BW6L7BwJLk9y/tL69i199D/7D5u0k9g3YGT+XC9AE\neB3/F+mdwA3R8RvZvgCc9P6VAB8Be6S1z4v+pbVJ7GfLDn5+sX625NJlVSsa0n93zDk328zGAbOB\nzUA/F/UW6AeMBBoDLzrnXo451tooj3UEMMLMPgA2ApdD4vtXHufVwINm1hDYED1OYt/2AiZEf4HW\nB55wzr1iZjOAcWZ2JbAY+DHkVf8W4D9QJkfPveGc65cv/Utrk+TPlsp+fg2I8bNFi/JERKRKoc+G\nEhGRBFCyEBGRKilZiIhIlZQsRESkSkoWIiJSJSULERGpkpKFiIhUSclCRESq9P+ITJ7H+VB9GQAA\nAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x111d40dd0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEfCAYAAACAm/v/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHbNJREFUeJzt3Xm4XHWZ4PHvSxIIayACAUkQZBNka2DYkQCK0MOm0wpK\n27TL022DzvS0Du5Pbo+twDg44KN296goIrKMtiytrMJVGsSwShKMECAsCUHWEBZDlnf+OOdyK8W9\nya1K1a1Tt76f5znPPfU721t3e+v3e88SmYkkSc1Yp9MBSJK6l0lEktQ0k4gkqWkmEUlS00wikqSm\nmUQkSU0ziUiSmmYSkSQ1zSSinhQR8yPiqHZsGxGzI+IdNeseWd/ebhGxS0TcGxEvRsQnRuOY6k3j\nOx2ANFIRMR/YElgBvAxcA3wiM19uYndZTs1Y7baZuXvdukO1D7yfj2TmTU3GsTpnAr/MzL3bsG/p\ndfZE1E0SOC4zNwb2AfYDvli/UkR0y4ejBKJN+34LcH+b9i29ziSirpSZC4FrgbfD68NGZ0bEfcCS\niFgnInaNiP6IeL4cSjq+bjf7R8SciHguIi6IiPUGFkTEZyNiXjkcNCciTmpg29eHsGrVDW1dBGwL\nXB0RS8rYf1K3/jci4ryh3v/q3ltE3ARMB75Zxr/jmr6fUrNMIuo2ARAR04BjgXtqlp1Stm0KjAOu\npkg0WwCfBC6OiJ1q9vNB4GhgB2BnVu3VzAMOzcxNgH8EfhQRU0a47XBDXbVDWx8CHmOwZ/VD4JiI\nmFS+v/HAycCFb/gGREwY5r3tXO77SOAW4IzM3CQz5w0Tj7TWTCLqJgFcERHPU/yT7Ae+Wi5L4BuZ\nuSAzlwIHAhtm5tmZuTwzbwb+neKf/8D63yzXfx74CvCBgQNl5k8yc1E5fznwILD/SLZtRnmsW4D3\nlU3HAE9n5j1DrD7ce6uPYdihsojYOSIuj4iby57Q1RHx8bV5D+pN3TJ2LEHxz/vE1RSiH6+Zf3Pd\na4BHy/ah1n+sdllE/BXw34HtyqaNgM1Hsu1auBD4OPBd4C+Bi4ZZb7j3tk1d25A9ooiYDPwL8OeZ\n+aeIuAI4LTMXNxu4epc9EY0ltf80FwLTIqL20/hbgAU1r7etm18IEBFvAf4vcAYwOTM3A2az6if7\nIbddi3gBrgT2jIjdgf8MXDzMdsO9tydGeNwzgG9l5p/K1+sBr4xwW2kVJhGNVbdT/GM8MyImRMR0\n4Djg0nJ5AGdExDblJ/Mv1CzbkOIf/DPAOhHxYaD29NzVbduIpyhqKgBk5qvAT4EfA7/NzOGSwpre\nW22cQ9mY8sytiHg7MCczlzURv2QS0dhU/lM8nqLQ/jTwTeBDmfnAwCoUn/SvBx6iqHn8U7nt/cC5\nwG+ARRQJ5D9qdz/ctg06C/hieYbVP5RtF5bHG24oayTvrTbOofwzcHRE/BfgncBnm4hdAiB8PK5U\nHeVZZ3OBKZn5UqfjkdbEnohUERGxDvAp4BITiLqFZ2dJFRARG1LUSB6hOL1X6goOZ0mSmuZwliSp\naV09nBURdqMkqQmZ2ZKbf3Z9TyQzKz/NmDGj4zEYp3EapzEOTK3U9UmkVfr6Oh2BJHUfk4gkqWkm\nkVI7eyLTp09v385byDhbyzhbqxvi7IYYW62rT/GNiOzm+CWpEyKCtLDeWtZEJKlxlU4iEXFMRMyN\niAcj4jOdjkeStKrKDmdFxDjgDxR3GV0A3AF8IDN/X7OOw1mS1KBeGc7aH5iXmfOzuPX1pcCJHY5J\nklSjyklkG1Z9BOgTvPHxny1TxZrI0qWwaBE8/DA89BA89RS89BKsXNnpyCSpUOUkMqJxqoi+mqmf\niOETQl8fRLxxqtr6U6fCllvCJpvAXnvBO98J73oXvPWtsPHGMG7cqusfdBB861vw61/D4sWtj8f1\nXd/1u3v9/v5++vr6Xp9aqco1kQOBvsw8pnz9OWBlZp5Ts05X10SefhouugguvBAWLiwSxcEHF4lj\n551hiy1gnSHS/MqV8PzzMH8+PPJIMc2bB/fdB7Nnw+abw957wwEHFPvbbz/YYINRf3uSKqqVNZEq\nJ5HxFIX1o4CFwEzGSGH9ySfh7LOLBHL88fDhD8NhhxU9jLW1cmUx9HXPPXD77fCb3xTJZbfdioRy\n0EHF12nTik8pknpPTyQRgIg4FjgPGAd8LzPPqlvesiTS19f+usjy5XDeeXDWWXDaaXDmmbDVVu09\nJsCf/gR33VUklNtuK6Zx44pkcsghxbT33jBhQvtjkdR5rUwilb4VfGZeA1zT6ThaYd48OOUUmDQJ\nZs6EHXYYvWNPnDiYLAAyiyGw226DW2+FCy4oXu+77+B6Bx0Em202ejFK6k6V7omsSbcMZ117bdHz\n+NKX4IwzqjmMtHhxMfx1661Fcpk5sxjyOuSQwbrKrru2ZshNUmf1zHDWmnRDEvnOd2DGDLj8cjj0\n0E5HM3LLlxe1lFtvLYbB7ryzKP7vtVeRUPbdt/i6yy4mFqnbmERKVa+JfPvbcM45cOONsNNOrd13\nJyxeXBTs77yzqLHceWdxHcteexXT298+OG2+eaejlTScnqmJdLMLLoCvfQ36+2H77TsdTWtMmgTT\npxfTgBdeKBLLrFlw771w8cUwZw6st96qSWW33WDHHWHrras5nCepOfZE2uCmm+ADHygu/ttll05H\nM/oyi6GvOXOK61bmzIG5c4tTj5csKS6a3HHH4uSCHXccnJ861TPEpNHgcFapiknkgQeK2sdll8ER\nR3Q6mupZsqRIJg89VJyxNm/e4PyiRcUw2LbbFkX9adNWnd9mm+JKfhONtHZMIqWq1UReew0OPBA+\n+tHiLCw1Zvny4kLMxx8fnB57bHB+4UJ45pnidjBTphTX2Az1dcoUeNObimmDDRw+k+pZE6moL32p\n+MR8+umdjqQ7jR8/2OsYzsqV8Oyzxc0oFy0a/LpoUTFsNtD23HPFeitWFMlk8uTBxDIwP3kybLpp\nkZSGm+z1SKtnT6RF+vvh1FOL4vIWW3Q6Gg149dUioQwklfqvixfDiy8OTvWvJ0wYTCiTJhU3wNxg\ng2LacMPB+eGm2nUmTixOOFhvvVXnx4+3t6TR5XBWqSpJZOlS2HPP4mysE07odDRqlcwiCdUmlRdf\nhFdeGX56+eXhl736avG7snRpcSuagfmVKwcTSu1Um2hWt3zddVf9OpL5kSwf6uafGhtMIqWq1ETO\nOqu4IO+qq1oSinrMihWDCWWoJDPUNLD8tdcG2wbmh2pb0/Kh2saPb01CanTd9dcvem61X9df36TW\nStZEKuSxx+Dcc+GOOzodibrVuHGDQ15VkQnLljWeeFaXwJYsWfM2S5cWPbaBntvA11dfLRJNfWIZ\nKtmMpG2jjYqhxo02WnV+4kSHFhtlT2QtffCDxbUgM2Z0NAxpTMt8Y4IZLtmsqW1g2PHll4snhb70\n0uD8smVFohkuyQzVNpLlVUtODmeVOp1EZs0qHiQ1b17xiyKpu61YMZhQhkoyI20bmF+ypJhfsaI4\nKaOR6S1vWfXuEK3kcFYbNFMTmTGjeCaICUQaG8aNGzwbr5WWLSsSypIlxckZA/P10wsvFNdEDdzZ\noV1JpJVMIk266y747W+Le0VJ0upMmFBclzR5cqcjaT2Hs5p04onFUNYnPtGRw0tS06yJlDqVRAbu\njzV/frXOqJGkkWhlEvHM61Ij9ZDzz4e/+RsTiCR1fRKJeOM0XELo62vN+hdcMPQNFlu1f9d3fdd3\n/Xav3yoOZzXo7LPh97+HCy8c1cNKUstYEymNdhJZsaI47e5nP4N99hm1w0pSS1kTaYORdPl++cvi\nFuImEEkqmEQa8L3vwcc+1ukoJKk6HM4aoWefLZ4DPn9+8SAjSepWDmd1wI9+BMcdZwKRpFomkdKa\naiLf/37x7HRJ0iCTyAjcfz888wwcfninI5GkarEmMgIzZhS3cz733LYfSpLazprIKMqESy+FU07p\ndCSSVD0mkdJwNZF774Xly2G//UY1HEnqCiaRNRjohURLOn6SNLZYE1mNTNh+e7jqKthzz7YdRpJG\nlTWRUXLPPbDuurDHHp2ORJKqySRSGqomcsUVcNJJDmVJ0nBMIqsxkEQkSUOzJjKMhx+Ggw+GBQtg\n3Li2HEKSOsKayCi48ko44QQTiCStjkmkVF8TcShLktbMJDKEZ58tLjI88shORyJJ1WZNZAiXXFJM\nV13V8l1LUsdZE2mza66BY4/tdBSSVH0mkdJATWTlSrjuOpOIJI2ESaTO3XfD5Mmw3XadjkSSqs+a\nSJ0vfxmefx6+/vWW7laSKsOaSBtZD5GkkTOJlPr64LnnYPZseMc7Oh2NJHUHk0iN668vnqO+3nqd\njkSSuoM1kRqnnQYHHACnn96yXUpS5bSyJmISKa1cCVtvDbffXjyISpLGqp4orEdEX0Q8ERH3lNMx\n7Tzexz8Om21mApGkRozvdACrkcDXM3NUTrZ98EHPypKkRlW2J1IatWcKLl1qEpGkRlU9iXwyIn4X\nEd+LiE3bdRBP7ZWk5nR0OCsibgC2GmLRF4B/Bv5n+frLwLnAR+tX7Kt5EMj06dOZPn16w3HceCNM\nmQITJza8qSRVXn9/P/39/W3Zd1ecnRUR2wFXZ+Yede0tOTvrYx8rHoN7zTVrvStJqrxWnp1V2cJ6\nRGydmU+WL98DzGrHcTKLiwyvv74de5eksa2ySQQ4JyL2pjhL6xHgb9txkLlzi6+77NKOvUvS2NYV\nw1nDacVw1vnnF0X1bbZ543PWJWks6omLDUfL9dfD0Ud3OgpJ6k493RNZuhS22ALmzy8eRCVJvcCe\nSIvceivstpsJRJKa1dNJpHYoy3qIJDXOJGI9RJKa1rM1kaeeKk7rffppmDChxYFJUoVZE2mBG2+E\nI44wgUjS2ujZJFI/lGVNRJIa15NJZOBWJ9ZDJGnt9GRN5L774L3vhXnz2hCUJFWcNZG1ZC9Eklqj\nJ5PIdde9MYlYE5GkxvVcEnnlFbj9djjyyE5HIkndr+eSyC23wN57wyabrNpuT0SSGtdzScR6iCS1\nTs8lkeuug3e/+43t9kQkqXE9lUQWLIAnn4R99+10JJI0NvTUdSI/+AH84hdw+eXti0mSqs7rRJp0\n001w1FGdjkKSxo6eSSKZ8KtfwfTpQy+3JiJJjeuZJDJ/fvE43J137nQkkjR29EwSGeiFxDCjgPZE\nJKlxPZNE+vvh8MM7HYUkjS09k0RWVw8BeyKS1IyeSCKPPlrcM+ttb+t0JJI0tvREEvnVr4qhrOHq\nIWBPRJKa0RNJ5JZb4B3v6HQUkjT29EQSmTkTDjxw9evYE5Gkxo35JPLSS8VjcPfcs9ORSNLYM6Ik\nEhFviogN69oOi4iJ7Qmrde6+G/bYA9Zdd/Xr2RORpMaNtCdyP3BeXduTwOmtDadxEW+cahPCzJlw\nwAHFfF/fmtev5fqu7/quP1bXb5UR3cU3ImZk5j8O0X5pZp7SlshGYCR38X3f++Ckk+DUU1e/r74+\neyOSekMn7uJ7Y0R8NSK2qQliHWC3VgTRTjNnwv77dzoKSRqbRvw8kYjYF+gDJgM/B24C/r7KPZFF\ni2C33eDZZ4tunSSpMz0RMvOuzDweeC+wkCKhPNqKINploBdiApGk9mj4FN/MfCozf5CZxwC/bkNM\nLdPIUJb1EElq3FpdJ5KZP29VIO1w++3WQySpncbsM9aXL4fJk4uHUU2ePLpxSVKV+Yz1EZg9G6ZO\nNYFIUjutVRKJiMreXP3WW+Hgg0e+vjURSWrc+EZWjojjgBOACWXTPsBerQ6qFW67DY46qtNRSNLY\n1lBNJCI+C/wUWFY2nZqZX2lHYCOMZ9iayPbbw7XXwi67jHJQklRxrayJNNQTAe4DHs7MFWUgd7Qi\niFZbuBCWLIGdd+50JJI0tjVaE/kicHdE3BwRNwMXtSGmtXbbbXDQQY1dZGhNRJIa12hP5Cu114ZE\nxDEtjqclbrsNDjmk01FI0ti3xppIRJwOnAa8MsTit2Xm1u0IbCSGq4nsvTd885tw6KEdCEqSKm60\nayIPAIdm5rL6BRFxbCuCaKUHHoA//rEYzpIktdcaayKZeeNQCaRcdk3rQ1o7l10Gf/EXMG5cY9tZ\nE5Gkxo25K9YvuwxOPrnTUUhSb+hoEomI90XEnIhYERH71C37XEQ8GBFzI+Lokexv9mxYvLi5oSx7\nIpLUuEbPzmq1WcB7gH+tbYyI3YCTKZ6cuA3FkxV3zsyVq9vZZZfB+98P64y5/pUkVVNH/91m5tzM\nfGCIRScCl2TmssycD8wD1nhT9yuvLOohzbAnIkmNq+pn9jcDT9S8foKiRzKsTJg3D3bfva1xSZJq\ntH04KyJuALYaYtHnM/PqBna12gtann0WJk6EjTduKLzX2RORpMa1PYlk5rua2GwBMK3m9dSy7Q36\nyv/+Tz4JkydPB6Y3cThJGrv6+/vp7+9vy74r8WTD8j5cn87Mu8rXuwE/pqiDbAPcCOxYf3l67RXr\nV1wBF1wAV13VXAx9ffZGJPWGMfNkw4h4T0Q8DhwI/DwirgHIzPuBy4H7gWuA04e953vpscdg223b\nHbEkqVYleiLNqu2JfPrTsOWWcOaZHQ5KkipuzPREWunxx2HatDWvJ0lqnTGTRNZ2OMt6iCQ1ziQi\nSWramKiJvPYabLQRvPIKjO/0jVwkqeKsidRZsAC23toEIkmjbUwkkVYMZVkTkaTGjYkk8vjj1kMk\nqRPGRBJ57LG1P73XnogkNW7MJBF7IpI0+kwiJXsiktQ4k4gkqWlj4jqRSZPg0Udh0007HZEkVV8r\nrxMZE0nk1VeLB1JFS74lkjS2ebFhnfXXX/sEYk1Ekho3JpKIJKkzxsRwliRp5BzOkiRVgkmkZE1E\nkhpnEpEkNc2aiCT1GGsikqRKMImUrIlIUuNMIpKkplkTkaQeY01EklQJJpGSNRFJapxJRJLUNGsi\nktRjrIlIkirBJFKyJiJJjTOJSJKaZk1EknqMNRFJUiWYRErWRCSpcSYRSVLTrIlIUo+xJiJJqgST\nSMmaiCQ1ziQiSWqaNRFJ6jHWRCRJlWASKVkTkaTGmUQkSU2zJiJJPcaaiCSpEkwiJWsiktQ4k4gk\nqWnWRCSpx1gTkSRVgkmkZE1EkhrX0SQSEe+LiDkRsSIi9qlp3y4iXo2Ie8rp252MU5I0tI7WRCLi\nbcBK4F+BT2Xm3WX7dsDVmbnHGra3JiJJDWplTWR8K3bSrMycC8UbkiR1nyrXRLYvh7L6I+LQdh/M\nmogkNa7tPZGIuAHYaohFn8/Mq4fZbCEwLTOfL2slV0TE2zNzSdsClSQ1rO1JJDPf1cQ2rwGvlfN3\nR8RDwE7A3fXr9tV0IaZPn8706dObitOeiKSxqr+/n/7+/rbsuxIXG0bEzcCnM/Ou8vXmwPOZuSIi\n3gr8Gtg9M1+o287CuiQ1aMxcbBgR74mIx4EDgZ9HxDXlosOB30XEPcD/A/62PoG0mj0RSWpcp8/O\n+hnwsyHafwr8dPQjkiQ1ohLDWc1yOEuSGjdmhrMkSd3NJFKyJiJJjTOJSJKaZk1EknqMNRFJUiWY\nRErWRCSpcSYRSVLTrIlIUo+xJiJJqgSTSMmaiCQ1ziQiSWqaNRFJ6jHWRCRJlWASKVkTkaTGmUQk\nSU2zJiJJPcaaiCSpEkwiJWsiktQ4k4gkqWnWRCSpx1gTkSRVgkmkZE1EkhpnEpEkNc2aiCT1GGsi\nkqRKMImUrIlIUuNMIqOgv7+/0yGMiHG2lnG2VjfE2Q0xtppJpNTOnki3/GIZZ2sZZ2t1Q5zdEGOr\nmUQkSU0ziZSsiUhS47r+FN9OxyBJ3ahVp/h2dRKRJHWWw1mSpKaZRCRJTevaJBIRx0TE3Ih4MCI+\n0+FYpkXEzRExJyJmR8R/LdsnR8QNEfFARFwfEZvWbPO5Mva5EXH0KMY6LiLuiYirKxzjphHxk4j4\nfUTcHxEHVDTOz5U/81kR8eOIWK8KcUbEBRHxVETMqmlrOK6I2Ld8bw9GxPmjFOfXyp/77yLi3yJi\nUhXjrFn2qYhYGRGTOxnncDFGxCfL7+fsiDinLTFmZtdNwDhgHrAdMAG4F9i1g/FsBexdzm8E/AHY\nFfhfwJll+2eAs8v53cqYJ5TvYR6wzijF+g/AxcBV5esqxngh8JFyfjwwqWpxlsd6GFivfH0ZcFoV\n4gQOA/4MmFXT1khcA7XSmcD+5fwvgGNGIc53DXxfgLOrGmfZPg24FngEmNzJOIf5Xh4B3ABMKF9v\n0Y4Yu7Unsj8wLzPnZ+Yy4FLgxE4Fk5mLMvPecv4l4PfANsAJFP8QKb+eVM6fCFySmcsycz7FD3H/\ndscZEVOBPwe+CwycmVG1GCcBh2XmBQCZuTwzF1ctTuBFYBmwQUSMBzYAFlYhzsy8BXi+rrmRuA6I\niK2BjTNzZrneD2u2aVucmXlDZq4sX/4WmFrFOEtfB86sa+tInMPE+HfAWeX/SDLz6XbE2K1JZBvg\n8ZrXT5RtHRcR21F8IvgtMCUznyoXPQVMKeffTBHzgNGK//8A/wNYWdNWtRi3B56OiO9HxN0R8Z2I\n2LBqcWbmc8C5wGMUyeOFzLyhanHWaDSu+vYFjP7f2EcoPg0zRDwdjTMiTgSeyMz76hZVKc6dgHdE\nxO0R0R8R+7Ujxm5NIpU8LzkiNgJ+Cvy3zFxSuyyL/uHq4m7re4qI44A/ZuY9DPZCVg2gwzGWxgP7\nAN/OzH2Al4HPrhJEBeKMiB2Av6cYDngzsFFE/OUqQVQgziEPuua4Oi4ivgC8lpk/7nQs9SJiA+Dz\nwIza5g6Fszrjgc0y80CKD4+Xt+Mg3ZpEFlCMRw6YxqoZdNRFxASKBHJRZl5RNj8VEVuVy7cG/li2\n18c/tWxrp4OBEyLiEeAS4MiIuKhiMULxc3wiM+8oX/+EIqksqlic+wG3Zeazmbkc+DfgoArGOaCR\nn/MTZfvUuvZRiTci/ppi2PXUmuYqxbkDxYeH35V/T1OBuyJiSsXifILi95Ly72llRGze6hi7NYnc\nCewUEdtFxLrAycBVnQomIgL4HnB/Zp5Xs+gqimIr5dcratpPiYh1I2J7im7nTNooMz+fmdMyc3vg\nFOCmzPxQlWIs41wEPB4RO5dN7wTmAFdXKU5gLnBgRKxf/vzfCdxfwTgHNPRzLn8OL0ZxZlwAH6rZ\npm0i4hiKT80nZuaf6uKvRJyZOSszp2Tm9uXf0xPAPuVwYWXiLPd/JED597RuZj7T8hhbdXbAaE/A\nsRRnQc0DPtfhWA6lqDPcC9xTTscAk4EbgQeA64FNa7b5fBn7XODdoxzv4QyenVW5GIG9gDuA31F8\nkppU0TjPpEhwsyiK1ROqECdFT3Mh8BpF7fDDzcQF7Fu+t3nAN0Yhzo8ADwKP1vwdfbtCcS4d+H7W\nLX+Y8uysTsU5VIzl7+NF5THvAqa3I0ZveyJJalq3DmdJkirAJCJJappJRJLUNJOIJKlpJhFJUtNM\nIpKkpplEJElNM4lIkppmEpEaEMWDp34Vhe2GelBRE/v8l4g4eJhj/Toi/DtVZfnLKTXmVODfs7W3\nejgA+E19Y2YuBW6hxc/HkFrJJCI15gPAlfWNEfHW8vkn+5Y9lLnlM1H+EBEXR8TREXFrFI+n/U81\n2+1KcT+r9SPi5xFxb/l40veXq1xVHlOqJJOIVCMijouIqyNiUUTcHBF/V7NsHLB7Zj5Qt80uFLes\nPy0z7yqbdwD+N/A2YBfg5Mw8BPg0xc3vBhwLXENxw84Fmbl3Zu5B8dhVKG7q+YahLqkqxnc6AKkq\nImJb4PjMPD4iTqJ47vTPalbZHFhSt9mWFLfLfk9mzq1pfyQz55T7nUNxB12A2RTPohhwNPDXwMbA\nuRFxNsVw2X9AMaQVEetExMRc9dboUiXYE5EG/RVwfjn/JmDxEOvUP8HuBYpblx9W1760Zn4lxe3O\nB+bHw+tPyNs0Mxdl5oMUj1WeBfxTRHyp7pjebluVZE9EGrQZxTPToXhK4Q/rlj8DbFTX9hrwXuC6\niHgpMy9p4HhHADfB608bfD4zL46IxcBHy/b1gBVlkV2qHJOINOi7FE98C+D8zFxWuzAzV0TE7IjY\nJTP/MNicr5TPsL8hIpZQ9Cbqew45xPyxDD73eg/gaxGxElgGfLxs/zOGOHNLqgofSiU1oHz+95TM\nPKcF+7oL2D8zV6xmna8Cd9TVZqTKMIlIDYiIdSmK5Ie3+FqRoY61HnDDaBxLapZJRJLUNM/OkiQ1\nzSQiSWqaSUSS1DSTiCSpaSYRSVLTTCKSpKaZRCRJTTOJSJKa9v8BuTOhoPd6gwAAAAAASUVORK5C\nYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11338e550>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Here are the data and the best fitting model\n" | |
] | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEdCAYAAAAM1BBYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucVXW9//HXZ2ZQQO4wyFVBCgTLI14Qb4nkSS0vJz0d\nq6OkZfXodDvmL416pJhpedJK8/RIzcyjqWloaaam6JgiASoYclG8xkVguCMowszn98f6Dmxm9m32\n7LXX3rPfz8djP2bvdft+1nf2Xp/1Xd91MXdHRESkJukARESkPCghiIgIoIQgIiKBEoKIiABKCCIi\nEighiIgIoIQg0i5m9lszuyKBckeYWbOZ5fzNmtl5ZvZ0KeKSzkUJQWJlZm+a2TYz22xmG8xsppl9\n2cwsz/nz3hCWiIeXSKdTLj8y6bwcONXdewH7AT8GLgFuaedy8kogJVJOsYgUjRKClIy7b3H3B4Gz\ngc+Z2UEAZvYJM5tnZpvM7J9mdlnKbH8Lfzea2RYzO9LMRpnZE2a21swazewOM+udqVwzuy4sd5OZ\nPWdmx6aMm2Zm95jZbaEV85KZHZYyfryZvRDG3Q10zVLOeaEF9NPQGnrVzI42s/ND+avNbErK9L3N\n7P/MbE1oSX2vpeVkZjVmdk1Yv9eAT7Qqq7eZ3WJmK81suZldUUatKKlQ+gJJybn7XGA50LJhfgc4\nx917E234vmJmZ4Rxx4W/vd29p7vPDp+vBAYDY4HhwLQsRc4B/gXoC9wJ3Gtme6WMPw24C+gNPADc\nABCm+SNwW5j3XuAssh8ymgC8CPQLy7wHOBQYBZwD3GBm3cO0vwB6AiOB44EpwPlh3JdCXRwCHA78\ne6tyfwu8H5Y7HvgYcEGWuERyUkKQpKwk2mji7k+5+8LwfgFwN9EGEtIcnnH319x9hrvvcPe1wM9S\npm/D3X/n7hvcvdndfwrsDYxJmeRpd3/Eoxt73UGUPAAmAnXufp27N7n7dGBujvV6w91vC8u6BxgC\n/CDE+hjRRvwDZlZL1FKa6u5b3f0t4Frg3LCc/wB+5u4r3H0DcFVLXZjZvsApwIXu/q67NwI/Bz6d\nIzaRrOqSDkCq1lBgPYCZHUnUt3AQsBfRBvueTDOGDeJ1RC2MnkQ7NuuzTP//gM8TbZwd6AUMSJlk\ndcr7bUDXcPhlCLCi1eLeInsfQuqy3gUIG+zUYT1C+V3C8lr8k6heIGr9LGs1rsX+Yd63U/rma1pN\nI9JuaiFIyZnZEUQbvmfCoDuJDs0Mc/c+wK/Y/d1Md3jmKqAJ+FA4zHQuGb7LZnYc8G3gU+7ex937\nApvIr2P4bXZvoFvsnyGm9loL7ABGpAzbj+hQWkvZ+7Ua12IZsB3o7+59w6u3u3+4CHFJFVNCkFJo\nOdTRy8xOJTq2fnvLYSKiPeYN7v6+mU0APsvujW4j0Ex0rJyU6bcCm81sKNEGP5OewE5grZntZWaX\nErUQ8jEL2Glm3zCzLmZ2JnBEnvNm5e5NRK2gK82sh5ntD1xIdMiKMO4bZjbUzPoC30mZ923gr8BP\nzaxn6IAeZWYfKUZsUr2UEKQUHjSzzUSHNKYSHSs/P2X8fwE/CNN8H/h9ywh330bUgTzTzNaHhHE5\nUUftJuBBYDqZ99ofCa9XgDeJDtmkHlpJd12Bh7LfB84EzgPWER3Xn55lPTMuK4OvEyW214Gngd8B\nt4ZxNwOPEnVQP0fbdZxCdHhtEdHhsnuBQVniEMnJ4n5Ajpm9CWwmauLvcPcJsRYoIiIFKUWnsgOT\n3D1jp5+IiCSvVIeMdGWniEiZK0VCcODxcIXoF0tQnoiIFKAUh4yOcfe3zaweeMzMlri77sQoIlJm\nYk8I4RQ53L3RzO4nurT/aQAz05kQIiIFcPeiH4qP9ZCRmXU3s57h/T5E91tZkDqNu+vlzmWXXZZ4\nDOle4b+U5hXf/y6JuijmemZeVvuXV67fiyReqovdr7jE3YewL/C0mc0HZgN/dve/xlymSLtMmxbP\ntCKVJtZDRu7+BtHdGkVEpMzpSuUyMWnSpKRDKBulrotybiHoe7Gb6iJ+sV+pnLVwM0+yfMktuptm\nuv+RxXoss9SKuZ6Zl1XY8kRaMzO80jqVRSpBObcQREpJCUFERAAdMpIcdMhIh4yk/OiQkYiIxEoJ\nQaqe+hBEIkoIIiICqA9BclAfgvoQpPyoD0FERGKlhCBVT30IIhElBBERAdSHIDmoD0F9CFJ+1Icg\nIiKxUkKQqqc+BJGIEoKIiADqQ5Ac1IegPgQpP+pDEBGRWCkhSNVTH4JIRAlBREQA9SFIDupDUB+C\nlB/1IYiISKyUEKTqqQ9BJKKEICIigPoQJAf1IagPQcqP+hBERCRWSghS9dSHIBJRQhBpJ3fniqeu\n4LS7TmP+qvlJhyNSNOpDkKzUh9B2Pa959hp+v/D3TDl4Cj+e+WPmf3k+9fvU57Gs9MsTaa+4+hCU\nECQrJYQ913PdtnWMuWEMsy+Yzah+o/jqQ1+la11Xrj3p2jyW1XZ5IoVQp7JITNrTL/Cf/3MHp3zw\nFEb1GwXA1OOmcuv8W9m2Y1s8wYmUkBKCSDss4A6mHDxl1+dhvYYxcdhE7lt8X4JRiRSHEoJUvXxb\nCEvXLaW553Imj5y8x/BPjfsUD7z8QPEDEykxJQSRPP1l6V84bfRp1NbU7jH85A+czGOvP8bO5p0J\nRSZSHEoIUvXybSHMeGMGG54/sc3wwT0HM7LPSGYtm1XcwERKTAlBJA87mnbw1FtPMYIT0o4/adRJ\nPPb6YyWOSqS4Yk8IZlZrZvPM7MG4yxIpRD4thOdWPsfIPiP5ybT6tOOP3e9Ynl32bHEDEymxUrQQ\nvgksIvOJ2SJlb/aK2Rw9/OiM448afhRzVsxRP4JUtFgTgpkNAz4O/Boo+kUUIsWQTwthzoo5TBg6\nIeO0/br1Y1ivYSxYvaCYoYmUVF3My/8Z8G2gV6YJZsyYkXHmyZMnh6s+RZI1d+Vcvnfc93gzyzTH\nDD+GmctmliokkaKL7dYVZnYqcIq7f9XMJgEXuftprabx2tpe1NX1A6Curi91dX0B2LTpiazL1+X/\n7ZctuWaqz2y3dMim0v4/2dZz3bZ1jPj5CDZcsmGPU07b1OfhwFDgT2RYVrS8UtRNIf/rzlR+Z9PQ\n0EBDQ8Ouz5dffnll3cvIzK4CzgV2Al2JWgnT3X1KyjReW3sxTU1Xp1lCDdGPqvPfR6dUCrkvUfaE\n0Hnu15NtPR999VGuevoqGs5ryD7P0Nlw6lfgxnkZlhUtr3Qb5OR+O0mX39lV3L2M3P277j7c3UcC\nnwaeSE0GIuUiVx9CS/9BzmnXfBgGLIHaLNOIlLFSXoeg3QKpSC+ufpFDBh2Se8Id3WHjCEh/ZqpI\n2StJQnD3p9z99FKUJdJeuVoIixsXM65+XF7T8vZ4GFSMqERKT1cqi2RTA69teI3R/UfnN/0qJQSp\nXEoIUvWy7vX3hUE9BtG9S/fc0wKsOkQJQSqWEoJINgNg7ICx+U+/+sMwENRlJpVICUGqXta9/lYJ\nIWcLYevA6O8+azoYlUjpKSGIZFMPY+vb0ULAoBGoXxRXRCKxUUKQqlfUFgIoIUjFUkIQycijhNCu\nFgJKCFKxlBCk6mXc6++5EnZGdzLNOW2qRmDgwo4HJlJiSggimdQvhrUFzKcWglQoJQSpehn3+ge0\nTQh5tRC2ALXvQ/fGDsUlUmpKCCKZDFgS7e0XYs1BUQtDpIIoIUjVy7jXn+aQUV4tBIDGcVCvfgSp\nLEoIIpkMWFx4C2HtWLUQpOIoIUjVS7vX33Uj7PUObM5j2nTWHhglFJEKooQgks6AxdFGvVCNY6M+\nCJEKooQgVS/tXn99+oSQdwth0/7QfR3staUDkYmUlhKCSDoDFkf9AIXyGlg3Gga8XLyYRGKmhCBV\nL2MLobFtQsi7hQDhsJH6EaRyKCGIpDNgScdaCBA6ltWPIJVDCUGqXpu9/rr3oOcKWD8q97TZ6NRT\nqTBKCCKt9X8FNo6E5i4dW45aCFJhlBCk6rXZ6x+Qvv8g7bTZrBsNfV+Hmh0FRiZSWkoIIq1lOOW0\n3XZ2hc1Do6QgUgGUEKTqpW0hZOhQblcLAdSPIBVFCUGktQynnBZEVyxLBVFCkKq3x16/NUG/pRkP\nGbW/haB7GknlUEIQSdXnTdg6EHbsU5zl6ZCRVBAlBKl6e+z112e/ZUVhLYQlgLc/MJESU0IQSZXl\nlNOCvNsPdnSDniuLt0yRmCghSNVr20LIfMppu1sIoAvUpGIoIYik6uhdTtNRP4JUCCUEqXq79/o9\n5ymnaiFIZ6aEINKix2poroNt9cVdrm6DLRVCCUGq3q69/jw6lAtrIejiNKkMSggiLXKcclqwzcOg\n6ybYe1Pxly1SRLEmBDPramazzWy+mS0ysx/FWZ5IIWJvIXgNrB2jx2lK2Ys1Ibj7e8AJ7n4IcDBw\ngpkdG2eZIgWrXwSN4+JZtm5hIRUg9kNG7r4tvN0LqAXWx12mSHvs2usfuBAaD8pv2vbSqadSAWJP\nCGZWY2bzgdXAk+6+KO4yRdqtG1D3bvT8gjjo1FOpAKVoITSHQ0bDgI+Y2aS4yxRpj2nTgIGEw0WW\ne9pC6NRTqQB1pSrI3TeZ2UPA4UBDy/Dm5meAaeHTpPCSQpll36AVe74ky3Bv3w3jspZ/OBkPFxUl\n7vUfgD5vRQdNi6QU/7NKiKFcFVo36b7XDQ0NNDQ0dDCi3CzXjyp0Al8GjGB3AnF3PyDnws0GADvd\nfaOZdQMeBS539xlhvNfWXkxT09Vp5q4hukNkuvis3RuDahF9CTPVTaZxxZ8n3f8nc2yFlV9YQsgw\nz8cN1v8U/n5hUWJLO/zro+Hupfia4nx3C/1fF/O30/7/afX8dgv9vudTP2aGuxc9G+fTQrgF+G/g\nBaCpncsfDNxmZjVEW/jbW5KBSFmpB17O3qHcYY1jYcDSeMsQ6YB8EsJGd3+4kIW7+wLg0ELmFSmp\nemBNzAlh7YEw4IF4yxDpgHwSwpNm9hPgPmB7y0B3fyG2qERKqfva6JewZUi85awdCyPjLUKkI/JJ\nCBOJDngd3mr4CcUPRyQB9QuhEXKdYdRhaw+ECfEWIdIROROCu08qQRwiyRm4ENaUoJy1B0L/6CwS\nnZ0j5ShjQjCzc939djO7iD27xI3oLKOfxh6dSCnsaiHE7L0+8D4s27yM/XrvV4ICRdon24Vp3cPf\nnhleIp3DoBdhVYnKWg3/WP2PEhUm0j4ZWwjufmP4O61k0YiUmjXDviVMCKtg3tvzOHX0qSUqUCR/\nOW9dYWajzOxBM1trZo1m9iczy3lRmkhF6LcUtg2A90pU3tvwwiqdoCflKZ97Gd0J3EN0kdkQ4F7g\nrjiDEimZwfNg1fjSlRdaCCLlKJ+E0M3db3f3HeF1B9A17sBESmLQPHi7hAlhPax7dx3r39Vd4KX8\nZEwIZtbPzPoDD5vZVDMbEV6XAAVduSxSdgbPg7dLeDG9wyGDDmH+qvmlK1MkT9muQ3iBPU83/VL4\n23Jnpu/EFZRIaTgMfqG0h4yA8YPG88LbLzB55OSSliuSS7azjEaUMA6R0uu1HJprYcvgkhY7ftB4\nHn/j8ZKWKZKP2B+QI1K2drUOSnvV8KGDD+X5lc+XtEyRfCghSPUaPguWHVXyYg8aeBArtqxQx7KU\nnawJwSLDSxWMSEkNmwXLS58Q6mrqOGLIEcxePrvkZYtkk08LQWcUSedTswOGPA/Lj0yk+KOHH82s\n5bMSKVskk6wJwaNnuT1vZrppr3Qug16EDSNhe+9Eij9q2FE8u+zZRMoWySTf5yGcY2ZvAVvDMHf3\ng+MLSyRmw5+FZUcnVvzEYROZs2IOTc1N1NbUJhaHSKp8EsJJsUchUmrDZ8LSjydWfP/u/Rnaayj/\nWP0Pxg8u7XUQIpnk7ENw9zeB4cAJ4f1WSn2enkgxWTOMfALeTPahf5NHTGbGGzMSjUEkVT53O50G\nXAxMDYP2Au6IMSaReO37D3i3H2xK9iE1Jx5wIo+/rgvUpHzkc5bRJ4EzCP0H7r4CPSBHKtkBj8Pr\nJyYdBZNGTGLmspls37k96VBEgPwSwnZ3b275YGb7xBiPSPzKJCH07daXcfXjdPqplI18EsK9ZnYj\n0MfMvgTMAH4db1giMemyLTrD6M1JSUcCwIkjT+TRVx9NOgwRIL9O5Z8A08NrNPB9d78+7sBEYjHq\nr7DycHivb9KRAHDGgWdw/5L7iS75EUlWPqedAiwAuhHd9npBfOGIxGzsdFh0VtJR7HLEkCPYumMr\ni9cuZlz9uKTDkSqXz1lGFwCzgTOBs4DZZvaFuAMTKbpaYPRDsOTfko5kFzPjzAPPZPqi6UmHIpJX\nH8LFwHh3/5y7fw44FLgk3rBEYnAAsPZA2DI06Uj2cNa4s7h30b06bCSJyychrAXeSfn8ThgmUlkO\nAV6cknQUbRy737Fs3bGVuSvnJh2KVLl8EsJrwN/NbFq4SO3vwFIzu8jMvhVrdCJFsmbrGhgFLPhM\n0qG0UWM1fPHQL3LjczcmHYpUuXwTwp+IOpQ9vH8d6IEuUJMKcdPzN8FiEru7aS7nH3I+9y25j43v\nbUw6FKliOc8ycvdpJYhDJDbbdmzjF3N+ATOTjiSzfXvsy+ljTuf62ddz6fGXJh2OVCk9QlM6vV/O\n/SXHDD+m7Hu+Lv3IpVw/+3o9WlMSo4QgnVrj1kaunnk1P/roj5IOJadR/UZx5tgzufJvVyYdilQp\nJQTptNydrz38NaYcPIUxA8YkHU5erpx8JXe+dCezlun+RlJ6GfsQzOyyDKMcwN1/EEtEIkVy8ws3\n89Kal/jtGb9NOpS81e9Tzw2n3MC595/LrC/Mon6f+qRDkiqSrYWwleiag9SXA18gzwvTzGy4mT1p\nZgvN7CUz+0ZHAxbJx32L7+PSJy/l/rPvp1uXbkmH0y5njTuLsw86m1PvOpXN2zcnHY5UkYwJwd2v\ncfdr3f1a4GaiexmdD9wNjMxz+TuAC939IKJnM3/VzMZ2MGaRjJqam7j6mav5+sNf56HPPsTo/qOT\nDqkgP5z8QyYOnciRvz6SxY2Lkw5HqkTWPgQz629mPwReBLoAh7r7Je6+Jp+Fu/sqd58f3r9DdCb4\nkA7GLNLGjqYdTF80nQm/nsAjrz3CzM/P5LAhhyUdVsHMjOtOuY6LjrqI4249jm8+/E1eXf9q0mFJ\nJ5etD+Eaoqel3QQc7O5bOlKQmY0AxhPdKC8Wme4F47Qdnm7afKcr62XuBZDyr7LW026GNPNj6S6I\napluQ6tpW4avTzNtZN22dW3j7A7QmKZsgHT7GC3zr949qGYndNsA3eDehfeyZO0S5q+ezxNvPMFB\n9Qcx9dipnDX2LMw6x2O/Lzj0Ak4bfRrXPHsNR99yNIN6DOL4/Y9nbP3Y6Mrrd+dGt/Le3guaukBz\nXfRyoLkZXOeNSP4s08bJzJqB94kO+7Tm7t4r70LMegANwA/d/Y8pw51LjbBFaImopYiWAWk2au1n\ntN1ApNto5DtduS7znS3vEF1EvufUkS3surjcU+ffDPSCNMvENwF90kS6EWj1TIFdy1xPv/792sS5\nbt06oH+rsiG6QCBD56k3AgNTPtdEG8Bti/nkSZ9kTP8xfGjgh/joAR9lUI9B6ZcRRPWY6buUaVzx\n5yn0JnY7m3fy/Mrneeafz/DKule46d6boNth0HUDdN0UJUtriv7WvBfd3bVI0n3foGVHJN24DMPd\nqamtjiTV3NRM+oMwmYZH4/Kpn+bLmnFv80PqsIwJoWgFmHUB/gw87O4/bzXOsaPAWx5neDzYJKIv\nUsu3uSn6s8e619Dc3NxmQ5lrr7C965pteaW4M2Uh61POG73MsRVWfmH/z+TrJpMsO2cZ58kdW+vx\n2Tc2zc3NbYbl3kA1pRlWm2a4A3Xs3Lkzx/I6rq4u30e97Km9seUuJ93y6jIMj8ali6GhoYGnnnpq\n1+crfnBF5SUEi77JtwHr3P3CNOO9tvZimpquTjN3Dem/0ND+DU7mebLJtgErXUIo1kY3mkcJIfm6\nae/6FLvekv1Olcdvp5y/U/nEYGaxJIS4227HAOcAJ5jZvPA6OeYyRUSkAIW1q/Lk7s+gq6FFRCqC\nNtYiIgIoIYiISKCEICIigBKCiIgESggiIgIoIYiISKCEICIigBKCiIgESggiIgIoIYiISKCEICIi\ngBKCiIgESggiIgIoIYiISKCEICIigBKCiIgESggiIgIoIYiISKCEICIigBKCiIgESggiIgIoIYiI\nSKCEICIigBKCiIgESggiIgIoIYiISKCEICIigBKCiIgESggiIgIoIYiISKCEICIigBKCiIgESggi\nIgIoIYiISKCEICIigBKCiIgEsSYEM/uNma02swVxliMiIh0XdwvhVuDkmMsQEZEiiDUhuPvTwIY4\nyxARkeJQH4KIiABQl3QAzc3PANPCp0nhVTpmVtL5qkWS9VOp/5tKjbu9sq2nu7dr+kzzFKpc/wcN\nDQ00NDTEXo4VszLTFmA2AnjQ3T+cZpzX1l5MU9PVaeasATy82syZ5YuTaX0KmydT+eUwT+dZn8KW\nlem7m7kOkl7P8p8n/u9U8cvvPL+DaFw+22Qzw92Lnr10yEhERID4Tzu9C3gWGG1my8zs/DjLExGR\nwsXah+Dun4lz+SIiUjw6ZCQiIoASgoiIBEoIIiICKCGIiEighCAiIoASgoiIBEoIIiICKCGIiEig\nhCAiIoASgoiIBEoIIiICKCGIiEighCAiIoASgoiIBEoIIiICKCGIiEighCAiIoASgoiIBEoIIiIC\nKCGIiEighCAiIoASgoiIBEoIIiICKCGIiEighCAiIoASgoiIBEoIIiICKCGIiEighCAiIoASgoiI\nBEoIIiICKCGIiEighCAiIoASgoiIBEoIIiICxJwQzOxkM1tiZkvN7JI4yxIRkY6JLSGYWS1wA3Ay\nMA74jJmNjau8yteQdABlpCHpAMpIQ9IBlJGGpAPo9OJsIUwAXnX3N919B3A3cEaM5VW4hqQDKCMN\nSQdQRhqSDqCMNCQdQKcXZ0IYCixL+bw8DBMRkTJUF+OyPa8A6v7APvssajN88+a8ZhcRkSIx93g2\nvGY2EZjm7ieHz1OBZne/OmUabfVFRArg7lbsZcaZEOqAl4GPAiuBOcBn3H1xLAWKiEiHxHbIyN13\nmtnXgEeBWuAWJQMRkfIVWwtBREQqS2JXKnf2i9bMbLiZPWlmC83sJTP7Rhjez8weM7NXzOyvZtYn\nZZ6poT6WmNnHUoYfZmYLwrjrklifYjCzWjObZ2YPhs9VWRdm1sfM/mBmi81skZkdWcV1MTX8RhaY\n2Z1mtne11IWZ/cbMVpvZgpRhRVv3UJe/D8P/bmb75wzK3Uv+IjqE9CowAugCzAfGJhFLjOs4CDgk\nvO9B1J8yFvgf4OIw/BLgx+H9uFAPXUK9vMruFtwcYEJ4/xfg5KTXr8A6+RbwO+CB8Lkq6wK4Dfh8\neF8H9K7Gugjr8zqwd/j8e+Bz1VIXwHHAeGBByrCirTvwX8Avw/uzgbtzxpRQRRwFPJLy+TvAd5L+\nB8W8zn8ETgSWAPuGYYOAJeH9VOCSlOkfASYCg4HFKcM/Dfwq6fUpYP2HAY8DJwAPhmFVVxdh4/96\nmuHVWBf9iHaU+hIlxgeBf62muggb99SEULR1D9McGd7XAY254knqkFFVXbRmZiOI9gRmE/2zV4dR\nq4F9w/shRPXQoqVOWg9fQWXW1c+AbwPNKcOqsS5GAo1mdquZvWBmN5vZPlRhXbj7euBa4J9EZyJu\ndPfHqMK6SFHMdd+1nXX3ncAmM+uXrfCkEkLV9GSbWQ9gOvBNd9+SOs6j1N3p68LMTgXWuPs8IO25\n09VSF0R7aocSNeUPBbYStZB3qZa6MLNRwH8T7SUPAXqY2Tmp01RLXaSTxLonlRBWAMNTPg9nzyzX\nKZhZF6JkcLu7/zEMXm1mg8L4wcCaMLx1nQwjqpMV4X3q8BVxxh2Do4HTzewN4C5gspndTnXWxXJg\nubvPDZ//QJQgVlVhXRwOPOvu68Ie7H1Eh5OrsS5aFOM3sTxlnv3CsuqA3qFVllFSCeE54INmNsLM\n9iLq8HggoVhiYWYG3AIscvefp4x6gKjjjPD3jynDP21me5nZSOCDwBx3XwVsDmeiGHBuyjwVwd2/\n6+7D3X0k0THOJ9z9XKqzLlYBy8xsdBh0IrCQ6Ph5VdUF0fHyiWbWLazDicAiqrMuWhTjN/GnNMv6\nd2BGztIT7Ew5hahD6VVgatKdOzGs37FEx8vnA/PC62SijrTHgVeAvwJ9Uub5bqiPJcBJKcMPAxaE\ncdcnvW4drJfj2X2WUVXWBfAvwFzgRaK94t5VXBcXEyXEBURnX3Wplrogai2vBN4nOtZ/fjHXHdgb\nuAdYCvwdGJErJl2YJiIigB6hKSIigRKCiIgASggiIhIoIYiICKCEICIigRKCiIgASggiIhIoIYiI\nCKCEIFUqPDzkKYuMSH1ISYHL+5WZHZ2lrL+ZmX5vUtb0BZVq9Z/An714l+ofCcxKN8LdtwNPA/9W\npLJEYqGEINXqM+y+CdguZnZAeE7B4eFRhbea2ctm9jsz+5iZzQyPNzwiZZ6xRPee6WZmD5nZ/PBI\nw/9IWfQDoUyRslWXdAAixWBmnwAGAh8jevTgaeH1IvCyu/8mZdpa4EPu/kqrZYwhuuHY54AtwCjg\nLKI7cM4Fznb3Y8zsdKIbjX0yzHoK8DDRzQtXuPsnwvJ6pSx+PtFtwEXKlloIUvHCraSnuPutwHnu\n/k93/1/gS0S3Cf6/VrMMINrgpxpIdKvhz7p7S3/CG+6+MBxWWkh0F0qAl4ge6tLiY0SPK1wA/KuZ\n/djMjnX3zS0ThMNGNWbWtYOrKxIbJQTpDM4D7oBdG17MrA/wv8CXPXr4Smutn9y2EXiL6MHnLban\nvG8muk1xy/u6UE53olsUr3L3pYSHpgM/NLPvpylTtxeWsqVDRtIZ1BE9lxczG0a04f0R0eMZt5vZ\nge6+JGX6tUCPVst4HzgTeNTM3iFDB3EaJwBPhLIHAxvc/Xdmtgn4QstEZrY30NSSsETKkRKCdAa/\nAs42s/0NIjsPAAAAtElEQVSI9sCbgMuBbxFt+C9Indjdm8zsJTMb4+4v7x7s28Lznx8jOqzUem/e\n07w/heghJAAfBn5iZi2tia+kTD+e/JOMSCL0gBypSmZ2HrCvu1/dweU8D0xw96Yc010FzHX3+ztS\nnkiclBCkKoVneT8OHF/EaxEylbU3Uasj9rJEOkIJQUREAJ1lJCIigRKCiIgASggiIhIoIYiICKCE\nICIigRKCiIgASggiIhIoIYiICAD/H5aDXNW0a/oyAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11313fe90>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x11361cdd0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"do_all(input_sigma=200., doclip=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.11" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment