Created
June 11, 2021 19:09
-
-
Save jamescalam/f17ef2890ee03c4237d0e95857846dee to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.5" | |
}, | |
"orig_nbformat": 2, | |
"kernelspec": { | |
"name": "ml", | |
"display_name": "ML", | |
"language": "python" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2, | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"encodings = {'input_ids': input_ids, 'attention_mask': mask, 'labels': labels}" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"class Dataset(torch.utils.data.Dataset):\n", | |
" def __init__(self, encodings):\n", | |
" # store encodings internally\n", | |
" self.encodings = encodings\n", | |
"\n", | |
" def __len__(self):\n", | |
" # return the number of samples\n", | |
" return self.encodings['input_ids'].shape[0]\n", | |
"\n", | |
" def __getitem__(self, i):\n", | |
" # return dictionary of input_ids, attention_mask, and labels for index i\n", | |
" return {key: tensor[i] for key, tensor in self.encodings.items()}" | |
] | |
}, | |
{ | |
"source": [ | |
"Next we initialize our `Dataset`." | |
], | |
"cell_type": "markdown", | |
"metadata": {} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dataset = Dataset(encodings)" | |
] | |
}, | |
{ | |
"source": [ | |
"And initialize the dataloader, which will load the data into the model during training." | |
], | |
"cell_type": "markdown", | |
"metadata": {} | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"loader = torch.utils.data.DataLoader(dataset, batch_size=16, shuffle=True)" | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment