Skip to content

Instantly share code, notes, and snippets.

@kobus-v-schoor
Last active October 4, 2020 18:52
Show Gist options
  • Save kobus-v-schoor/6d3159cf9e6909f84083b21482bca458 to your computer and use it in GitHub Desktop.
Save kobus-v-schoor/6d3159cf9e6909f84083b21482bca458 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[10, 10, 10, 5, 5, 5, 5, 5, -5, -5, -5, -10, -10]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"readings = [10] * 3 + [5] * 5 + [-5] * 3 + [-10] * 2\n",
"readings"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7f4cb7475e48>]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHbBJREFUeJzt3Xt4XXWd7/H3J7feb7m09JLQdNNWLlrAUJoUFCyt4HBkxqMOjDPi6ExHB0ZEzjnq8Xmcc/R5zpk5M4AoHrEqIzPjiA7jhYOIlIogllvAAuXSe2lDSy/03tKmab7nj+xiEnbakGRlZe/9eT1Pnuy19i97f9ZDySdr/fZaSxGBmZnZcSVpBzAzs6HFxWBmZl24GMzMrAsXg5mZdeFiMDOzLlwMZmbWhYvBzMy6cDGYmVkXLgYzM+uiLO0AfVFdXR3Tp09PO4aZWV556qmndkZEzcnG5WUxTJ8+nebm5rRjmJnlFUkv92acDyWZmVkXLgYzM+vCxWBmZl24GMzMrAsXg5mZdTEgxSDpdknbJa3stK5S0lJJa7LfJ/Tws1dnx6yRdPVA5DEzs74bqD2G7wGXdlv3eWBZRMwElmWXu5BUCfwtcD4wF/jbngrEzMwGx4CcxxARD0ua3m31FcBF2cd3AL8GPtdtzHuBpRGxC0DSUjoK5gcDkau77/12A7sOtibx0oOutKSEj8yro3r0sLSjmFmBSfIEt0kRsRUgIrZKmphjzFRgc6flluy6N5G0GFgMUFdX16dA//bEJtZsP9Cnnx1qIqBl9yH+4UNz0o5iZgUm7TOflWNd5BoYEUuAJQANDQ05x5zM/de/uy8/NiR95Z4X+KffbuBTF2WYUTM67ThmVkCS/FTSNkmTAbLft+cY0wLUdlqeBmxJMFPB+NRFGYaVlXLLsjVpRzGzApNkMdwNHP+U0dXAz3KM+SWwSNKE7KTzouw6O4nq0cP42Pzp3P3MFla9uj/tOGZWQAbq46o/AB4FZktqkfQJ4O+AhZLWAAuzy0hqkPQdgOyk81eAJ7NfXz4+EW0nt/jCGYyqKOOrD6xOO4qZFZCB+lTSVT08tSDH2GbgLzot3w7cPhA5is2EURV84oJ6blm2hpWv7OWsqePSjmRmBcBnPue5T1xYz7gR5dy81HsNZjYwXAx5buzwcha/awbLXtrO7zbtTjuOmRUAF0MB+FjTdCpHVXCT9xrMbAC4GArAqGFlfOrdGX6zZidPbPDcvZn1j4uhQPzpvFOpGTOMf7x/FRF9Ov/PzAxwMRSMERWlXHvxaTyxYRe/Xfta2nHMLI+5GArIlXNrmTJuODcu9V6DmfWdi6GADCsr5W8WzOR3m/bw4KpcVyAxMzs5F0OB+eA7p1FXOZKblq72XoOZ9YmLocCUl5bw6QUzWfnKPn75/La045hZHnIxFKA/PHsKM2pGcfPS1bS3e6/BzN4aF0MBKist4TOXzGLVtv3c89zWtOOYWZ5xMRSoy98+mdmTxvDVpatpO9aedhwzyyMuhgJVUiKuXziL9TsP8tMVvveRmfWei6GAvffMSZw1dSy3LFvNUe81mFkvJVoMkmZLWtHpa5+kz3Qbc5GkvZ3GfCnJTMVEEjcsnM3mXa/z780taccxszwxIDfq6UlErALOBpBUCrwC/CTH0N9ExOVJZilWF82u4Zy68Xz9V2v4wLlTGV5emnYkMxviBvNQ0gJgXUS8PIjvWfQk8V8WzWbr3sPc+cSmtOOYWR4YzGK4EvhBD881SnpG0i8knTmImYpCU6aK8+sr+cav1/F667G045jZEDcoxSCpAng/8O85nn4aODUi5gBfB37aw2ssltQsqXnHjh3JhS1Akrhh0Wx27D/Cvzy2Me04ZjbEDdYew2XA0xHxpms0RMS+iDiQfXwvUC6pOse4JRHREBENNTU1yScuMHPrK7lwZjW3PbSeA0fa0o5jZkPYYBXDVfRwGEnSKZKUfTw3m8k3FEjADYtms+tgK3cs35h2FDMbwhIvBkkjgYXAjzut+6SkT2YXPwislPQM8DXgyvBlQRNxdu14Ljl9It96aB17Xz+adhwzG6ISL4aIOBQRVRGxt9O62yLituzjWyPizIiYExHzImJ50pmK2fULZ7HvcBvffWRD2lHMbIjymc9F5swp47jsrFO4/ZEN7D7YmnYcMxuCXAxF6PqFszjY2sa3Hl6fdhQzG4JcDEVo1qQxvH/OFO5YvpEd+4+kHcfMhhgXQ5G6bsFMWo+1881fr0s7ipkNMS6GIjWjZjQfOGcq//r4y7y693DaccxsCHExFLFPL5hJe3tw64Nr0o5iZkOIi6GI1VaO5I/Pq+WHT26mZfehtOOY2RDhYihy177nNCTx9WVr045iZkOEi6HITR43go+cX8ddT7ewcefBtOOY2RDgYjA+dVGG8lJxyzLPNZiZi8GAiWOGc3XjdH664hXWbNufdhwzS5mLwQD4q3dnGFleylcf8F6DWbFzMRgAlaMq+PgF9fz8ua28sGVf2nHMLEUuBnvDX1w4g7HDy7hp6eq0o5hZilwM9oZxI8r5ywtn8MCL23hm856045hZSlwM1sWfX1DPhJHl3Oi9BrOiNRh3cNso6TlJKyQ153hekr4maa2kZyWdm3Qm69noYWV88t0ZHl69g+aNu9KOY2YpGKw9hosj4uyIaMjx3GXAzOzXYuCbg5TJevDRxulUjx7Gjfd7r8GsGJWlHQC4Avjn7H2eH5M0XtLkiNiadrBiNaKilGsuzvA//98LLH1hG2fXjk87knUyvLyEMcPL045hBWwwiiGA+yUF8K2IWNLt+anA5k7LLdl1LoYUXTW3jiUPr+cv//lNR/8sZaUl4r7rLmTmpDFpR7ECNRjFMD8itkiaCCyV9FJEPNzpeeX4mei+QtJiOg41UVdXl0xSe8Pw8lJu/9h5NL+8O+0o1klrWztfuecFHly13cVgiUm8GCJiS/b7dkk/AeYCnYuhBajttDwN2JLjdZYASwAaGhreVBw28E6fPJbTJ49NO4Z182+Pv8zyda+x+F2ZtKNYgUp08lnSKEljjj8GFgEruw27G/ho9tNJ84C9nl8w61lTpponN+zi6LH2tKNYgUr6U0mTgEckPQM8Afw8Iu6T9ElJn8yOuRdYD6wFvg38dcKZzPJaY6aKg63HeLZlb9pRrEAleigpItYDc3Ksv63T4wCuSTKHWSGZN6MKgEfX7eSdp05IOY0VIp/5bJZnKkdVcPrksTy6/rW0o1iBcjGY5aHGGVU0b9zN4aPH0o5iBcjFYJaHmjJVHGlr53ebfLFDG3guBrM8NHdGJSXCh5MsES4Gszw0dng5b586jkfX7Uw7ihUgF4NZnmrMVPO7TXs41NqWdhQrMC4GszzVlKmirT14cqMvW2IDy8Vglqcapk+gvFQ8us7zDDawXAxmeWpkRRln1473PIMNOBeDWR5rzFTz3Ct72Xf4aNpRrIC4GMzyWFOmivaAJ9b7Nqw2cFwMZnnsnLrxDCsrYbnnGWwAuRjM8tiwslIapk9guecZbAC5GMzyXFOmmpde3c+ug61pR7EC4WIwy3PHL8P9mC+PYQPExWCW594xbRyjKkp9OMkGTGLFIKlW0oOSXpT0vKTrcoy5SNJeSSuyX19KKo9ZoSovLWFufaVPdLMBk+Qd3NqAGyLi6ex9n5+StDQiXug27jcRcXmCOcwKXlOmmgdXvci2fYeZNHZ42nEszyW2xxARWyPi6ezj/cCLwNSk3s+smDVmjt/u03sN1n+DMscgaTpwDvB4jqcbJT0j6ReSzjzBayyW1CypeceOHQklNctPp08ey7gR5Z5nsAGReDFIGg38B/CZiNjX7emngVMjYg7wdeCnPb1ORCyJiIaIaKipqUkusFkeKi0R82ZU+sY9NiASLQZJ5XSUwvcj4sfdn4+IfRFxIPv4XqBcUnWSmcwKVeOMKjbvep3Nuw6lHcXyXJKfShLwXeDFiLiphzGnZMchaW42j//kMeuDptM6/qbyPIP1V5KfSpoP/BnwnKQV2XX/HagDiIjbgA8Cn5LUBrwOXBkRkWAms4I1c+JoqkdX8Oj61/jwebVpx7E8llgxRMQjgE4y5lbg1qQymBUTScybUcXydTuJCLI742Zvmc98NisgTZlqtu07wvqdB9OOYnnMxWBWQJp8PoMNABeDWQE5tWokk8cNdzFYv7gYzAqIJBozVTy6/jXa2/05DusbF4NZgWnKVLPrYCurt+9PO4rlKReDWYE5ft2k5Wt9OMn6xsVgVmCmjh/BqVUjfR9o6zMXg1kBaspU8fiG1zjmeQbrAxeDWQFqzFSz/3Abz2/Zm3YUy0MuBrMCNG9GJYAPJ1mfuBjMCtDEMcOZOXG0i8H6xMVgVqCaMlU0b9xFa1t72lEsz7gYzApUY6aKQ63HeLZlT9pRLM+4GMwK1Pn1VUieZ7C3zsVgVqAmjKrgjMljfd0ke8sG457Pl0paJWmtpM/neH6YpB9mn39c0vSkM5kVi8YZVTy1aTeHjx5LO4rlkaTv+VwKfAO4DDgDuErSGd2GfQLYHRGnATcDf59kJrNi0nRaFa1t7Tz98u60o1geSXqPYS6wNiLWR0QrcCdwRbcxVwB3ZB/fBSyQbz1lNiDOm15JaYk8z2BvSdLFMBXY3Gm5Jbsu55iIaAP2AlUJ5zIrCmOGl/OOaeN4dL2LwXov6WLI9Zd/94u39GYMkhZLapbUvGPHjgEJZ1YMGmdU8czmPRw40pZ2FMsTSRdDC1DbaXkasKWnMZLKgHHAru4vFBFLIqIhIhpqamoSimtWeJoy1bS1B09ufNP/VmY5JV0MTwIzJdVLqgCuBO7uNuZu4Ors4w8Cv4oIXxLSbIC889QJVJSW8JjnGayXypJ88Yhok3Qt8EugFLg9Ip6X9GWgOSLuBr4L/IuktXTsKVyZZCazYjOiopSz68Z7Atp6LdFiAIiIe4F7u637UqfHh4EPJZ3DrJg1Zaq4Zdka9h46yriR5WnHsSHOZz6bFYGmTDUR8PgG7zXYybkYzIrAnNpxDC8v8eEk6xUXg1kRGFZWynnTK33dJOsVF4NZkWjMVLFq2352HjiSdhQb4lwMZkWiKVMNwGM+C9pOwsVgViTOmjKW0cPKPM9gJ+ViMCsSZaUlnF/veQY7OReDWRFpzFSxYedBtu59Pe0oNoS5GMyKSGOm48LF3muwE3ExmBWR008Zy/iR5Z5nsBNyMZgVkZIS0TijikfXvYavVWk9cTGYFZnGTBWv7Hmdzbs8z2C5uRjMikxTdp5h+bqdKSexocrFYFZkMjWjqRkzzLf7tB65GMyKjNQxz7Dc8wzWAxeDWRFqylSxY/8R1u04kHYUG4ISKQZJ/yDpJUnPSvqJpPE9jNso6TlJKyQ1J5HFzN7s+HWTfD6D5ZLUHsNS4KyIeAewGvjCCcZeHBFnR0RDQlnMrJvayhFMHT/C5zNYTokUQ0TcHxFt2cXHgGlJvI+Z9Y0kGjNVPLr+NdrbPc9gXQ3GHMPHgV/08FwA90t6StLiQchiZllNmSr2HDrKi6/uSzuKDTFlff1BSQ8Ap+R46osR8bPsmC8CbcD3e3iZ+RGxRdJEYKmklyLi4R7ebzGwGKCurq6vsc0sq/N1k86cMi7lNDaU9HmPISIuiYizcnwdL4WrgcuBj0QPn4mLiC3Z79uBnwBzT/B+SyKiISIaampq+hrbzLImjxtBffUoT0DbmyT1qaRLgc8B74+IQz2MGSVpzPHHwCJgZRJ5zCy3xkwVj2/YRdux9rSj2BCS1BzDrcAYOg4PrZB0G4CkKZLuzY6ZBDwi6RngCeDnEXFfQnnMLIemTBUHjrSxcovnGez3+jzHcCIRcVoP67cA78s+Xg/MSeL9zax35s34/XWTzq7NebqRFSGf+WxWxKpHD2P2pDGeZ7AuXAxmRa4xU8WTG3fR2uZ5BuvgYjArco2ZKg4fbWfF5j1pR7EhwsVgVuTm1Vch+f4M9nsuBrMiN25kOWdNGefrJtkbXAxmRlOmihWb9vB667G0o9gQ4GIwM+Zlqmg91s5TL+9OO4oNAS4GM+O86ZWUlcjzDAa4GMwMGD2sjDm1430faANcDGaW1Tijimdb9rL/8NG0o1jKXAxmBnRMQB9rD57cuCvtKJYyF4OZAXDuqROoKCvx5THMxWBmHYaXl3Ju3Xifz2AuBjP7vaZMNS9s3ceeQ61pR7EUuRjM7A1NmSoi4LH1nmcoZi4GM3vDO6aNZ2RFKY/6fIaillgxSPofkl7J3sFthaT39TDuUkmrJK2V9Pmk8pjZyVWUldAwvdLzDEUu6T2GmyPi7OzXvd2flFQKfAO4DDgDuErSGQlnMrMTaMpUsWb7AbbvP5x2FEtJIrf2fAvmAmuzt/lE0p3AFcALqaYyK2JNmY7bff7wic00TK9MOU3/VZSVcG7deCSlHSVvJF0M10r6KNAM3BAR3a/QNRXY3Gm5BTg/1wtJWgwsBqirq0sgqpkBnDllHJWjKrhx6eq0owyY//2Bt3PVXP/e6K1+FYOkB4BTcjz1ReCbwFeAyH6/Efh495fI8bOR670iYgmwBKChoSHnGDPrv9IS8bNr5tOy+/W0owyIv7vvJb62bA1/dM5UhpeXph0nL/SrGCLikt6Mk/Rt4J4cT7UAtZ2WpwFb+pPJzPqvtnIktZUj044xIP7rotn86Xcf584nNvGx+fVpx8kLSX4qaXKnxT8CVuYY9iQwU1K9pArgSuDupDKZWfGZf1oV59dX8o1fr/ONiHopyU8l/R9Jz0l6FrgYuB5A0hRJ9wJERBtwLfBL4EXgRxHxfIKZzKzISOKGRbPZsf8I//rYy2nHyQuJTT5HxJ/1sH4L8L5Oy/cCb/ooq5nZQJlbX8mFM6v55kPruOr8OkYPS/sDmUObz3w2s6Jww6LZ7DrYyh3LN6YdZchzMZhZUTi7djwL3jaRbz20jr2v+2ZEJ+JiMLOicf3CWew73MZ3H9mQdpQhzcVgZkXjrKnjuOysU7j9kQ3sPuhLi/fExWBmReX6hbM42NrGtx5en3aUIcvFYGZFZdakMbx/zhTuWL6RHfuPpB1nSHIxmFnRuW7BTI60HeO2h9alHWVIcjGYWdGZUTOa/3zuNP7lsZd5da8vL96di8HMitKnF8ykvT34xoNr044y5LgYzKwo1VaO5MPn1XLnk5to2X0o7ThDiovBzIrW37znNCTx9WXea+jMxWBmRWvyuBH8ydw67nq6hY07D6YdZ8hwMZhZUfvrizOUl4pblq1JO8qQ4WIws6I2ccxwrm6czk9XvMKabfvTjjMkuBjMrOj91bszjCwv5asPeK8BXAxmZlSOquDjF9Tz8+e28sKWfWnHSV0ixSDph5JWZL82SlrRw7iN2bu8rZDUnEQWM7Pe+IsLZjBmeBk3P7A67SipS+Q2RhHxx8cfS7oR2HuC4RdHxM4kcpiZ9da4keUsvnAGNy5dzTOb9zCndnzakVKT6KEkSQI+DPwgyfcxMxsIf35BPRNGlnPT0uLea0h6juFCYFtE9DSjE8D9kp6StPhELyRpsaRmSc07duwY8KBmZqOHlfFX787w0OodNG/clXac1PS5GCQ9IGlljq8rOg27ihPvLcyPiHOBy4BrJL2rp4ERsSQiGiKioaampq+xzcxO6KONp1I9ehg33l+8ew19nmOIiEtO9LykMuADwDtP8Bpbst+3S/oJMBd4uK+ZzMz6a2RFGX99UYYv3/MCy9fupOm06rQjDbokDyVdArwUES25npQ0StKY44+BRcDKBPOYmfXKn5xfxyljh3Pj0tVERNpxBl2SxXAl3Q4jSZoi6d7s4iTgEUnPAE8AP4+I+xLMY2bWK8PLS7n2Pafx1Mu7eWh18c1pKh/bsKGhIZqbfdqDmSWnta2d99z4aypHVfCza+bT8SHL/CbpqYhoONk4n/lsZpZDRVkJn14wk2db9rL0hW1pxxlULgYzsx584Jyp1FeP4qalq2lvz7+jK33lYjAz60FZaQnXLZjJS6/u5xcrX007zqBxMZiZncB/mjOFmRNHc/MDqzlWJHsNLgYzsxMoLRHXL5zF2u0HuPuZV9KOMyhcDGZmJ3HpmadwxuSxfPWBNRw91p52nMS5GMzMTqKkRHx24Sxefu0QP3465zm7BcXFYGbWCwtOn8ic2vF8bdlajrQdSztOolwMZma9IIkbFs7ilT2v86MnN6cdJ1EuBjOzXrpwZjXnTZ/ArQ+u5fDRwt1rcDGYmfWSJG5YNJtt+47w/cc3pR0nMS4GM7O3YN6MKuafVsU3f72WQ61tacdJhIvBzOwt+uzC2ew80Mody19OO0oiXAxmZm/RO0+dwMWza/jWw+vYf/ho2nEGnIvBzKwPPrtwNnsOHeX2RzamHWXA9asYJH1I0vOS2iU1dHvuC5LWSlol6b09/Hy9pMclrZH0Q0kV/cljZjZY3j5tHIvOmMR3frOePYda044zoPq7x7CSjvs6d7lPs6Qz6LiD25nApcD/lVSa4+f/Hrg5ImYCu4FP9DOPmdmg+eyiWRxobePbv1mfdpQB1a9iiIgXI2JVjqeuAO6MiCMRsQFYC8ztPEAdt0N6D3BXdtUdwB/2J4+Z2WB62ylj+YO3T+affruR1w4cSTvOgClL6HWnAo91Wm7JruusCtgTEW0nGGNmNqR95pJZ3PvcVv7ga48wZnhSv1J/755PX8CwslwHYAbOSbdC0gPAKTme+mJE/KynH8uxrvuFzHszpnOOxcBigLq6up6GmZkNqtMmjuZLl5/BExt3Dcr7KeevzoF10mKIiEv68LotQG2n5WnAlm5jdgLjJZVl9xpyjemcYwmwBKChoaE47pZhZnnhY/Pr+dj8+rRjDJikPq56N3ClpGGS6oGZwBOdB0REAA8CH8yuuhroaQ/EzMwGSX8/rvpHklqARuDnkn4JEBHPAz8CXgDuA66JiGPZn7lX0pTsS3wO+KyktXTMOXy3P3nMzKz/1PGHe35paGiI5ubmtGOYmeUVSU9FRMPJxvnMZzMz68LFYGZmXbgYzMysCxeDmZl14WIwM7Mu8vJTSZJ2AH29Q0Y1HSfXFYJC2ZZC2Q7wtgxVhbIt/d2OUyOi5mSD8rIY+kNSc28+rpUPCmVbCmU7wNsyVBXKtgzWdvhQkpmZdeFiMDOzLoqxGJakHWAAFcq2FMp2gLdlqCqUbRmU7Si6OQYzMzuxYtxjMDOzEyiaYpB0qaRVktZK+nzaefpKUq2kByW9KOl5Sdelnam/JJVK+p2ke9LO0h+Sxku6S9JL2f8+jWln6gtJ12f/ba2U9ANJw9PO1FuSbpe0XdLKTusqJS2VtCb7fUKaGXurh235h+y/r2cl/UTS+CTeuyiKQVIp8A3gMuAM4CpJZ6Sbqs/agBsi4nRgHnBNHm/LcdcBL6YdYgDcAtwXEW8D5pCH2yRpKvBpoCEizgJKgSvTTfWWfA+4tNu6zwPLImImsCy7nA++x5u3ZSlwVkS8A1gNfCGJNy6KYgDmAmsjYn1EtAJ3AleknKlPImJrRDydfbyfjl8+eXuvbEnTgD8AvpN2lv6QNBZ4F9l7ikREa0TsSTdVn5UBIySVASM5wZ0Vh5qIeBjofo/NK4A7so/vAP5wUEP1Ua5tiYj7s3e8BHiMjjtfDrhiKYapwOZOyy3k8S/T4yRNB84BHk83Sb98FfhvQHvaQfppBrAD+KfsYbHvSBqVdqi3KiJeAf4R2ARsBfZGxP3ppuq3SRGxFTr+sAImppxnoHwc+EUSL1wsxZDr7tl5/XEsSaOB/wA+ExH70s7TF5IuB7ZHxFNpZxkAZcC5wDcj4hzgIPlzyOIN2ePvVwD1wBRglKQ/TTeVdSfpi3QcVv5+Eq9fLMXQAtR2Wp5GHu0edyepnI5S+H5E/DjtPP0wH3i/pI10HN57j6R/TTdSn7UALRFxfO/tLjqKIt9cAmyIiB0RcRT4MdCUcqb+2iZpMkD2+/aU8/SLpKuBy4GPRELnGxRLMTwJzJRUL6mCjsm0u1PO1CeSRMdx7Bcj4qa08/RHRHwhIqZFxHQ6/pv8KiLy8q/TiHgV2CxpdnbVAjrueZ5vNgHzJI3M/ltbQB5OondzN3B19vHVwM9SzNIvki4FPge8PyIOJfU+RVEM2cmaa4Ff0vGP/EcR8Xy6qfpsPvBndPx1vSL79b60QxkAfwN8X9KzwNnA/0o5z1uW3eO5C3gaeI6O3xF5c9awpB8AjwKzJbVI+gTwd8BCSWuAhdnlIa+HbbkVGAMszf6/f1si7+0zn83MrLOi2GMwM7PeczGYmVkXLgYzM+vCxWBmZl24GMzMrAsXg5mZdeFiMDOzLlwMZmbWxf8HJxurNBtPqOQAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(readings)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t = list(range(len(readings)))\n",
"t"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[10, 10, 10, nan, 5, 5, 5, 5, 5, 5, nan, -5, -5, -5, -5, nan, -10, -10, -10]\n",
"[0, 1, 2, 2, 2, 3, 4, 5, 6, 7, 7, 7, 8, 9, 10, 10, 10, 11, 12]\n"
]
}
],
"source": [
"def transform(readings, t):\n",
" new_r = []\n",
" new_t = []\n",
" for i in range(len(readings)-1):\n",
" new_r.append(readings[i])\n",
" new_t.append(t[i])\n",
" \n",
" if readings[i] != readings[i+1]:\n",
" new_r.append(float('nan'))\n",
" new_t.append(t[i])\n",
" new_r.append(readings[i+1])\n",
" new_t.append(t[i])\n",
" \n",
" new_r.append(readings[-1])\n",
" new_t.append(t[-1])\n",
" \n",
" return new_r, new_t\n",
"\n",
"new_readings, new_t = transform(readings, t)\n",
"print(new_readings)\n",
"print(new_t)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7f4cb741fb70>]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEcBJREFUeJzt3XuQXnd93/H3pxKmxbFrwLKNLAu5E48bmYkNeUaBeNoBfME4Nko60IpJqQrMiGQggSQzwcQzuISZDmkuNIkJ7gZc3NY1pA6OBQjb4tIxzATwyjVg+YIVx8TLOngJwSIhCRX59o896uxv/exFu3v20Wrfr5mdc87v93vO+Z7Rej/PufmkqpAk6ah/NOoCJEnHF4NBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJjY2jLmApTj/99Nq2bduoy5CkNeXAgQPfqqpNC41bk8Gwbds2xsfHR12GJK0pSb6+mHGeSpIkNQwGSVLDYJAkNQwGSVLDYJAkNVYkGJLcmOTJJPfPaHtOkv1JHummz57js7u7MY8k2b0S9UiSlm6ljhg+BFwxq+0a4NNVdR7w6W65keQ5wHXAjwM7gOvmChBJ0upYkecYquruJNtmNe8EXtrN3wT8b+Dts8a8AthfVd8GSLKf6YC5ZSXqmu1dHzvIA5OH+1j1SGzffCrXXX3BqMuQdILp8xrDmVX1BEA3PWPImLOBx2csT3RtT5NkT5LxJONTU1MrXqwkadqon3zOkLYaNrCqxoAxgMFgMHTMQvx2LUkL6/OI4ZtJngfQTZ8cMmYCOGfG8hZgsseaJEkL6DMY9gJH7zLaDdw+ZMydwOVJnt1ddL68a5MkjchK3a56C/AnwPlJJpK8EXgPcFmSR4DLumWSDJJ8AKC76Pxu4J7u59eOXoiWJI1GqpZ0un6kBoNB+X9XlaRjk+RAVQ0WGueTz5KkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkhsEgSWoYDJKkRq/BkOT8JPfN+Dmc5G2zxrw0yVMzxryzz5okSfPb2OfKq+ph4CKAJBuAbwC3DRn6uaq6qs9aJEmLs5qnki4B/rSqvr6K25QkHaPVDIZdwC1z9L0kyZeTfDLJBatYkyRpllUJhiQnAa8C/teQ7nuB51fVhcDvAX88xzr2JBlPMj41NdVfsZK0zq3WEcMrgXur6puzO6rqcFX9dTe/D3hGktOHjBurqkFVDTZt2tR/xZK0Tq1WMLyWOU4jJTkrSbr5HV1Nf7lKdUmSZun1riSAJM8CLgPeNKPtZwGq6gbg1cDPJTkC/C2wq6qq77okScP1HgxV9T3gubPabpgxfz1wfd91SJIWxyefJUkNg0GS1DAYJEkNg0GS1DAYJEkNg0GS1DAYJEkNg0GS1DAYJEkNg0GS1DAYJEkNg0GS1DAYJEkNg0GS1DAYJEkNg0GS1Og9GJI8luSrSe5LMj6kP0l+N8mhJF9J8qK+a5Ikza33N7h1XlZV35qj75XAed3PjwPv76aSpBE4Hk4l7QT+W037AnBakueNuihJWq9W44ihgLuSFPBfqmpsVv/ZwOMzlie6tidWobY1610fO8gDk4dHXYZGYPvmU7nu6gtGXYZOYKsRDBdX1WSSM4D9SR6qqrtn9GfIZ2p2Q5I9wB6ArVu39lOpJKn/YKiqyW76ZJLbgB3AzGCYAM6ZsbwFmByynjFgDGAwGDwtONYbvzFK6kuv1xiSnJzklKPzwOXA/bOG7QX+XXd30ouBp6rK00iSNCJ9HzGcCdyW5Oi2/mdV3ZHkZwGq6gZgH3AlcAj4HvD6nmuSJM2j12CoqkeBC4e03zBjvoA391mHJGnxjofbVSVJxxGDQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLU6C0YkpyT5LNJHkxyMMlbh4x5aZKnktzX/byzr3okSYvT5xvcjgC/XFX3du99PpBkf1U9MGvc56rqqh7rkCQdg96OGKrqiaq6t5v/LvAgcHZf25MkrYxVucaQZBvwQuCLQ7pfkuTLST6Z5IJ51rEnyXiS8ampqZ4qlST1HgxJfgj4I+BtVXV4Vve9wPOr6kLg94A/nms9VTVWVYOqGmzatKm/giVpnes1GJI8g+lQuLmqPjq7v6oOV9Vfd/P7gGckOb3PmiRJ8+vzrqQAHwQerKrfnmPMWd04kuzo6vnLvmqSJC2sz7uSLgZeB3w1yX1d268CWwGq6gbg1cDPJTkC/C2wq6qqx5okSQvoLRiq6vNAFhhzPXB9XzVIko6dTz5LkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhqr8c7nK5I8nORQkmuG9D8zyUe6/i8m2dZ3TZKkufX9zucNwPuAVwLbgdcm2T5r2BuBv6qqHwbeC/x6nzVJkubX9xHDDuBQVT1aVd8HPgzsnDVmJ3BTN38rcMnR90BLklZf38FwNvD4jOWJrm3omKo6AjwFPLfnuiRJc+g7GIZ9868ljCHJniTjScanpqZWpDhJ0tP1HQwTwDkzlrcAk3ONSbIR+KfAt2evqKrGqmpQVYNNmzb1VK4kqe9guAc4L8m5SU4CdgF7Z43ZC+zu5l8NfKaqnnbEIElaHRv7XHlVHUnyFuBOYANwY1UdTPJrwHhV7QU+CPz3JIeYPlLY1WdNkqT59RoMAFW1D9g3q+2dM+b/DnhN33VIkhbHJ58lSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLU6OVFPUl+A7ga+D7wp8Drq+o7Q8Y9BnwX+AFwpKoGfdQjSVq8vo4Y9gMvqKofBb4GvGOesS+rqosMBUk6PvQSDFV1V1Ud6Ra/AGzpYzuSpJW3GtcY3gB8co6+Au5KciDJnlWoRZK0gCVfY0jyKeCsIV3XVtXt3ZhrgSPAzXOs5uKqmkxyBrA/yUNVdfcc29sD7AHYunXrUsuWJC1gycFQVZfO159kN3AVcElV1RzrmOymTya5DdgBDA2GqhoDxgAGg8HQ9UmSlq+XU0lJrgDeDryqqr43x5iTk5xydB64HLi/j3okSYvX1zWG64FTmD49dF+SGwCSbE6yrxtzJvD5JF8GvgR8oqru6KkeSdIi9fIcQ1X98Bztk8CV3fyjwIV9bF+StHQ++SxJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqRGb8GQ5D8k+Ub3Brf7klw5x7grkjyc5FCSa/qqR5K0OL28wW2G91bVb87VmWQD8D7gMmACuCfJ3qp6oOe6JElz6DsYFrIDONS95pMkHwZ2AgaDNMS7PnaQByYPj7qMNWf75lO57uoLRl3GmtH3NYa3JPlKkhuTPHtI/9nA4zOWJ7q2p0myJ8l4kvGpqak+apUkscwjhiSfAs4a0nUt8H7g3UB1098C3jB7FUM+W8O2VVVjwBjAYDAYOkY60fmtV6thWcFQVZcuZlySPwA+PqRrAjhnxvIWYHI5NUmSlqfPu5KeN2Pxp4H7hwy7BzgvyblJTgJ2AXv7qkmStLA+Lz7/pyQXMX1q6DHgTQBJNgMfqKorq+pIkrcAdwIbgBur6mCPNUmSFtBbMFTV6+ZonwSunLG8D9jXVx2SpGPjk8+SpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElq9PKiniQfAc7vFk8DvlNVFw0Z9xjwXeAHwJGqGvRRjyRp8XoJhqr6N0fnk/wW8NQ8w19WVd/qow5J0rHr853PJAnwr4GX97kdSdLK6fsaw78AvllVj8zRX8BdSQ4k2TPfipLsSTKeZHxqamrFC5UkTVvyEUOSTwFnDem6tqpu7+ZfC9wyz2ourqrJJGcA+5M8VFV3DxtYVWPAGMBgMKil1i1Jmt+Sg6GqLp2vP8lG4F8BPzbPOia76ZNJbgN2AEODQZK0Ovo8lXQp8FBVTQzrTHJyklOOzgOXA/f3WI8kaRH6DIZdzDqNlGRzkn3d4pnA55N8GfgS8ImquqPHeiRJi9DbXUlV9e+HtE0CV3bzjwIX9rV9SdLS+OSzJKlhMEiSGgaDJKlhMEiSGgaDJKlhMEiSGgaDJKlhMEiSGgaDJKlhMEiSGgaDJKlhMEiSGgaDJKlhMEiSGgaDJKmxrGBI8pokB5P8Q5LBrL53JDmU5OEkr5jj8+cm+WKSR5J8JMlJy6lHkrR8yz1iuJ/p9zo372lOsp3pN7hdAFwB/H6SDUM+/+vAe6vqPOCvgDcusx5J0jItKxiq6sGqenhI107gw1X191X1Z8AhYMfMAUkCvBy4tWu6Cfip5dQjSVq+vl7teTbwhRnLE13bTM8FvlNVR+YZI0nL8q6PHeSBycOjLmNFbN98KtddfUHv21kwGJJ8CjhrSNe1VXX7XB8b0lZLGDOzjj3AHoCtW7fONUyStEwLBkNVXbqE9U4A58xY3gJMzhrzLeC0JBu7o4ZhY2bWMQaMAQwGgzkDRJJmWo1v2Ceavm5X3QvsSvLMJOcC5wFfmjmgqgr4LPDqrmk3MNcRiCRplSz3dtWfTjIBvAT4RJI7AarqIPCHwAPAHcCbq+oH3Wf2JdncreLtwC8lOcT0NYcPLqceSdLyZfqL+9oyGAxqfHx81GVI0pqS5EBVDRYa55PPkqSGwSBJahgMkqSGwSBJahgMkqTGmrwrKckU8PUlfvx0ph+uOxGcKPtyouwHuC/HqxNlX5a7H8+vqk0LDVqTwbAcScYXc7vWWnCi7MuJsh/gvhyvTpR9Wa398FSSJKlhMEiSGusxGMZGXcAKOlH25UTZD3Bfjlcnyr6syn6su2sMkqT5rccjBknSPNZNMCS5IsnDSQ4luWbU9SxVknOSfDbJg0kOJnnrqGtariQbkvyfJB8fdS3LkeS0JLcmeaj793nJqGtaiiS/2P1u3Z/kliT/eNQ1LVaSG5M8meT+GW3PSbI/ySPd9NmjrHGx5tiX3+h+v76S5LYkp/Wx7XURDEk2AO8DXglsB16bZPtoq1qyI8AvV9WPAC8G3ryG9+WotwIPjrqIFfA7wB1V9c+BC1mD+5TkbOAXgEFVvQDYAOwabVXH5EPAFbPargE+XVXnAZ/ulteCD/H0fdkPvKCqfhT4GvCOPja8LoIB2AEcqqpHq+r7wIeBnSOuaUmq6omqureb/y7Tf3zW7Luyk2wBfhL4wKhrWY4kpwL/ku6dIlX1/ar6zmirWrKNwD9JshF4FvO8WfF4U1V3A9+e1bwTuKmbvwn4qVUtaomG7UtV3dW98RLgC0y/+XLFrZdgOBt4fMbyBGv4j+lRSbYBLwS+ONpKluU/A78C/MOoC1mmfwZMAf+1Oy32gSQnj7qoY1VV3wB+E/hz4Angqaq6a7RVLduZVfUETH+xAs4YcT0r5Q3AJ/tY8XoJhgxpW9O3YyX5IeCPgLdV1eFR17MUSa4CnqyqA6OuZQVsBF4EvL+qXgj8DWvnlMX/151/3wmcC2wGTk7yb0dblWZLci3Tp5Vv7mP96yUYJoBzZixvYQ0dHs+W5BlMh8LNVfXRUdezDBcDr0ryGNOn916e5H+MtqQlmwAmquro0dutTAfFWnMp8GdVNVVV/xf4KPATI65pub6Z5HkA3fTJEdezLEl2A1cBP1M9PW+wXoLhHuC8JOcmOYnpi2l7R1zTkiQJ0+exH6yq3x51PctRVe+oqi1VtY3pf5PPVNWa/HZaVX8BPJ7k/K7pEqbfeb7W/Dnw4iTP6n7XLmENXkSfZS+wu5vfDdw+wlqWJckVwNuBV1XV9/razroIhu5izVuAO5n+Jf/Dqjo42qqW7GLgdUx/u76v+7ly1EUJgJ8Hbk7yFeAi4D+OuJ5j1h3x3ArcC3yV6b8Ra+ap4SS3AH8CnJ9kIskbgfcAlyV5BLisWz7uzbEv1wOnAPu7//Zv6GXbPvksSZppXRwxSJIWz2CQJDUMBklSw2CQJDUMBklSw2CQJDUMBklSw2CQJDX+H8DrvhpufKCDAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(new_t, new_readings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment