Created
October 9, 2024 16:58
-
-
Save mducle/a24d09afe8365ee5c3a6c5469f540904 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"id": "31bff45f-84a4-47dd-b957-b014c02945bb", | |
"metadata": {}, | |
"source": [ | |
"Notebook tested on Windows 10, in a conda environment setup with:\n", | |
"\n", | |
"```\n", | |
"mamba create -n lucan python=3.10 vaex jupyter\n", | |
"mamba activate lucan\n", | |
"python -m pip install pace_neutrons\n", | |
"cd d:/src/lucan\n", | |
"python -m pip install -e .\n", | |
"jupyter notebook\n", | |
"```\n", | |
"\n", | |
"Data files can be download from [this Zenodo archive](https://zenodo.org/records/5020485)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "908fc6ac-4b1f-4381-9c8c-09c6357f8320", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Config not found, using default settings. To preserve settings between sessions run `lucan.settings.settings.save()`.\n" | |
] | |
} | |
], | |
"source": [ | |
"from pathlib import Path\n", | |
"\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"import lucan\n", | |
"from lucan.constants import Emode\n", | |
"from lucan.gen_sqw import gen_sqw_from_nxspe\n", | |
"from lucan.goniometers import Goniometer\n", | |
"from lucan.samples import Sample\n", | |
"from lucan.sqw import SQw\n", | |
"from lucan.projections import INSTRUMENT_PROJECTION, LinearProjection\n", | |
"\n", | |
"# Set up\n", | |
"h5path = Path(\"d:/src/edatc/data/\")\n", | |
"nxspes = [Path(h5path / f\"map{i}_ei400.nxspe\") for i in range(15052, 15098)]\n", | |
"out_file = Path(\"d:/src/lucan/output.h5\")\n", | |
"\n", | |
"gon = Goniometer.from_zip(u=[1, 0, 0], v=[0, 1, 0],\n", | |
" psi=range(0,91,2), omega=0., dpsi=0., gl=0., gs=0.,\n", | |
" degrees=True)\n", | |
"sample = Sample(\"geoff\", [2.87, 2.87, 2.87], [90.0, 90.0, 90.0])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "609072b7-e892-4243-b428-5570e3634d57", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.01s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 1.85s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 1.84s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 1.83s = 0.0m = 0.0h\n", | |
" " | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"D:\\src\\lucan\\src\\lucan\\sqw.py:418: UserWarning: rename 'ren' to 'E' does not create an index anymore. Try using swap_dims instead or use set_index after rename to create an indexed coordinate.\n", | |
" .rename(dict(zip(tmp_coords, proj.INDICES)))\n" | |
] | |
} | |
], | |
"source": [ | |
"x = SQw.load(out_file)\n", | |
"# Make a cut over all the data\n", | |
"j = x.cut(LinearProjection([-1, 1, 0], [1, 1, 0]), [(-13.025, 13.025, 0.05), (-13.014, 13.014, 0.03), (-100, 100), (-100, 1000)])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "ca91f00c-3799-4b27-a776-e83f12307356", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:19<00:00, 9.77s/it]\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"19.5 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n1 -r1\n", | |
"rinsp = j.inspect_runs([1,2])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"id": "2f3f78e8-5101-4108-a3e6-edd5d696fff4", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"j._data.materialize(inplace=True);" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"id": "de97bfd7-cc9a-47a2-8692-25a5def3a30d", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:17<00:00, 9.00s/it]\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"18 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n1 -r1\n", | |
"rinsp = j.inspect_runs([1,2])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"id": "ce8c61f9-ec4b-4dd3-bad7-5c8b95224914", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.01s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 1.68s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 1.67s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 1.66s = 0.0m = 0.0h\n", | |
" " | |
] | |
} | |
], | |
"source": [ | |
"import vaex\n", | |
"x = SQw.load(out_file)\n", | |
"# Make a cut over all the data\n", | |
"j = x.cut(LinearProjection([-1, 1, 0], [1, 1, 0]), [(-13.025, 13.025, 0.05), (-13.014, 13.014, 0.03), (-100, 100), (-100, 1000)])\n", | |
"j._data = vaex.from_pandas(j.data.to_pandas_df())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"id": "47a60711-1ff1-4a6a-9761-bd6b0599ed25", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"100%|████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:19<00:00, 9.86s/it]" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"19.7 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)\n" | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n1 -r1\n", | |
"rinsp = j.inspect_runs([1,2])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "4c2f73e0-1cf1-4401-86b7-39960c019000", | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "7ff4e586-4643-4fed-9765-e95c4f08815d", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Config not found, using default settings. To preserve settings between sessions run `lucan.settings.settings.save()`.\n" | |
] | |
} | |
], | |
"source": [ | |
"from pathlib import Path\n", | |
"\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"\n", | |
"import lucan\n", | |
"from lucan.constants import Emode\n", | |
"from lucan.gen_sqw import gen_sqw_from_nxspe\n", | |
"from lucan.goniometers import Goniometer\n", | |
"from lucan.samples import Sample\n", | |
"from lucan.sqw import SQw\n", | |
"from lucan.projections import INSTRUMENT_PROJECTION, LinearProjection\n", | |
"\n", | |
"# Set up\n", | |
"h5path = Path(\"d:/src/edatc/data/\")\n", | |
"nxspes = [Path(h5path / f\"map{i}_ei400.nxspe\") for i in range(15052, 15098)]\n", | |
"out_file = Path(\"d:/src/lucan/output.h5\")\n", | |
"\n", | |
"gon = Goniometer.from_zip(u=[1, 0, 0], v=[0, 1, 0],\n", | |
" psi=range(0,91,2), omega=0., dpsi=0., gl=0., gs=0.,\n", | |
" degrees=True)\n", | |
"sample = Sample(\"geoff\", [2.87, 2.87, 2.87], [90.0, 90.0, 90.0])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "3eaf5314-a4a5-45ad-9918-01fbd5c9902c", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"x = SQw.load(out_file)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "e5dd8b90-4d1d-4938-8d8e-56c8956bc0cc", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 1.77s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 1.76s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 1.75s = 0.0m = 0.0h\n", | |
" " | |
] | |
}, | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"D:\\src\\lucan\\src\\lucan\\sqw.py:418: UserWarning: rename 'ren' to 'E' does not create an index anymore. Try using swap_dims instead or use set_index after rename to create an indexed coordinate.\n", | |
" .rename(dict(zip(tmp_coords, proj.INDICES)))\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"9.41 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n1 -r1\n", | |
"j = x.cut(LinearProjection([-1, 1, 0], [1, 1, 0]), [(-3.025, 3.025, 0.05), (-3.014, 3.014, 0.03), (-0.1, 0.1), (75., 85.)])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "04d5dd71-bdb2-4845-9a2f-7d78d5c45993", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"x._data.materialize(inplace=True);" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "dbe3e5f6-1114-4096-ab45-1492a7e5697c", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.01s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.01s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 1.52s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 1.50s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 1.49s = 0.0m = 0.0h\n", | |
" 8.64 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n1 -r1\n", | |
"j = x.cut(LinearProjection([-1, 1, 0], [1, 1, 0]), [(-3.025, 3.025, 0.05), (-3.014, 3.014, 0.03), (-0.1, 0.1), (75., 85.)])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"id": "6a0f45b8-b040-484f-b723-d88b9eda4703", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.01s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 1.52s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 1.50s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 1.49s = 0.0m = 0.0h\n", | |
" 8.66 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n1 -r1\n", | |
"j = x.cut(LinearProjection([-1, 1, 0], [1, 1, 0]), [(-3.025, 3.025, 0.05), (-3.014, 3.014, 0.03), (-0.1, 0.1), (75., 85.)])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"id": "8207a0eb-41b8-46fd-8ecc-7ff281f653b7", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import vaex\n", | |
"x = SQw.load(out_file)\n", | |
"x._data = vaex.from_pandas(x.data.to_pandas_df())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"id": "a8649e26-85b9-4180-ab42-ce664ad79194", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.01s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.01s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 1.56s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 1.55s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 1.54s = 0.0m = 0.0h\n", | |
" 10.4 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n1 -r1\n", | |
"j = x.cut(LinearProjection([-1, 1, 0], [1, 1, 0]), [(-3.025, 3.025, 0.05), (-3.014, 3.014, 0.03), (-0.1, 0.1), (75., 85.)])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"id": "31a045a1-6648-4365-b168-f8b515337430", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"x = SQw.load(out_file)\n", | |
"x._data.materialize(inplace=True)\n", | |
"# Evaluate expressions on all columns to load them into memory\n", | |
"for col in x._data.get_column_names(hidden=True):\n", | |
" x._data[col].sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"id": "a7f40f4a-32fe-416f-bbf1-1c92842586e0", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 0.01s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"sum [########################################] 100.00% elapsed time : 0.01s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.00s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 0.01s = 0.0m = 0.0h\n", | |
"mean [########################################] 100.00% elapsed time : 1.59s = 0.0m = 0.0h \n", | |
"sum [########################################] 100.00% elapsed time : 1.58s = 0.0m = 0.0h\n", | |
"count [########################################] 100.00% elapsed time : 1.56s = 0.0m = 0.0h\n", | |
" 9.4 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit -n1 -r1\n", | |
"j = x.cut(LinearProjection([-1, 1, 0], [1, 1, 0]), [(-3.025, 3.025, 0.05), (-3.014, 3.014, 0.03), (-0.1, 0.1), (75., 85.)])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "6eea5475-ee56-45b6-9c10-8fb1f517517b", | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.10.15" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment