Created
April 22, 2025 16:03
-
-
Save minrk/5187b99ba03f2f0675bbfd1d359232b6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"id": "9148ab11-0300-44de-9625-7d8737abc0b7", | |
"metadata": {}, | |
"source": [ | |
"# collect timing of github status checks\n", | |
"\n", | |
"Used to compute things like [this](https://github.com/conda-forge/petsc4py-feedstock/pull/112#issuecomment-2586817022)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 241, | |
"id": "96eef607-7395-4b06-b3cd-13c219f36109", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from subprocess import run\n", | |
"try:\n", | |
" token = run([\"gh\", \"auth\", \"token\"], check=True, text=True, capture_output=True).stdout.strip()\n", | |
"except Exception:\n", | |
" token = None\n", | |
" \n", | |
"from github import Github as GitHub\n", | |
"gh = GitHub(token)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 248, | |
"id": "365f50ab-ce20-403f-82e7-1839eafdc319", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"repo = gh.get_repo(\"conda-forge/fenics-dolfinx-feedstock\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 243, | |
"id": "54197c47-cba6-4fcb-b5b2-d5355221d566", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 244, | |
"id": "bb6a0483-433c-488d-8978-5a26b283c8a0", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import re\n", | |
"\n", | |
"name_pat = re.compile(r\"\\(Build\\s+\\w+\\s+([\\w\\.]+)\\)?\")\n", | |
"\n", | |
"def extract_name(name):\n", | |
" m = name_pat.search(name)\n", | |
" if m:\n", | |
" return m.group(1)\n", | |
" else:\n", | |
" return name\n", | |
"\n", | |
"def get_checks_df(repo, pr):\n", | |
" records = []\n", | |
" if isinstance(pr, int):\n", | |
" pr = repo.get_pull(pr)\n", | |
" for check in repo.get_commit(pr.head.sha).get_check_runs():\n", | |
" # exclude meta tasks, like the overall job and Check Skip\n", | |
" if \"Build\" not in check.name:\n", | |
" continue\n", | |
" name = extract_name(check.name)\n", | |
" records.append(\n", | |
" {\n", | |
" \"name\": name,\n", | |
" \"started\": check.started_at,\n", | |
" \"completed\": check.completed_at,\n", | |
" \"duration\": (check.completed_at - check.started_at),\n", | |
" \"status\": check.conclusion,\n", | |
" }\n", | |
" )\n", | |
" return pd.DataFrame.from_records(records).sort_values(\"started\").reset_index(drop=True)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 245, | |
"id": "938f0f7b-3a46-4d9b-9240-3805afea11bb", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"flat_df = get_checks_df(repo, 99)\n", | |
"split_df = get_checks_df(repo, 100)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 246, | |
"id": "229a5e17-dab2-4536-82d1-c0fe24c017b8", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"before_df = get_checks_df(repo, 98)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 247, | |
"id": "d2a6f3e5-51bc-4e22-8841-1f5cd4718aaf", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Timedelta('1 days 23:11:17')" | |
] | |
}, | |
"execution_count": 247, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"before_df.duration.sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 249, | |
"id": "28ecc8a2-8ebb-480b-8524-58db9f558126", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"petsc4py = gh.get_repo(\"conda-forge/petsc4py-feedstock\")\n", | |
"before_df = get_checks_df(petsc4py, 111)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 260, | |
"id": "7b108ada-a6e1-47d6-8d23-612b9dce84aa", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Timedelta('0 days 00:51:03')" | |
] | |
}, | |
"execution_count": 260, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"before_df.completed.max() - before_df.started.min()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 261, | |
"id": "628e7fc4-cbb3-4137-a92a-8e3a13d03af8", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Timedelta('1 days 12:24:58')" | |
] | |
}, | |
"execution_count": 261, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"before_df.duration.sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 262, | |
"id": "1f73052c-466c-42d2-a4d2-9ce5665c9d1f", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"after_df = get_checks_df(petsc4py, 112)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 293, | |
"id": "a13e7016-2362-49b4-8fb4-e28858453591", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/var/folders/qr/3vxfnp1x2t1fw55dr288mphc0000gn/T/ipykernel_76070/2980723383.py:6: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" last_split_df.started -= offset\n", | |
"/var/folders/qr/3vxfnp1x2t1fw55dr288mphc0000gn/T/ipykernel_76070/2980723383.py:7: SettingWithCopyWarning: \n", | |
"A value is trying to be set on a copy of a slice from a DataFrame\n", | |
"\n", | |
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
" last_split_df.completed -= offset\n" | |
] | |
} | |
], | |
"source": [ | |
"# artificial: split_df had one retry, which skews things\n", | |
"# set start of last job to start of second to last job\n", | |
"last_split_df = after_df.iloc[-1]\n", | |
"next_to_last = after_df.iloc[-2]\n", | |
"offset = last_split_df.started - next_to_last.started\n", | |
"last_split_df.started -= offset\n", | |
"last_split_df.completed -= offset\n", | |
"after_df.iloc[-1] = last_split_df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 294, | |
"id": "d6345dc6-e5fd-4039-b3ed-fbd7a44dace7", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"after_df[\"tool\"] = \"rattler-build\"\n", | |
"before_df[\"tool\"] = \"conda-build\"\n", | |
"df = pd.concat([after_df, before_df])\n", | |
"df[\"duration\"] = df[\"duration\"].dt.total_seconds()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 295, | |
"id": "12a0dc41-27a7-4c72-8bae-55bc3f9d1cc6", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"220" | |
] | |
}, | |
"execution_count": 295, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"len(before_df)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 296, | |
"id": "d0305ef0-7ead-4c13-8531-26c0ad546f8e", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"220" | |
] | |
}, | |
"execution_count": 296, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"len(after_df)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 308, | |
"id": "15446c85-c387-4296-acd8-f34f67f75c9b", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"36.416111111111114" | |
] | |
}, | |
"execution_count": 308, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"before_df.duration.sum().total_seconds() / 3600" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 309, | |
"id": "51ec4bdd-4ac2-4c72-bbaf-13d9c044b163", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"24.595" | |
] | |
}, | |
"execution_count": 309, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"after_df.duration.sum().total_seconds() / 3600" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 299, | |
"id": "23b45150-de3b-4676-9e6c-9afa425a8d2a", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(Timedelta('0 days 00:06:13'),\n", | |
" Timedelta('0 days 00:09:53'),\n", | |
" Timedelta('0 days 00:16:13'))" | |
] | |
}, | |
"execution_count": 299, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"before_df.duration.min(), before_df.duration.median(), before_df.duration.max()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 300, | |
"id": "32bf48c9-dabd-42db-a519-dcaefe0948fd", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(Timedelta('0 days 00:03:42'),\n", | |
" Timedelta('0 days 00:06:58'),\n", | |
" Timedelta('0 days 00:10:59'))" | |
] | |
}, | |
"execution_count": 300, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"after_df.duration.min(), after_df.duration.median(), after_df.duration.max()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 305, | |
"id": "df7d0295-ec68-459a-b0f9-0b292314c44f", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Timedelta('0 days 00:51:03')" | |
] | |
}, | |
"execution_count": 305, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"before_df.completed.max() - before_df.started.min()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 306, | |
"id": "b69170af-ca61-4493-a533-bff4aab572ef", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Timedelta('0 days 00:36:40')" | |
] | |
}, | |
"execution_count": 306, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"after_df.completed.max() - after_df.started.min()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 280, | |
"id": "0a233345-53e8-4ad0-a458-8f2e428a6f24", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"\n", | |
"<style>\n", | |
" #altair-viz-5e53010eb42243c0b36f688c00cbabc4.vega-embed {\n", | |
" width: 100%;\n", | |
" display: flex;\n", | |
" }\n", | |
"\n", | |
" #altair-viz-5e53010eb42243c0b36f688c00cbabc4.vega-embed details,\n", | |
" #altair-viz-5e53010eb42243c0b36f688c00cbabc4.vega-embed details summary {\n", | |
" position: relative;\n", | |
" }\n", | |
"</style>\n", | |
"<div id=\"altair-viz-5e53010eb42243c0b36f688c00cbabc4\"></div>\n", | |
"<script type=\"text/javascript\">\n", | |
" var VEGA_DEBUG = (typeof VEGA_DEBUG == \"undefined\") ? {} : VEGA_DEBUG;\n", | |
" (function(spec, embedOpt){\n", | |
" let outputDiv = document.currentScript.previousElementSibling;\n", | |
" if (outputDiv.id !== \"altair-viz-5e53010eb42243c0b36f688c00cbabc4\") {\n", | |
" outputDiv = document.getElementById(\"altair-viz-5e53010eb42243c0b36f688c00cbabc4\");\n", | |
" }\n", | |
" const paths = {\n", | |
" \"vega\": \"https://cdn.jsdelivr.net/npm/vega@5?noext\",\n", | |
" \"vega-lib\": \"https://cdn.jsdelivr.net/npm/vega-lib?noext\",\n", | |
" \"vega-lite\": \"https://cdn.jsdelivr.net/npm/[email protected]?noext\",\n", | |
" \"vega-embed\": \"https://cdn.jsdelivr.net/npm/vega-embed@6?noext\",\n", | |
" };\n", | |
"\n", | |
" function maybeLoadScript(lib, version) {\n", | |
" var key = `${lib.replace(\"-\", \"\")}_version`;\n", | |
" return (VEGA_DEBUG[key] == version) ?\n", | |
" Promise.resolve(paths[lib]) :\n", | |
" new Promise(function(resolve, reject) {\n", | |
" var s = document.createElement('script');\n", | |
" document.getElementsByTagName(\"head\")[0].appendChild(s);\n", | |
" s.async = true;\n", | |
" s.onload = () => {\n", | |
" VEGA_DEBUG[key] = version;\n", | |
" return resolve(paths[lib]);\n", | |
" };\n", | |
" s.onerror = () => reject(`Error loading script: ${paths[lib]}`);\n", | |
" s.src = paths[lib];\n", | |
" });\n", | |
" }\n", | |
"\n", | |
" function showError(err) {\n", | |
" outputDiv.innerHTML = `<div class=\"error\" style=\"color:red;\">${err}</div>`;\n", | |
" throw err;\n", | |
" }\n", | |
"\n", | |
" function displayChart(vegaEmbed) {\n", | |
" vegaEmbed(outputDiv, spec, embedOpt)\n", | |
" .catch(err => showError(`Javascript Error: ${err.message}<br>This usually means there's a typo in your chart specification. See the javascript console for the full traceback.`));\n", | |
" }\n", | |
"\n", | |
" if(typeof define === \"function\" && define.amd) {\n", | |
" requirejs.config({paths});\n", | |
" require([\"vega-embed\"], displayChart, err => showError(`Error loading script: ${err.message}`));\n", | |
" } else {\n", | |
" maybeLoadScript(\"vega\", \"5\")\n", | |
" .then(() => maybeLoadScript(\"vega-lite\", \"5.20.1\"))\n", | |
" .then(() => maybeLoadScript(\"vega-embed\", \"6\"))\n", | |
" .catch(showError)\n", | |
" .then(() => displayChart(vegaEmbed));\n", | |
" }\n", | |
" })({\"config\": {\"view\": {\"continuousWidth\": 300, \"continuousHeight\": 300}}, \"data\": {\"name\": \"data-847288ab7f9219ff1878b3e5f8ebb3e9\"}, \"mark\": {\"type\": \"bar\"}, \"encoding\": {\"color\": {\"field\": \"tool\", \"type\": \"nominal\"}, \"facet\": {\"field\": \"tool\", \"type\": \"nominal\"}, \"x\": {\"bin\": true, \"field\": \"duration\", \"type\": \"quantitative\"}, \"y\": {\"aggregate\": \"count\", \"type\": \"quantitative\"}}, \"$schema\": \"https://vega.github.io/schema/vega-lite/v5.20.1.json\", \"datasets\": {\"data-847288ab7f9219ff1878b3e5f8ebb3e9\": [{\"name\": \"osx_64_mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:14+00:00\", \"completed\": \"2025-01-13T09:17:21+00:00\", \"duration\": 247.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:14+00:00\", \"completed\": \"2025-01-13T09:19:57+00:00\", \"duration\": 403.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:15+00:00\", \"completed\": \"2025-01-13T09:18:42+00:00\", \"duration\": 327.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:15+00:00\", \"completed\": \"2025-01-13T09:17:34+00:00\", \"duration\": 259.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:16+00:00\", \"completed\": \"2025-01-13T09:18:16+00:00\", \"duration\": 300.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:13:16+00:00\", \"completed\": \"2025-01-13T09:18:44+00:00\", \"duration\": 328.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:17+00:00\", \"completed\": \"2025-01-13T09:20:38+00:00\", \"duration\": 441.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:17+00:00\", \"completed\": \"2025-01-13T09:18:51+00:00\", \"duration\": 334.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:17+00:00\", \"completed\": \"2025-01-13T09:19:18+00:00\", \"duration\": 361.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:28+00:00\", \"completed\": \"2025-01-13T09:18:12+00:00\", \"duration\": 284.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:30+00:00\", \"completed\": \"2025-01-13T09:18:07+00:00\", \"duration\": 277.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:30+00:00\", \"completed\": \"2025-01-13T09:18:08+00:00\", \"duration\": 278.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:30+00:00\", \"completed\": \"2025-01-13T09:18:28+00:00\", \"duration\": 298.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:13:30+00:00\", \"completed\": \"2025-01-13T09:18:20+00:00\", \"duration\": 290.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:13:30+00:00\", \"completed\": \"2025-01-13T09:18:24+00:00\", \"duration\": 294.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:13:31+00:00\", \"completed\": \"2025-01-13T09:18:29+00:00\", \"duration\": 298.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:31+00:00\", \"completed\": \"2025-01-13T09:17:56+00:00\", \"duration\": 265.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:31+00:00\", \"completed\": \"2025-01-13T09:18:24+00:00\", \"duration\": 293.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:31+00:00\", \"completed\": \"2025-01-13T09:18:18+00:00\", \"duration\": 287.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:31+00:00\", \"completed\": \"2025-01-13T09:20:13+00:00\", \"duration\": 402.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:32+00:00\", \"completed\": \"2025-01-13T09:18:28+00:00\", \"duration\": 296.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:32+00:00\", \"completed\": \"2025-01-13T09:19:13+00:00\", \"duration\": 341.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:32+00:00\", \"completed\": \"2025-01-13T09:17:49+00:00\", \"duration\": 257.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:32+00:00\", \"completed\": \"2025-01-13T09:19:03+00:00\", \"duration\": 331.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:33+00:00\", \"completed\": \"2025-01-13T09:19:35+00:00\", \"duration\": 362.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:33+00:00\", \"completed\": \"2025-01-13T09:19:52+00:00\", \"duration\": 379.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:33+00:00\", \"completed\": \"2025-01-13T09:19:12+00:00\", \"duration\": 339.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:33+00:00\", \"completed\": \"2025-01-13T09:18:38+00:00\", \"duration\": 305.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:13:33+00:00\", \"completed\": \"2025-01-13T09:18:49+00:00\", \"duration\": 316.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:33+00:00\", \"completed\": \"2025-01-13T09:18:40+00:00\", \"duration\": 307.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:13:33+00:00\", \"completed\": \"2025-01-13T09:18:02+00:00\", \"duration\": 269.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:33+00:00\", \"completed\": \"2025-01-13T09:18:14+00:00\", \"duration\": 281.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:34+00:00\", \"completed\": \"2025-01-13T09:19:27+00:00\", \"duration\": 353.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:34+00:00\", \"completed\": \"2025-01-13T09:18:56+00:00\", \"duration\": 322.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:34+00:00\", \"completed\": \"2025-01-13T09:18:57+00:00\", \"duration\": 323.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:34+00:00\", \"completed\": \"2025-01-13T09:18:25+00:00\", \"duration\": 291.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:13:34+00:00\", \"completed\": \"2025-01-13T09:19:31+00:00\", \"duration\": 357.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:13:34+00:00\", \"completed\": \"2025-01-13T09:18:26+00:00\", \"duration\": 292.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:34+00:00\", \"completed\": \"2025-01-13T09:18:42+00:00\", \"duration\": 308.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:35+00:00\", \"completed\": \"2025-01-13T09:18:43+00:00\", \"duration\": 308.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:13:35+00:00\", \"completed\": \"2025-01-13T09:18:37+00:00\", \"duration\": 302.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:35+00:00\", \"completed\": \"2025-01-13T09:18:32+00:00\", \"duration\": 297.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:35+00:00\", \"completed\": \"2025-01-13T09:18:21+00:00\", \"duration\": 286.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:35+00:00\", \"completed\": \"2025-01-13T09:18:26+00:00\", \"duration\": 291.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:36+00:00\", \"completed\": \"2025-01-13T09:17:31+00:00\", \"duration\": 235.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:37+00:00\", \"completed\": \"2025-01-13T09:19:15+00:00\", \"duration\": 338.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:37+00:00\", \"completed\": \"2025-01-13T09:19:42+00:00\", \"duration\": 365.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:38+00:00\", \"completed\": \"2025-01-13T09:18:22+00:00\", \"duration\": 284.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:13:38+00:00\", \"completed\": \"2025-01-13T09:19:48+00:00\", \"duration\": 370.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:13:42+00:00\", \"completed\": \"2025-01-13T09:18:30+00:00\", \"duration\": 288.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:17:43+00:00\", \"completed\": \"2025-01-13T09:24:48+00:00\", \"duration\": 425.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:17:52+00:00\", \"completed\": \"2025-01-13T09:21:50+00:00\", \"duration\": 238.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:17:57+00:00\", \"completed\": \"2025-01-13T09:23:14+00:00\", \"duration\": 317.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:18:04+00:00\", \"completed\": \"2025-01-13T09:23:00+00:00\", \"duration\": 296.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:18:16+00:00\", \"completed\": \"2025-01-13T09:22:15+00:00\", \"duration\": 239.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:18:16+00:00\", \"completed\": \"2025-01-13T09:22:04+00:00\", \"duration\": 228.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:18:23+00:00\", \"completed\": \"2025-01-13T09:23:16+00:00\", \"duration\": 293.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:18:26+00:00\", \"completed\": \"2025-01-13T09:22:10+00:00\", \"duration\": 224.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:18:26+00:00\", \"completed\": \"2025-01-13T09:22:12+00:00\", \"duration\": 226.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:18:32+00:00\", \"completed\": \"2025-01-13T09:22:27+00:00\", \"duration\": 235.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:18:35+00:00\", \"completed\": \"2025-01-13T09:22:23+00:00\", \"duration\": 228.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:18:37+00:00\", \"completed\": \"2025-01-13T09:22:19+00:00\", \"duration\": 222.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:18:37+00:00\", \"completed\": \"2025-01-13T09:22:29+00:00\", \"duration\": 232.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:18:37+00:00\", \"completed\": \"2025-01-13T09:24:42+00:00\", \"duration\": 365.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:18:40+00:00\", \"completed\": \"2025-01-13T09:22:58+00:00\", \"duration\": 258.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:18:40+00:00\", \"completed\": \"2025-01-13T09:22:39+00:00\", \"duration\": 239.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:18:43+00:00\", \"completed\": \"2025-01-13T09:22:47+00:00\", \"duration\": 244.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:18:45+00:00\", \"completed\": \"2025-01-13T09:23:22+00:00\", \"duration\": 277.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:18:45+00:00\", \"completed\": \"2025-01-13T09:24:04+00:00\", \"duration\": 319.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:18:46+00:00\", \"completed\": \"2025-01-13T09:22:35+00:00\", \"duration\": 229.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:18:47+00:00\", \"completed\": \"2025-01-13T09:22:36+00:00\", \"duration\": 229.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:18:48+00:00\", \"completed\": \"2025-01-13T09:28:13+00:00\", \"duration\": 565.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:18:52+00:00\", \"completed\": \"2025-01-13T09:26:05+00:00\", \"duration\": 433.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:18:54+00:00\", \"completed\": \"2025-01-13T09:22:55+00:00\", \"duration\": 241.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:18:54+00:00\", \"completed\": \"2025-01-13T09:28:41+00:00\", \"duration\": 587.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:18:56+00:00\", \"completed\": \"2025-01-13T09:28:18+00:00\", \"duration\": 562.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:18:56+00:00\", \"completed\": \"2025-01-13T09:27:14+00:00\", \"duration\": 498.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:18:57+00:00\", \"completed\": \"2025-01-13T09:28:33+00:00\", \"duration\": 576.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:18:59+00:00\", \"completed\": \"2025-01-13T09:28:01+00:00\", \"duration\": 542.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:18:59+00:00\", \"completed\": \"2025-01-13T09:26:16+00:00\", \"duration\": 437.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:19:03+00:00\", \"completed\": \"2025-01-13T09:24:58+00:00\", \"duration\": 355.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:19:05+00:00\", \"completed\": \"2025-01-13T09:23:30+00:00\", \"duration\": 265.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:19:06+00:00\", \"completed\": \"2025-01-13T09:27:38+00:00\", \"duration\": 512.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:19:07+00:00\", \"completed\": \"2025-01-13T09:25:18+00:00\", \"duration\": 371.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:19:09+00:00\", \"completed\": \"2025-01-13T09:26:25+00:00\", \"duration\": 436.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:19:13+00:00\", \"completed\": \"2025-01-13T09:27:52+00:00\", \"duration\": 519.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:19:27+00:00\", \"completed\": \"2025-01-13T09:26:39+00:00\", \"duration\": 432.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:19:28+00:00\", \"completed\": \"2025-01-13T09:27:03+00:00\", \"duration\": 455.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:19:28+00:00\", \"completed\": \"2025-01-13T09:28:01+00:00\", \"duration\": 513.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:19:33+00:00\", \"completed\": \"2025-01-13T09:26:53+00:00\", \"duration\": 440.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:19:36+00:00\", \"completed\": \"2025-01-13T09:24:44+00:00\", \"duration\": 308.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:19:39+00:00\", \"completed\": \"2025-01-13T09:27:04+00:00\", \"duration\": 445.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:19:44+00:00\", \"completed\": \"2025-01-13T09:28:32+00:00\", \"duration\": 528.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:19:50+00:00\", \"completed\": \"2025-01-13T09:28:33+00:00\", \"duration\": 523.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:19:54+00:00\", \"completed\": \"2025-01-13T09:27:17+00:00\", \"duration\": 443.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:20:04+00:00\", \"completed\": \"2025-01-13T09:28:04+00:00\", \"duration\": 480.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:20:15+00:00\", \"completed\": \"2025-01-13T09:24:59+00:00\", \"duration\": 284.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:20:19+00:00\", \"completed\": \"2025-01-13T09:27:59+00:00\", \"duration\": 460.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:20:29+00:00\", \"completed\": \"2025-01-13T09:28:26+00:00\", \"duration\": 477.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:20:59+00:00\", \"completed\": \"2025-01-13T09:26:19+00:00\", \"duration\": 320.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:22:05+00:00\", \"completed\": \"2025-01-13T09:29:47+00:00\", \"duration\": 462.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:22:19+00:00\", \"completed\": \"2025-01-13T09:29:38+00:00\", \"duration\": 439.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:22:26+00:00\", \"completed\": \"2025-01-13T09:30:36+00:00\", \"duration\": 490.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:22:31+00:00\", \"completed\": \"2025-01-13T09:31:29+00:00\", \"duration\": 538.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:22:32+00:00\", \"completed\": \"2025-01-13T09:31:03+00:00\", \"duration\": 511.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:22:32+00:00\", \"completed\": \"2025-01-13T09:30:29+00:00\", \"duration\": 477.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:22:38+00:00\", \"completed\": \"2025-01-13T09:30:30+00:00\", \"duration\": 472.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:22:42+00:00\", \"completed\": \"2025-01-13T09:30:12+00:00\", \"duration\": 450.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:22:46+00:00\", \"completed\": \"2025-01-13T09:32:40+00:00\", \"duration\": 594.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:22:52+00:00\", \"completed\": \"2025-01-13T09:30:00+00:00\", \"duration\": 428.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:22:56+00:00\", \"completed\": \"2025-01-13T09:30:07+00:00\", \"duration\": 431.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:23:01+00:00\", \"completed\": \"2025-01-13T09:30:28+00:00\", \"duration\": 447.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:23:07+00:00\", \"completed\": \"2025-01-13T09:30:28+00:00\", \"duration\": 441.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:23:07+00:00\", \"completed\": \"2025-01-13T09:31:23+00:00\", \"duration\": 496.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:23:16+00:00\", \"completed\": \"2025-01-13T09:30:55+00:00\", \"duration\": 459.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:23:22+00:00\", \"completed\": \"2025-01-13T09:31:33+00:00\", \"duration\": 491.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:23:25+00:00\", \"completed\": \"2025-01-13T09:27:46+00:00\", \"duration\": 261.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:23:37+00:00\", \"completed\": \"2025-01-13T09:31:29+00:00\", \"duration\": 472.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:23:38+00:00\", \"completed\": \"2025-01-13T09:32:28+00:00\", \"duration\": 530.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:23:54+00:00\", \"completed\": \"2025-01-13T09:28:37+00:00\", \"duration\": 283.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:24:33+00:00\", \"completed\": \"2025-01-13T09:33:15+00:00\", \"duration\": 522.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:24:59+00:00\", \"completed\": \"2025-01-13T09:29:45+00:00\", \"duration\": 286.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:25:06+00:00\", \"completed\": \"2025-01-13T09:31:08+00:00\", \"duration\": 362.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:25:11+00:00\", \"completed\": \"2025-01-13T09:31:59+00:00\", \"duration\": 408.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:25:14+00:00\", \"completed\": \"2025-01-13T09:33:10+00:00\", \"duration\": 476.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:25:36+00:00\", \"completed\": \"2025-01-13T09:31:39+00:00\", \"duration\": 363.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:26:23+00:00\", \"completed\": \"2025-01-13T09:34:49+00:00\", \"duration\": 506.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:26:34+00:00\", \"completed\": \"2025-01-13T09:33:32+00:00\", \"duration\": 418.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:26:35+00:00\", \"completed\": \"2025-01-13T09:32:46+00:00\", \"duration\": 371.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:26:36+00:00\", \"completed\": \"2025-01-13T09:32:39+00:00\", \"duration\": 363.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:26:51+00:00\", \"completed\": \"2025-01-13T09:33:40+00:00\", \"duration\": 409.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:27:08+00:00\", \"completed\": \"2025-01-13T09:34:10+00:00\", \"duration\": 422.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:27:16+00:00\", \"completed\": \"2025-01-13T09:34:09+00:00\", \"duration\": 413.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:27:18+00:00\", \"completed\": \"2025-01-13T09:34:56+00:00\", \"duration\": 458.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:27:25+00:00\", \"completed\": \"2025-01-13T09:34:11+00:00\", \"duration\": 406.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:27:32+00:00\", \"completed\": \"2025-01-13T09:33:58+00:00\", \"duration\": 386.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:27:55+00:00\", \"completed\": \"2025-01-13T09:36:26+00:00\", \"duration\": 511.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:28:01+00:00\", \"completed\": \"2025-01-13T09:33:22+00:00\", \"duration\": 321.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:28:11+00:00\", \"completed\": \"2025-01-13T09:37:06+00:00\", \"duration\": 535.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:28:15+00:00\", \"completed\": \"2025-01-13T09:35:27+00:00\", \"duration\": 432.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:28:17+00:00\", \"completed\": \"2025-01-13T09:35:15+00:00\", \"duration\": 418.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:28:22+00:00\", \"completed\": \"2025-01-13T09:34:53+00:00\", \"duration\": 391.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:28:23+00:00\", \"completed\": \"2025-01-13T09:35:08+00:00\", \"duration\": 405.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:28:33+00:00\", \"completed\": \"2025-01-13T09:35:45+00:00\", \"duration\": 432.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:28:34+00:00\", \"completed\": \"2025-01-13T09:35:35+00:00\", \"duration\": 421.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:28:44+00:00\", \"completed\": \"2025-01-13T09:35:23+00:00\", \"duration\": 399.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:28:44+00:00\", \"completed\": \"2025-01-13T09:35:31+00:00\", \"duration\": 407.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:28:47+00:00\", \"completed\": \"2025-01-13T09:38:20+00:00\", \"duration\": 573.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:28:48+00:00\", \"completed\": \"2025-01-13T09:39:09+00:00\", \"duration\": 621.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:28:53+00:00\", \"completed\": \"2025-01-13T09:34:51+00:00\", \"duration\": 358.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:28:55+00:00\", \"completed\": \"2025-01-13T09:33:16+00:00\", \"duration\": 261.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:29:03+00:00\", \"completed\": \"2025-01-13T09:37:03+00:00\", \"duration\": 480.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:29:54+00:00\", \"completed\": \"2025-01-13T09:38:30+00:00\", \"duration\": 516.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:30:00+00:00\", \"completed\": \"2025-01-13T09:36:43+00:00\", \"duration\": 403.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:30:04+00:00\", \"completed\": \"2025-01-13T09:39:22+00:00\", \"duration\": 558.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:30:18+00:00\", \"completed\": \"2025-01-13T09:39:22+00:00\", \"duration\": 544.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:30:24+00:00\", \"completed\": \"2025-01-13T09:38:04+00:00\", \"duration\": 460.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:30:28+00:00\", \"completed\": \"2025-01-13T09:38:04+00:00\", \"duration\": 456.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:30:43+00:00\", \"completed\": \"2025-01-13T09:39:19+00:00\", \"duration\": 516.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:30:44+00:00\", \"completed\": \"2025-01-13T09:41:10+00:00\", \"duration\": 626.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:30:48+00:00\", \"completed\": \"2025-01-13T09:39:35+00:00\", \"duration\": 527.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:30:51+00:00\", \"completed\": \"2025-01-13T09:40:04+00:00\", \"duration\": 553.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:30:53+00:00\", \"completed\": \"2025-01-13T09:38:26+00:00\", \"duration\": 453.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:31:21+00:00\", \"completed\": \"2025-01-13T09:40:33+00:00\", \"duration\": 552.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:31:23+00:00\", \"completed\": \"2025-01-13T09:40:42+00:00\", \"duration\": 559.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:31:28+00:00\", \"completed\": \"2025-01-13T09:35:52+00:00\", \"duration\": 264.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:31:35+00:00\", \"completed\": \"2025-01-13T09:39:33+00:00\", \"duration\": 478.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:31:42+00:00\", \"completed\": \"2025-01-13T09:39:51+00:00\", \"duration\": 489.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:31:51+00:00\", \"completed\": \"2025-01-13T09:39:34+00:00\", \"duration\": 463.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:31:52+00:00\", \"completed\": \"2025-01-13T09:40:05+00:00\", \"duration\": 493.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:31:57+00:00\", \"completed\": \"2025-01-13T09:37:19+00:00\", \"duration\": 322.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:32:19+00:00\", \"completed\": \"2025-01-13T09:36:33+00:00\", \"duration\": 254.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:32:42+00:00\", \"completed\": \"2025-01-13T09:40:28+00:00\", \"duration\": 466.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:32:56+00:00\", \"completed\": \"2025-01-13T09:40:30+00:00\", \"duration\": 454.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:33:01+00:00\", \"completed\": \"2025-01-13T09:42:17+00:00\", \"duration\": 556.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:33:07+00:00\", \"completed\": \"2025-01-13T09:40:04+00:00\", \"duration\": 417.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:33:28+00:00\", \"completed\": \"2025-01-13T09:38:08+00:00\", \"duration\": 280.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:33:28+00:00\", \"completed\": \"2025-01-13T09:42:36+00:00\", \"duration\": 548.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:33:35+00:00\", \"completed\": \"2025-01-13T09:44:34+00:00\", \"duration\": 659.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:33:46+00:00\", \"completed\": \"2025-01-13T09:40:18+00:00\", \"duration\": 392.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:33:54+00:00\", \"completed\": \"2025-01-13T09:43:11+00:00\", \"duration\": 557.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:34:08+00:00\", \"completed\": \"2025-01-13T09:41:22+00:00\", \"duration\": 434.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:34:19+00:00\", \"completed\": \"2025-01-13T09:41:46+00:00\", \"duration\": 447.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:34:24+00:00\", \"completed\": \"2025-01-13T09:42:03+00:00\", \"duration\": 459.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:34:28+00:00\", \"completed\": \"2025-01-13T09:44:19+00:00\", \"duration\": 591.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:34:30+00:00\", \"completed\": \"2025-01-13T09:43:00+00:00\", \"duration\": 510.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:35:03+00:00\", \"completed\": \"2025-01-13T09:43:31+00:00\", \"duration\": 508.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:35:05+00:00\", \"completed\": \"2025-01-13T09:40:08+00:00\", \"duration\": 303.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:35:07+00:00\", \"completed\": \"2025-01-13T09:42:44+00:00\", \"duration\": 457.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:35:10+00:00\", \"completed\": \"2025-01-13T09:42:26+00:00\", \"duration\": 436.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:35:26+00:00\", \"completed\": \"2025-01-13T09:43:19+00:00\", \"duration\": 473.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:35:36+00:00\", \"completed\": \"2025-01-13T09:43:28+00:00\", \"duration\": 472.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:35:39+00:00\", \"completed\": \"2025-01-13T09:43:08+00:00\", \"duration\": 449.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:35:39+00:00\", \"completed\": \"2025-01-13T09:43:11+00:00\", \"duration\": 452.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:35:47+00:00\", \"completed\": \"2025-01-13T09:43:34+00:00\", \"duration\": 467.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:35:49+00:00\", \"completed\": \"2025-01-13T09:43:33+00:00\", \"duration\": 464.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:36:03+00:00\", \"completed\": \"2025-01-13T09:45:10+00:00\", \"duration\": 547.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:36:12+00:00\", \"completed\": \"2025-01-13T09:43:58+00:00\", \"duration\": 466.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:36:41+00:00\", \"completed\": \"2025-01-13T09:44:17+00:00\", \"duration\": 456.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:37:15+00:00\", \"completed\": \"2025-01-13T09:43:56+00:00\", \"duration\": 401.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:37:17+00:00\", \"completed\": \"2025-01-13T09:44:36+00:00\", \"duration\": 439.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:38:20+00:00\", \"completed\": \"2025-01-13T09:45:42+00:00\", \"duration\": 442.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:38:27+00:00\", \"completed\": \"2025-01-13T09:47:05+00:00\", \"duration\": 518.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:38:35+00:00\", \"completed\": \"2025-01-13T09:46:24+00:00\", \"duration\": 469.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:38:38+00:00\", \"completed\": \"2025-01-13T09:45:33+00:00\", \"duration\": 415.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:38:46+00:00\", \"completed\": \"2025-01-13T09:46:02+00:00\", \"duration\": 436.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:39:29+00:00\", \"completed\": \"2025-01-13T09:48:27+00:00\", \"duration\": 538.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:39:34+00:00\", \"completed\": \"2025-01-13T09:47:25+00:00\", \"duration\": 471.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:39:42+00:00\", \"completed\": \"2025-01-13T09:47:05+00:00\", \"duration\": 443.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-13T09:39:46+00:00\", \"completed\": \"2025-01-13T09:47:22+00:00\", \"duration\": 456.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:39:46+00:00\", \"completed\": \"2025-01-13T09:46:28+00:00\", \"duration\": 402.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-13T09:39:49+00:00\", \"completed\": \"2025-01-13T09:47:55+00:00\", \"duration\": 486.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:39:50+00:00\", \"completed\": \"2025-01-13T09:48:05+00:00\", \"duration\": 495.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:40:07+00:00\", \"completed\": \"2025-01-13T09:47:11+00:00\", \"duration\": 424.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-13T09:40:17+00:00\", \"completed\": \"2025-01-13T09:47:01+00:00\", \"duration\": 404.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-13T09:40:31+00:00\", \"completed\": \"2025-01-13T09:49:54+00:00\", \"duration\": 563.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-13T09:40:40+00:00\", \"completed\": \"2025-01-13T09:48:08+00:00\", \"duration\": 448.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-13T09:40:44+00:00\", \"completed\": \"2025-01-13T09:49:11+00:00\", \"duration\": 507.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-13T09:40:53+00:00\", \"completed\": \"2025-01-13T09:47:30+00:00\", \"duration\": 397.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-13T10:43:25+00:00\", \"completed\": \"2025-01-13T10:47:32+00:00\", \"duration\": 247.0, \"status\": \"success\", \"label\": \"rattler-build\", \"tool\": \"rattler-build\", \"seconds\": null}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:06+00:00\", \"completed\": \"2025-01-03T15:05:05+00:00\", \"duration\": 599.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 599.0}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:07+00:00\", \"completed\": \"2025-01-03T15:05:34+00:00\", \"duration\": 627.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 627.0}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:07+00:00\", \"completed\": \"2025-01-03T15:03:34+00:00\", \"duration\": 507.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 507.0}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:07+00:00\", \"completed\": \"2025-01-03T15:04:06+00:00\", \"duration\": 539.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 539.0}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:07+00:00\", \"completed\": \"2025-01-03T15:04:48+00:00\", \"duration\": 581.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 581.0}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:07+00:00\", \"completed\": \"2025-01-03T15:04:41+00:00\", \"duration\": 574.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 574.0}, {\"name\": \"osx_64_mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T14:55:08+00:00\", \"completed\": \"2025-01-03T15:03:02+00:00\", \"duration\": 474.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 474.0}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:08+00:00\", \"completed\": \"2025-01-03T15:04:33+00:00\", \"duration\": 565.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 565.0}, {\"name\": \"osx_64_mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:09+00:00\", \"completed\": \"2025-01-03T15:04:17+00:00\", \"duration\": 548.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 548.0}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:19+00:00\", \"completed\": \"2025-01-03T15:02:08+00:00\", \"duration\": 409.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 409.0}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T14:55:19+00:00\", \"completed\": \"2025-01-03T15:03:11+00:00\", \"duration\": 472.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 472.0}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:20+00:00\", \"completed\": \"2025-01-03T15:02:59+00:00\", \"duration\": 459.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 459.0}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:21+00:00\", \"completed\": \"2025-01-03T15:03:52+00:00\", \"duration\": 511.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 511.0}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:21+00:00\", \"completed\": \"2025-01-03T15:03:23+00:00\", \"duration\": 482.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 482.0}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:21+00:00\", \"completed\": \"2025-01-03T15:03:17+00:00\", \"duration\": 476.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 476.0}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:22+00:00\", \"completed\": \"2025-01-03T15:03:15+00:00\", \"duration\": 473.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 473.0}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:22+00:00\", \"completed\": \"2025-01-03T15:02:02+00:00\", \"duration\": 400.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 400.0}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:23+00:00\", \"completed\": \"2025-01-03T15:01:56+00:00\", \"duration\": 393.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 393.0}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:23+00:00\", \"completed\": \"2025-01-03T15:03:24+00:00\", \"duration\": 481.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 481.0}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:23+00:00\", \"completed\": \"2025-01-03T15:04:36+00:00\", \"duration\": 553.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 553.0}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T14:55:23+00:00\", \"completed\": \"2025-01-03T15:02:11+00:00\", \"duration\": 408.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 408.0}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:24+00:00\", \"completed\": \"2025-01-03T15:04:01+00:00\", \"duration\": 517.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 517.0}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T14:55:24+00:00\", \"completed\": \"2025-01-03T15:03:44+00:00\", \"duration\": 500.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 500.0}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T14:55:24+00:00\", \"completed\": \"2025-01-03T15:01:58+00:00\", \"duration\": 394.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 394.0}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:24+00:00\", \"completed\": \"2025-01-03T15:03:41+00:00\", \"duration\": 497.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 497.0}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T14:55:24+00:00\", \"completed\": \"2025-01-03T15:02:18+00:00\", \"duration\": 414.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 414.0}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:24+00:00\", \"completed\": \"2025-01-03T15:02:04+00:00\", \"duration\": 400.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 400.0}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:24+00:00\", \"completed\": \"2025-01-03T15:02:08+00:00\", \"duration\": 404.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 404.0}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:24+00:00\", \"completed\": \"2025-01-03T15:02:04+00:00\", \"duration\": 400.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 400.0}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:24+00:00\", \"completed\": \"2025-01-03T15:02:06+00:00\", \"duration\": 402.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 402.0}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:24+00:00\", \"completed\": \"2025-01-03T15:02:04+00:00\", \"duration\": 400.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 400.0}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:24+00:00\", \"completed\": \"2025-01-03T15:02:51+00:00\", \"duration\": 447.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 447.0}, {\"name\": \"linux_64_devicecuda11mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:24+00:00\", \"completed\": \"2025-01-03T15:03:36+00:00\", \"duration\": 492.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 492.0}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:25+00:00\", \"completed\": \"2025-01-03T15:03:19+00:00\", \"duration\": 474.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 474.0}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:25+00:00\", \"completed\": \"2025-01-03T15:02:48+00:00\", \"duration\": 443.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 443.0}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:25+00:00\", \"completed\": \"2025-01-03T15:02:20+00:00\", \"duration\": 415.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 415.0}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:25+00:00\", \"completed\": \"2025-01-03T15:02:54+00:00\", \"duration\": 449.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 449.0}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:25+00:00\", \"completed\": \"2025-01-03T15:02:22+00:00\", \"duration\": 417.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 417.0}, {\"name\": \"linux_64_devicecuda12mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:26+00:00\", \"completed\": \"2025-01-03T15:03:35+00:00\", \"duration\": 489.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 489.0}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T14:55:26+00:00\", \"completed\": \"2025-01-03T15:02:00+00:00\", \"duration\": 394.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 394.0}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:26+00:00\", \"completed\": \"2025-01-03T15:03:14+00:00\", \"duration\": 468.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 468.0}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:26+00:00\", \"completed\": \"2025-01-03T15:04:33+00:00\", \"duration\": 547.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 547.0}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:27+00:00\", \"completed\": \"2025-01-03T15:02:09+00:00\", \"duration\": 402.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 402.0}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:27+00:00\", \"completed\": \"2025-01-03T15:02:17+00:00\", \"duration\": 410.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 410.0}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:27+00:00\", \"completed\": \"2025-01-03T15:03:41+00:00\", \"duration\": 494.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 494.0}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:27+00:00\", \"completed\": \"2025-01-03T15:02:51+00:00\", \"duration\": 444.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 444.0}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T14:55:27+00:00\", \"completed\": \"2025-01-03T15:03:48+00:00\", \"duration\": 501.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 501.0}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T14:55:27+00:00\", \"completed\": \"2025-01-03T15:03:38+00:00\", \"duration\": 491.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 491.0}, {\"name\": \"linux_64_devicecuda12mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T14:55:28+00:00\", \"completed\": \"2025-01-03T15:03:30+00:00\", \"duration\": 482.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 482.0}, {\"name\": \"linux_64_devicecuda11mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T14:55:28+00:00\", \"completed\": \"2025-01-03T15:03:34+00:00\", \"duration\": 486.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 486.0}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:02:12+00:00\", \"completed\": \"2025-01-03T15:08:25+00:00\", \"duration\": 373.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 373.0}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:02:15+00:00\", \"completed\": \"2025-01-03T15:09:43+00:00\", \"duration\": 448.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 448.0}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:02:17+00:00\", \"completed\": \"2025-01-03T15:10:06+00:00\", \"duration\": 469.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 469.0}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:02:22+00:00\", \"completed\": \"2025-01-03T15:11:08+00:00\", \"duration\": 526.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 526.0}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:02:24+00:00\", \"completed\": \"2025-01-03T15:08:43+00:00\", \"duration\": 379.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 379.0}, {\"name\": \"linux_64_devicehostmpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:02:24+00:00\", \"completed\": \"2025-01-03T15:10:35+00:00\", \"duration\": 491.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 491.0}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:02:24+00:00\", \"completed\": \"2025-01-03T15:11:00+00:00\", \"duration\": 516.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 516.0}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:02:25+00:00\", \"completed\": \"2025-01-03T15:10:09+00:00\", \"duration\": 464.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 464.0}, {\"name\": \"linux_64_devicehostmpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:02:25+00:00\", \"completed\": \"2025-01-03T15:10:22+00:00\", \"duration\": 477.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 477.0}, {\"name\": \"linux_64_devicehostmpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:02:26+00:00\", \"completed\": \"2025-01-03T15:10:38+00:00\", \"duration\": 492.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 492.0}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:02:33+00:00\", \"completed\": \"2025-01-03T15:09:01+00:00\", \"duration\": 388.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 388.0}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:02:35+00:00\", \"completed\": \"2025-01-03T15:10:01+00:00\", \"duration\": 446.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 446.0}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:02:35+00:00\", \"completed\": \"2025-01-03T15:10:09+00:00\", \"duration\": 454.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 454.0}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:02:36+00:00\", \"completed\": \"2025-01-03T15:09:35+00:00\", \"duration\": 419.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 419.0}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:02:37+00:00\", \"completed\": \"2025-01-03T15:09:34+00:00\", \"duration\": 417.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 417.0}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:02:43+00:00\", \"completed\": \"2025-01-03T15:10:15+00:00\", \"duration\": 452.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 452.0}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:03:12+00:00\", \"completed\": \"2025-01-03T15:09:38+00:00\", \"duration\": 386.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 386.0}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:03:15+00:00\", \"completed\": \"2025-01-03T15:15:05+00:00\", \"duration\": 710.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 710.0}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:03:17+00:00\", \"completed\": \"2025-01-03T15:09:39+00:00\", \"duration\": 382.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 382.0}, {\"name\": \"linux_64_devicehostmpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:03:17+00:00\", \"completed\": \"2025-01-03T15:11:02+00:00\", \"duration\": 465.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 465.0}, {\"name\": \"osx_64_mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:03:19+00:00\", \"completed\": \"2025-01-03T15:12:27+00:00\", \"duration\": 548.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 548.0}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:03:20+00:00\", \"completed\": \"2025-01-03T15:13:30+00:00\", \"duration\": 610.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 610.0}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:03:29+00:00\", \"completed\": \"2025-01-03T15:17:29+00:00\", \"duration\": 840.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 840.0}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:03:30+00:00\", \"completed\": \"2025-01-03T15:12:50+00:00\", \"duration\": 560.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 560.0}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:03:34+00:00\", \"completed\": \"2025-01-03T15:15:54+00:00\", \"duration\": 740.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 740.0}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:03:35+00:00\", \"completed\": \"2025-01-03T15:14:47+00:00\", \"duration\": 672.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 672.0}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:03:36+00:00\", \"completed\": \"2025-01-03T15:12:58+00:00\", \"duration\": 562.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 562.0}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:03:41+00:00\", \"completed\": \"2025-01-03T15:16:31+00:00\", \"duration\": 770.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 770.0}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:03:44+00:00\", \"completed\": \"2025-01-03T15:15:32+00:00\", \"duration\": 708.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 708.0}, {\"name\": \"linux_aarch64_devicecuda11mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:03:45+00:00\", \"completed\": \"2025-01-03T15:16:14+00:00\", \"duration\": 749.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 749.0}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:03:54+00:00\", \"completed\": \"2025-01-03T15:11:53+00:00\", \"duration\": 479.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 479.0}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:03:55+00:00\", \"completed\": \"2025-01-03T15:14:08+00:00\", \"duration\": 613.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 613.0}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:03:56+00:00\", \"completed\": \"2025-01-03T15:13:59+00:00\", \"duration\": 603.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 603.0}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:03:56+00:00\", \"completed\": \"2025-01-03T15:14:11+00:00\", \"duration\": 615.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 615.0}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:03:58+00:00\", \"completed\": \"2025-01-03T15:14:17+00:00\", \"duration\": 619.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 619.0}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:04:01+00:00\", \"completed\": \"2025-01-03T15:14:10+00:00\", \"duration\": 609.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 609.0}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:04:04+00:00\", \"completed\": \"2025-01-03T15:16:05+00:00\", \"duration\": 721.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 721.0}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:04:05+00:00\", \"completed\": \"2025-01-03T15:15:32+00:00\", \"duration\": 687.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 687.0}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:04:11+00:00\", \"completed\": \"2025-01-03T15:14:44+00:00\", \"duration\": 633.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 633.0}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:04:14+00:00\", \"completed\": \"2025-01-03T15:17:36+00:00\", \"duration\": 802.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 802.0}, {\"name\": \"linux_aarch64_devicecuda11mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:04:30+00:00\", \"completed\": \"2025-01-03T15:15:47+00:00\", \"duration\": 677.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 677.0}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:04:33+00:00\", \"completed\": \"2025-01-03T15:12:53+00:00\", \"duration\": 500.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 500.0}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:04:39+00:00\", \"completed\": \"2025-01-03T15:14:19+00:00\", \"duration\": 580.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 580.0}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:04:55+00:00\", \"completed\": \"2025-01-03T15:14:39+00:00\", \"duration\": 584.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 584.0}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:04:55+00:00\", \"completed\": \"2025-01-03T15:15:36+00:00\", \"duration\": 641.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 641.0}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:04:55+00:00\", \"completed\": \"2025-01-03T15:14:26+00:00\", \"duration\": 571.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 571.0}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:04:56+00:00\", \"completed\": \"2025-01-03T15:13:29+00:00\", \"duration\": 513.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 513.0}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:05:01+00:00\", \"completed\": \"2025-01-03T15:13:00+00:00\", \"duration\": 479.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 479.0}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:05:28+00:00\", \"completed\": \"2025-01-03T15:19:53+00:00\", \"duration\": 865.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 865.0}, {\"name\": \"osx_64_mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:05:54+00:00\", \"completed\": \"2025-01-03T15:18:28+00:00\", \"duration\": 754.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 754.0}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:08:44+00:00\", \"completed\": \"2025-01-03T15:19:19+00:00\", \"duration\": 635.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 635.0}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:09:01+00:00\", \"completed\": \"2025-01-03T15:18:43+00:00\", \"duration\": 582.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 582.0}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:09:22+00:00\", \"completed\": \"2025-01-03T15:25:35+00:00\", \"duration\": 973.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 973.0}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:09:47+00:00\", \"completed\": \"2025-01-03T15:19:42+00:00\", \"duration\": 595.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 595.0}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:09:51+00:00\", \"completed\": \"2025-01-03T15:19:08+00:00\", \"duration\": 557.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 557.0}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:09:58+00:00\", \"completed\": \"2025-01-03T15:21:34+00:00\", \"duration\": 696.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 696.0}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:09:58+00:00\", \"completed\": \"2025-01-03T15:22:47+00:00\", \"duration\": 769.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 769.0}, {\"name\": \"linux_aarch64_devicecuda12mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:10:05+00:00\", \"completed\": \"2025-01-03T15:19:20+00:00\", \"duration\": 555.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 555.0}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:10:16+00:00\", \"completed\": \"2025-01-03T15:22:17+00:00\", \"duration\": 721.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 721.0}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:10:25+00:00\", \"completed\": \"2025-01-03T15:20:25+00:00\", \"duration\": 600.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 600.0}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:10:26+00:00\", \"completed\": \"2025-01-03T15:20:32+00:00\", \"duration\": 606.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 606.0}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:10:27+00:00\", \"completed\": \"2025-01-03T15:22:33+00:00\", \"duration\": 726.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 726.0}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:10:32+00:00\", \"completed\": \"2025-01-03T15:23:38+00:00\", \"duration\": 786.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 786.0}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:10:35+00:00\", \"completed\": \"2025-01-03T15:20:38+00:00\", \"duration\": 603.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 603.0}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:10:56+00:00\", \"completed\": \"2025-01-03T15:23:01+00:00\", \"duration\": 725.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 725.0}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:10:58+00:00\", \"completed\": \"2025-01-03T15:25:00+00:00\", \"duration\": 842.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 842.0}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:11:15+00:00\", \"completed\": \"2025-01-03T15:25:12+00:00\", \"duration\": 837.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 837.0}, {\"name\": \"linux_aarch64_devicecuda12mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:11:16+00:00\", \"completed\": \"2025-01-03T15:22:16+00:00\", \"duration\": 660.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 660.0}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:11:20+00:00\", \"completed\": \"2025-01-03T15:20:47+00:00\", \"duration\": 567.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 567.0}, {\"name\": \"osx_64_mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:12:07+00:00\", \"completed\": \"2025-01-03T15:20:53+00:00\", \"duration\": 526.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 526.0}, {\"name\": \"osx_64_mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:12:44+00:00\", \"completed\": \"2025-01-03T15:21:17+00:00\", \"duration\": 513.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 513.0}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:13:10+00:00\", \"completed\": \"2025-01-03T15:22:24+00:00\", \"duration\": 554.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 554.0}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:13:15+00:00\", \"completed\": \"2025-01-03T15:23:09+00:00\", \"duration\": 594.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 594.0}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:13:17+00:00\", \"completed\": \"2025-01-03T15:22:38+00:00\", \"duration\": 561.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 561.0}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:13:28+00:00\", \"completed\": \"2025-01-03T15:23:37+00:00\", \"duration\": 609.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 609.0}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:13:48+00:00\", \"completed\": \"2025-01-03T15:23:26+00:00\", \"duration\": 578.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 578.0}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:13:50+00:00\", \"completed\": \"2025-01-03T15:25:08+00:00\", \"duration\": 678.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 678.0}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:14:15+00:00\", \"completed\": \"2025-01-03T15:24:02+00:00\", \"duration\": 587.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 587.0}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:14:24+00:00\", \"completed\": \"2025-01-03T15:24:22+00:00\", \"duration\": 598.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 598.0}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:14:24+00:00\", \"completed\": \"2025-01-03T15:27:21+00:00\", \"duration\": 777.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 777.0}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:14:30+00:00\", \"completed\": \"2025-01-03T15:24:31+00:00\", \"duration\": 601.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 601.0}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:14:36+00:00\", \"completed\": \"2025-01-03T15:22:49+00:00\", \"duration\": 493.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 493.0}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:14:42+00:00\", \"completed\": \"2025-01-03T15:23:16+00:00\", \"duration\": 514.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 514.0}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:14:50+00:00\", \"completed\": \"2025-01-03T15:25:18+00:00\", \"duration\": 628.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 628.0}, {\"name\": \"linux_aarch64_devicehostmpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:14:53+00:00\", \"completed\": \"2025-01-03T15:24:25+00:00\", \"duration\": 572.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 572.0}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:15:01+00:00\", \"completed\": \"2025-01-03T15:24:57+00:00\", \"duration\": 596.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 596.0}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:15:04+00:00\", \"completed\": \"2025-01-03T15:25:13+00:00\", \"duration\": 609.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 609.0}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:15:20+00:00\", \"completed\": \"2025-01-03T15:26:41+00:00\", \"duration\": 681.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 681.0}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:15:47+00:00\", \"completed\": \"2025-01-03T15:25:48+00:00\", \"duration\": 601.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 601.0}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:15:52+00:00\", \"completed\": \"2025-01-03T15:27:46+00:00\", \"duration\": 714.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 714.0}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:16:03+00:00\", \"completed\": \"2025-01-03T15:25:27+00:00\", \"duration\": 564.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 564.0}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:16:06+00:00\", \"completed\": \"2025-01-03T15:28:09+00:00\", \"duration\": 723.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 723.0}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:16:10+00:00\", \"completed\": \"2025-01-03T15:26:27+00:00\", \"duration\": 617.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 617.0}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:16:24+00:00\", \"completed\": \"2025-01-03T15:29:18+00:00\", \"duration\": 774.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 774.0}, {\"name\": \"linux_aarch64_devicehostmpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:16:29+00:00\", \"completed\": \"2025-01-03T15:30:03+00:00\", \"duration\": 814.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 814.0}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:16:53+00:00\", \"completed\": \"2025-01-03T15:30:57+00:00\", \"duration\": 844.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 844.0}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:17:50+00:00\", \"completed\": \"2025-01-03T15:28:10+00:00\", \"duration\": 620.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 620.0}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:17:56+00:00\", \"completed\": \"2025-01-03T15:27:33+00:00\", \"duration\": 577.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 577.0}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:18:44+00:00\", \"completed\": \"2025-01-03T15:30:27+00:00\", \"duration\": 703.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 703.0}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:19:02+00:00\", \"completed\": \"2025-01-03T15:29:17+00:00\", \"duration\": 615.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 615.0}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:19:20+00:00\", \"completed\": \"2025-01-03T15:29:10+00:00\", \"duration\": 590.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 590.0}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:19:41+00:00\", \"completed\": \"2025-01-03T15:29:37+00:00\", \"duration\": 596.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 596.0}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:19:43+00:00\", \"completed\": \"2025-01-03T15:33:09+00:00\", \"duration\": 806.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 806.0}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:19:55+00:00\", \"completed\": \"2025-01-03T15:29:43+00:00\", \"duration\": 588.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 588.0}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:20:14+00:00\", \"completed\": \"2025-01-03T15:29:46+00:00\", \"duration\": 572.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 572.0}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:20:43+00:00\", \"completed\": \"2025-01-03T15:30:38+00:00\", \"duration\": 595.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 595.0}, {\"name\": \"linux_ppc64le_devicecuda11mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:20:45+00:00\", \"completed\": \"2025-01-03T15:32:09+00:00\", \"duration\": 684.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 684.0}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:20:53+00:00\", \"completed\": \"2025-01-03T15:31:19+00:00\", \"duration\": 626.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 626.0}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:21:09+00:00\", \"completed\": \"2025-01-03T15:31:50+00:00\", \"duration\": 641.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 641.0}, {\"name\": \"osx_arm64_mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:21:12+00:00\", \"completed\": \"2025-01-03T15:30:45+00:00\", \"duration\": 573.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 573.0}, {\"name\": \"osx_arm64_mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:21:38+00:00\", \"completed\": \"2025-01-03T15:29:48+00:00\", \"duration\": 490.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 490.0}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:22:00+00:00\", \"completed\": \"2025-01-03T15:34:55+00:00\", \"duration\": 775.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 775.0}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:22:36+00:00\", \"completed\": \"2025-01-03T15:36:31+00:00\", \"duration\": 835.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 835.0}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:22:37+00:00\", \"completed\": \"2025-01-03T15:34:54+00:00\", \"duration\": 737.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 737.0}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:22:37+00:00\", \"completed\": \"2025-01-03T15:32:57+00:00\", \"duration\": 620.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 620.0}, {\"name\": \"osx_arm64_mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:22:52+00:00\", \"completed\": \"2025-01-03T15:33:28+00:00\", \"duration\": 636.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 636.0}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:22:52+00:00\", \"completed\": \"2025-01-03T15:35:44+00:00\", \"duration\": 772.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 772.0}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:23:01+00:00\", \"completed\": \"2025-01-03T15:36:21+00:00\", \"duration\": 800.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 800.0}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:23:05+00:00\", \"completed\": \"2025-01-03T15:33:44+00:00\", \"duration\": 639.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 639.0}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:23:15+00:00\", \"completed\": \"2025-01-03T15:35:17+00:00\", \"duration\": 722.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 722.0}, {\"name\": \"linux_ppc64le_devicecuda11mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:23:27+00:00\", \"completed\": \"2025-01-03T15:35:02+00:00\", \"duration\": 695.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 695.0}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:23:37+00:00\", \"completed\": \"2025-01-03T15:31:46+00:00\", \"duration\": 489.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 489.0}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:23:37+00:00\", \"completed\": \"2025-01-03T15:36:58+00:00\", \"duration\": 801.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 801.0}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:23:53+00:00\", \"completed\": \"2025-01-03T15:35:52+00:00\", \"duration\": 719.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 719.0}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:23:54+00:00\", \"completed\": \"2025-01-03T15:36:30+00:00\", \"duration\": 756.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 756.0}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:24:14+00:00\", \"completed\": \"2025-01-03T15:37:29+00:00\", \"duration\": 795.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 795.0}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:24:44+00:00\", \"completed\": \"2025-01-03T15:34:50+00:00\", \"duration\": 606.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 606.0}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:24:44+00:00\", \"completed\": \"2025-01-03T15:34:40+00:00\", \"duration\": 596.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 596.0}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:24:47+00:00\", \"completed\": \"2025-01-03T15:34:36+00:00\", \"duration\": 589.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 589.0}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:25:13+00:00\", \"completed\": \"2025-01-03T15:35:16+00:00\", \"duration\": 603.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 603.0}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:25:14+00:00\", \"completed\": \"2025-01-03T15:38:29+00:00\", \"duration\": 795.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 795.0}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:25:24+00:00\", \"completed\": \"2025-01-03T15:38:11+00:00\", \"duration\": 767.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 767.0}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:25:28+00:00\", \"completed\": \"2025-01-03T15:36:57+00:00\", \"duration\": 689.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 689.0}, {\"name\": \"linux_ppc64le_devicecuda12mpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:25:33+00:00\", \"completed\": \"2025-01-03T15:37:06+00:00\", \"duration\": 693.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 693.0}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:25:39+00:00\", \"completed\": \"2025-01-03T15:37:57+00:00\", \"duration\": 738.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 738.0}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:25:48+00:00\", \"completed\": \"2025-01-03T15:39:53+00:00\", \"duration\": 845.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 845.0}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:25:49+00:00\", \"completed\": \"2025-01-03T15:36:13+00:00\", \"duration\": 624.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 624.0}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:26:10+00:00\", \"completed\": \"2025-01-03T15:38:36+00:00\", \"duration\": 746.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 746.0}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:26:47+00:00\", \"completed\": \"2025-01-03T15:36:41+00:00\", \"duration\": 594.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 594.0}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:27:04+00:00\", \"completed\": \"2025-01-03T15:40:50+00:00\", \"duration\": 826.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 826.0}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:27:33+00:00\", \"completed\": \"2025-01-03T15:37:39+00:00\", \"duration\": 606.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 606.0}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:27:50+00:00\", \"completed\": \"2025-01-03T15:40:21+00:00\", \"duration\": 751.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 751.0}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:28:04+00:00\", \"completed\": \"2025-01-03T15:37:52+00:00\", \"duration\": 588.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 588.0}, {\"name\": \"linux_ppc64le_devicecuda12mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:28:28+00:00\", \"completed\": \"2025-01-03T15:41:49+00:00\", \"duration\": 801.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 801.0}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:28:31+00:00\", \"completed\": \"2025-01-03T15:40:17+00:00\", \"duration\": 706.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 706.0}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:29:26+00:00\", \"completed\": \"2025-01-03T15:43:13+00:00\", \"duration\": 827.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 827.0}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:29:33+00:00\", \"completed\": \"2025-01-03T15:40:04+00:00\", \"duration\": 631.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 631.0}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:29:33+00:00\", \"completed\": \"2025-01-03T15:41:00+00:00\", \"duration\": 687.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 687.0}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:29:49+00:00\", \"completed\": \"2025-01-03T15:42:43+00:00\", \"duration\": 774.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 774.0}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:30:01+00:00\", \"completed\": \"2025-01-03T15:39:21+00:00\", \"duration\": 560.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 560.0}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:30:07+00:00\", \"completed\": \"2025-01-03T15:40:46+00:00\", \"duration\": 639.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 639.0}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:30:09+00:00\", \"completed\": \"2025-01-03T15:38:34+00:00\", \"duration\": 505.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 505.0}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:30:25+00:00\", \"completed\": \"2025-01-03T15:40:27+00:00\", \"duration\": 602.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 602.0}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:30:48+00:00\", \"completed\": \"2025-01-03T15:40:35+00:00\", \"duration\": 587.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 587.0}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:30:51+00:00\", \"completed\": \"2025-01-03T15:40:50+00:00\", \"duration\": 599.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 599.0}, {\"name\": \"osx_arm64_mpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:31:00+00:00\", \"completed\": \"2025-01-03T15:41:23+00:00\", \"duration\": 623.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 623.0}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:31:18+00:00\", \"completed\": \"2025-01-03T15:44:10+00:00\", \"duration\": 772.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 772.0}, {\"name\": \"linux_ppc64le_devicehostmpimpichnumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:31:32+00:00\", \"completed\": \"2025-01-03T15:43:18+00:00\", \"duration\": 706.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 706.0}, {\"name\": \"osx_arm64_mpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:32:03+00:00\", \"completed\": \"2025-01-03T15:40:38+00:00\", \"duration\": 515.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 515.0}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.10.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:32:09+00:00\", \"completed\": \"2025-01-03T15:45:07+00:00\", \"duration\": 778.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 778.0}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.10.____cpythonscalarreal\", \"started\": \"2025-01-03T15:32:33+00:00\", \"completed\": \"2025-01-03T15:43:00+00:00\", \"duration\": 627.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 627.0}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.11.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:33:17+00:00\", \"completed\": \"2025-01-03T15:45:11+00:00\", \"duration\": 714.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 714.0}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.11.____cpythonscalarreal\", \"started\": \"2025-01-03T15:33:26+00:00\", \"completed\": \"2025-01-03T15:43:18+00:00\", \"duration\": 592.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 592.0}, {\"name\": \"osx_arm64_mpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:33:45+00:00\", \"completed\": \"2025-01-03T15:42:30+00:00\", \"duration\": 525.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 525.0}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.12.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:34:05+00:00\", \"completed\": \"2025-01-03T15:43:49+00:00\", \"duration\": 584.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 584.0}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.12.____cpythonscalarreal\", \"started\": \"2025-01-03T15:34:55+00:00\", \"completed\": \"2025-01-03T15:45:04+00:00\", \"duration\": 609.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 609.0}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.9.____cpythonscalarcomplex\", \"started\": \"2025-01-03T15:34:55+00:00\", \"completed\": \"2025-01-03T15:44:45+00:00\", \"duration\": 590.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 590.0}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2.0python3.9.____cpythonscalarreal\", \"started\": \"2025-01-03T15:35:10+00:00\", \"completed\": \"2025-01-03T15:46:09+00:00\", \"duration\": 659.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 659.0}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2python3.13.____cp313scalarcomplex\", \"started\": \"2025-01-03T15:35:11+00:00\", \"completed\": \"2025-01-03T15:44:48+00:00\", \"duration\": 577.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 577.0}, {\"name\": \"linux_ppc64le_devicehostmpiopenmpinumpy2python3.13.____cp313scalarreal\", \"started\": \"2025-01-03T15:35:17+00:00\", \"completed\": \"2025-01-03T15:44:46+00:00\", \"duration\": 569.0, \"status\": \"success\", \"label\": \"conda-build\", \"tool\": \"conda-build\", \"seconds\": 569.0}]}}, {\"mode\": \"vega-lite\"});\n", | |
"</script>" | |
], | |
"text/plain": [ | |
"alt.Chart(...)" | |
] | |
}, | |
"execution_count": 280, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"import altair as alt\n", | |
"\n", | |
"# before_df[\"seconds\"] = before_df.duration.dt.total_seconds()\n", | |
"\n", | |
"alt.Chart(df).mark_bar().encode(\n", | |
" alt.X(\"duration:Q\", bin=True),\n", | |
" alt.Y(\"count()\"),\n", | |
" alt.Color(\"tool\"),\n", | |
" alt.Facet(\"tool\")\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "d11bae50-8704-421d-9db2-97f12b28f7b9", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import altair as alt\n", | |
"before_df[\"seconds\"] = before_df.duration.dt.total_seconds()\n", | |
"\n", | |
"alt.Chart(before_df[[\"seconds\"]]).mark_bar().encode(\n", | |
" alt.X(\"seconds:Q\", bin=True),\n", | |
" y=\"count()\",\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 256, | |
"id": "d89829b8-1dfa-42af-a98f-21fd70c76a7e", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<Axes: ylabel='Frequency'>" | |
] | |
}, | |
"execution_count": 256, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABpMAAAQPCAYAAAD8uxN9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AABsMklEQVR4nOzde7TWdZ33/9eFWzYIHjIw5VASt4DM1AwJBJ6oKSu5y+2hHJpWqWEeZiIpNee+f5WH0VI64MSMGYmZTUOmCS41qawE9YaUBksLKxRLthhSlqgcRK7fHw57NsJnA7qv69q4H4+1WOvL/p7eGxefBTz9fq9KtVqtBgAAAAAAALahR6MHAAAAAAAAoOsSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAAChqavQAvDzr1q3L/fffnyTp379/mpr8JwUAAAAAgO5q48aNeeKJJ5Ikb3jDG9KrV6+XfU3lYRd3//33Z+zYsY0eAwAAAAAA6GLuueeejBkz5mVfx2vuAAAAAAAAKPJk0i6uf//+bdt33nlnDjjggAZOs7X169dn4cKFSZLx48enubm5wRMBrzTWGaCWrDFArVlngFqzzgC1Zp3pelauXJkjjjgiyZYN4eUQk3Zx7T8j6YADDsigQYMaOM3W1q1bl379+iVJBg4c2CnvZgRozzoD1JI1Bqg16wxQa9YZoNasM11b+4bwcnjNHQAAAAAAAEViUpLVq1dn2rRpOeyww7L//vunubk5AwYMyJvf/Oace+65bY/odWTevHk5/vjjM2jQoDQ3N2fQoEE5/vjjM2/evDp8BwAAAAAAALXR7V9zd/311+fMM8/MH//4xy2+vnLlyqxcuTL33HNPfvvb32bu3LnbPL9areaMM87IzJkzt/h6a2tr5syZkzlz5uS0007LlVdemUqlUqtvAwAAAAAAoCa6dUy69tprc8opp2TTpk3Zb7/9cuaZZ+bwww/Pvvvum8cffzwPPfRQbr755uy+++7Fa3zqU59qC0mjRo3KJz/5yQwdOjQPPfRQpk2bliVLlmTmzJnp379/Lr744np9awAAAAAAAJ2i28akpUuX5rTTTsumTZtyxBFH5Oabb87ee++91XFTpkzJhg0btnmNZcuWZdq0aUmS0aNHZ8GCBendu3eSZMyYMTnmmGMyYcKELF68OJdddllOOeWUDB06tHbfFAAAAAAAQCfrtp+ZNGXKlKxfvz79+vXLjTfeuM2QtFnPnj23+fXp06dn48aNSZIZM2a0haTN9thjj8yYMSNJsnHjxlx++eWdMzwAAAAAAECddMuY9OCDD+ZHP/pRkuSjH/1o+vXrt9PXqFaruemmm5IkI0aMyLhx47Z53Lhx4zJ8+PAkydy5c1OtVl/i1AAAAAAAAPXXLWPS9ddf37b9vve9r237ySefzG9/+9v88Y9/3O41li9fntbW1iTJhAkTOjx28/4VK1bkkUceeQkTAwAAAAAANEa3jEmLFi1Kkuy99945+OCD861vfSt/8zd/k3333TfDhg1Lv3798vrXvz4XXnhhnn766W1eY+nSpW3bI0aM6PB+7fe3Pw8AAAAAAKCra2r0AI3wq1/9Kkly4IEHZsqUKfn3f//3rY5Zvnx5Lrjggtxwww35/ve/nwEDBmyx/9FHH23bHjRoUIf3Gzx48DbP2xErVqzocP/KlSvbttevX59169bt1PVrrf08XW024JXBOgPUkjUGqDXrDFBr1hmg1qwzXc/69es7/ZrdMib96U9/SvLCZyf9/Oc/zz777JNLL700xx9/fPbaa6/cf//9+cxnPpPbbrstDzzwQN73vvflzjvvTI8e//Mg15o1a9q2+/bt2+H9+vTp07ZdetKppH2I2p6FCxe+pM9/qpfNT4QB1Ip1BqglawxQa9YZoNasM0CtWWe6htWrV3f6Nbvla+6eeeaZJC/Uud122y233XZbTj/99PTv3z/Nzc0ZPXp0brnllhx99NFJkv/3//5fbrzxxi2u0b6w9uzZs8P7NTc3t22vXbu2s74NAAAAAACAmuuWTyb16tWrLSi9733vy7hx47Y6pkePHvn85z+f2267LUkye/bsvPe9793iGptt2LChw/u1f6Ssd+/eOzXr9l6Lt3LlyowdOzZJMn78+AwcOHCnrl9r69ata6vR48aN2+LXDaAzWGeAWrLGALVmnQFqzToD1Jp1putpbW3t9Gt2y5i05557tsWkzU8fbctf/dVfZeDAgWltbc2999671TU2296r6zbfK9n+K/FebHufx9Rec3Nzl/6N2qtXry49H7Drs84AtWSNAWrNOgPUmnUGqDXrTNfQ/m1pnaVbvuau/ecQbS/WbD521apVW3y9/XkrVqzo8Brtny7amc9AAgAAAAAAaLRuGZP+6q/+qm37+eef7/DYzfubmrZ8iGvkyJFt2w8++GCH12i//+CDD97hOQEAAAAAABqtW8akI488sm37oYce6vDYhx9+OEm2+iyiIUOGZMCAAUmS+fPnd3iNBQsWtF3jwAMP3NlxAQAAAAAAGqZbxqRjjjkmu+++e5LkxhtvLB43f/78/PGPf0ySHHHEEVvsq1QqaWlpSfLCk0ebP2DsxRYtWtT2ZFJLS0sqlcrLnh8AAAAAAKBeumVMevWrX51TTz01SfLDH/4w3/72t7c6Zs2aNZk6dWrbz08//fStjpk6dWrb6++mTJmStWvXbrF/7dq1mTJlSpIXXpPX/noAAAAAAAC7gm4Zk5LkwgsvzGtf+9okyQc/+MFMmTIlP/nJT/Kzn/0s11xzTcaOHZv77rsvSXLmmWdmzJgxW11j2LBhOeecc5IkixcvzmGHHZbrrrsuixcvznXXXZfDDjssixcvTpKce+65Oeigg+rzzQEAAAAAAHSSpkYP0Cj9+/fPvHnzcswxx2TZsmX5t3/7t/zbv/3bVsd9+MMfzr/+678Wr3PJJZdk1apVufrqq7NkyZJMmjRpq2MmT56ciy++uFPnBwAAAAAAqIdu+2RSkhx88MG577778vnPfz5vfvObs++++6Znz54ZNGhQ/v7v/z4//vGPM2vWrLbPV9qWHj16ZNasWbn11lvT0tKSAQMGpGfPnhkwYEBaWlryve99L1dddVV69OjWv9QAAAAAAMAuqts+mbRZnz59cs4557S9ru6lmjhxYiZOnNhJUwEAAAAAAHQNHpcBAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgqKnRAwAAdCfDz7+90SOwE/buWc1Fh7ywfeQX78xfNlTqPsOvL3x73e8JAAAA7XkyCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgCIxCQAAAAAAgKJuG5MqlcoO/XjLW96y3WvNmzcvxx9/fAYNGpTm5uYMGjQoxx9/fObNm1f7bwQAAAAAAKCGum1M6gzVajWnn356jj766MyZMyetra3ZsGFDWltbM2fOnBx99NE5/fTTU61WGz0qAAAAAADAS9LU6AEa7cwzz8w//uM/Fvf36dOnuO9Tn/pUZs6cmSQZNWpUPvnJT2bo0KF56KGHMm3atCxZsiQzZ85M//79c/HFF3f67AAAAAAAALXW7WPSfvvtl7/+67/e6fOWLVuWadOmJUlGjx6dBQsWpHfv3kmSMWPG5JhjjsmECROyePHiXHbZZTnllFMydOjQTp0dAAAAAACg1rzm7iWaPn16Nm7cmCSZMWNGW0jabI899siMGTOSJBs3bszll19e7xEBAAAAAABeNjHpJahWq7npppuSJCNGjMi4ceO2edy4ceMyfPjwJMncuXN9dhIAAAAAALDLEZNeguXLl6e1tTVJMmHChA6P3bx/xYoVeeSRR2o9GgAAAAAAQKfq9jHp+uuvz/Dhw9O7d+/sueeeOeigg3LSSSflJz/5SfGcpUuXtm2PGDGiw+u339/+PAAAAAAAgF1BU6MHaLRf/epXW/x82bJlWbZsWa699toce+yxueaaa7L33ntvccyjjz7atj1o0KAOrz948OBtnrejVqxY0eH+lStXtm2vX78+69at2+l71FL7ebrabMArg3WGXc3ePb32dley1+7VbW7Xk7UNXtn8WQaoNesMUGvWma5n/fr1nX7NbhuT9thjjxxzzDF529velhEjRqRv37554oknMn/+/Fx55ZX54x//mLlz56alpSU//OEPs/vuu7edu2bNmrbtvn37dnifPn36tG0//fTTOz1n+xi1PQsXLky/fv12+h71smjRokaPALzCWWfYFVx0SKMn4KU6542bGnLfO+64oyH3BerPn2WAWrPOALVmnekaVq9e3enX7LYxqbW1Nfvss89WXz/qqKMyZcqUHH300VmyZEnmz5+fr3zlK/nYxz7Wdkz7utqzZ88O79Pc3Ny2vXbt2pc/OAAAAAAAQB1125i0rZC02Wte85rccMMNOfjgg7Nhw4bMmDFji5jUq1evtu0NGzZ0eJ/2j5P17t17p+fc3qvxVq5cmbFjxyZJxo8fn4EDB+70PWpp3bp1bTV63LhxW/zaAXQG6wy7miO/eGejR2An7LV7te2JpC/8okeeeq5S9xkWnH1E3e8J1I8/ywC1Zp0Bas060/W0trZ2+jW7bUzante//vU56qijcuutt2bZsmV57LHHMmDAgCTJnnvu2Xbc9l5d98wzz7Rtb++VeNuyvc9kaq+5ublL/0bt1atXl54P2PVZZ9gV/GVD/WMEneOp5yoN+e9nXYPuw59lgFqzzgC1Zp3pGtq/Ma2z9Oj0K76CjBw5sm27fclrH3hWrFjR4TXaP1m0M59/BAAAAAAA0BWISR2oVqvb/Hr7yPTggw92eI32+w8++ODOGQwAAAAAAKBOxKQO/OpXv2rb3vyKuyQZMmRI28/nz5/f4TUWLFiQJBk4cGAOPPDAzh8SAAAAAACghsSkgocffjg//OEPk7zw+UkDBw5s21epVNLS0pLkhSePNn+42IstWrSo7cmklpaWVCo+IwEAAAAAANi1dMuYdPPNN2fjxo3F/X/4wx/y3ve+N88991yS5J/+6Z+2Ombq1KlpampKkkyZMiVr167dYv/atWszZcqUJElTU1OmTp3aSdMDAAAAAADUT1OjB2iEKVOm5LnnnssJJ5yQ8ePH58ADD0zv3r2zevXq3HHHHbnyyivzxz/+MUly+OGHbzMmDRs2LOecc04uvfTSLF68OIcddljOO++8DB06NA899FAuu+yyLFmyJEly7rnn5qCDDqrr9wgAAAAAANAZumVMSpLHHnssM2bMyIwZM4rHnHDCCbnqqqvS3Ny8zf2XXHJJVq1alauvvjpLlizJpEmTtjpm8uTJufjiizttbgAAAAAAgHrqljHpG9/4RubPn5+FCxfm4YcfzurVq/PUU0+lb9++GTx4cA499NCcdNJJGT9+fIfX6dGjR2bNmpUTTjghM2fOzL333pvVq1enX79+GTNmTE4//fQcffTRdfquAAAAAAAAOl+3jEkTJkzIhAkTOu16EydOzMSJEzvtegAAAAAAAF1Fj0YPAAAAAAAAQNclJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJgEAAAAAAFAkJr3IJz/5yVQqlbYfd9xxx3bPmTdvXo4//vgMGjQozc3NGTRoUI4//vjMmzev9gMDAAAAAADUkJjUzs9//vNMnz59h4+vVqs5/fTTc/TRR2fOnDlpbW3Nhg0b0tramjlz5uToo4/O6aefnmq1WsOpAQAAAAAAakdM+m+bNm3KRz7ykWzcuDH77bffDp3zqU99KjNnzkySjBo1KrNnz84999yT2bNnZ9SoUUmSmTNn5tOf/nTN5gYAAAAAAKglMem/ffnLX869996bESNGZPLkyds9ftmyZZk2bVqSZPTo0bn77rszadKkjBkzJpMmTcpdd92V0aNHJ0kuu+yyPPTQQzWdHwAAAAAAoBbEpCSPPvpo29NDX/nKV9KzZ8/tnjN9+vRs3LgxSTJjxoz07t17i/177LFHZsyYkSTZuHFjLr/88s4dGgAAAAAAoA7EpCT/+I//mKeffjonnXRS3vKWt2z3+Gq1mptuuilJMmLEiIwbN26bx40bNy7Dhw9PksydO9dnJwEAAAAAALucbh+TvvOd7+SWW27Jvvvum89//vM7dM7y5cvT2tqaJJkwYUKHx27ev2LFijzyyCMva1YAAAAAAIB6a2r0AI305z//OWeddVaSFz7XqH///jt03tKlS9u2R4wY0eGx7fcvXbo0Q4YM2akZV6xY0eH+lStXtm2vX78+69at26nr11r7ebrabMArg3WGXc3ePT2pvCvZa/fqNrfrydoGr2z+LAPUmnUGqDXrTNezfv36Tr9mt45Jn/zkJ/P444/n0EMPzeTJk3f4vEcffbRte9CgQR0eO3jw4G2et6Pan789CxcuTL9+/Xb6HvWyaNGiRo8AvMJZZ9gVXHRIoyfgpTrnjZsact877rijIfcF6s+fZYBas84AtWad6RpWr17d6dfstq+5u+uuu3LVVVelqakpV155ZSqVyg6fu2bNmrbtvn37dnhsnz592raffvrpnR8UAAAAAACggbrlk0kbNmzIaaedlmq1mo9//ON5wxvesFPnt39Ur2fPnh0e29zc3La9du3anRs023+aaeXKlRk7dmySZPz48Rk4cOBO36OW1q1b11ajx40bl169ejV4IuCVxjrDrubIL97Z6BHYCXvtXm17IukLv+iRp57b8f8BqbMsOPuIut8TqB9/lgFqzToD1Jp1putpbW3t9Gt2y5j02c9+NkuXLs1rX/vanH/++Tt9fvvfDBs2bOjw2PbvJuzdu/dO32t7r9Frr7m5uUv/Ru3Vq1eXng/Y9Vln2BX8ZUP9YwSd46nnKg3572ddg+7Dn2WAWrPOALVmneka2j/k0lm63WvuHnzwwXzuc59LksyYMWOL19DtqD333LNte3uvrnvmmWfatrf3SjwAAAAAAICupts9mTR9+vRs2LAhr3/96/Pss8/m29/+9lbHPPDAA23bP/7xj/P4448nSd7znvekT58+WzwttGLFig7v1/41dYMHD3654wMAAAAAANRVt4tJm1879/DDD+f973//do//l3/5l7bt5cuXp0+fPhk5cmTb1x588MEOz2+//+CDD97ZcQEAAAAAABqq273mrjMMGTIkAwYMSJLMnz+/w2MXLFiQJBk4cGAOPPDAWo8GAAAAAADQqbpdTLrmmmtSrVY7/HH++ee3Hf+Tn/yk7eubY1ClUklLS0uSF548WrRo0TbvtWjRorYnk1paWlKp+MBtAAAAAABg19LtYlJnmTp1apqaXnhL4JQpU7J27dot9q9duzZTpkxJkjQ1NWXq1Kn1HhEAAAAAAOBlE5NeomHDhuWcc85JkixevDiHHXZYrrvuuixevDjXXXddDjvssCxevDhJcu655+aggw5q5LgAAAAAAAAvSVOjB9iVXXLJJVm1alWuvvrqLFmyJJMmTdrqmMmTJ+fiiy9uwHQAAAAAAAAvnyeTXoYePXpk1qxZufXWW9PS0pIBAwakZ8+eGTBgQFpaWvK9730vV111VXr08MsMAAAAAADsmjyZtA0XXHBBLrjggh0+fuLEiZk4cWLtBgIAAAAAAGgQj8wAAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQVPeY9K53vSvXX399nnvuuXrfGgAAAAAAgJ1U95j0gx/8IJMmTcoBBxyQqVOn5uc//3m9RwAAAAAAAGAH1T0m7bfffqlWq/nTn/6UGTNm5E1velMOOeSQXHHFFfnzn/9c73EAAAAAAADoQN1jUmtra2666aYce+yxaWpqSrVazZIlSzJlypQMGDAgH/jAB3L77bfXeywAAAAAAAC2oe4xabfddst73vOe3HjjjVmxYkW+8IUv5K//+q9TrVazbt26fPvb38473/nODBkyJBdddFF+//vf13tEAAAAAAAA/lvdY1J7/fv3zyc+8Yn84he/yL333pszzjgj++yzT6rVan73u9/lwgsvzOtf//ocddRRue6667Jhw4ZGjgsAAAAAANDtNDQmtbf5c5Mee+yx/Od//mfe/va3p1KpZNOmTfnxj3+cf/iHf8gBBxyQKVOmZMmSJY0eFwAAAAAAoFvoMjFps+bm5kyaNCk/+MEPcvvtt2f//fdv2/fkk0/miiuuyOjRo/PmN785c+fObdygAAAAAAAA3UCXi0nPPvtsrr322rz1rW/N2972tvzhD39ItVpNtVrNyJEj07t371Sr1dx777054YQT0tLSknXr1jV6bAAAAAAAgFekLhOT7r777px66qk54IADcsopp2T+/PmpVqvZa6+9csYZZ2Tx4sV54IEH8vjjj+erX/1qDj744FSr1dxyyy259NJLGz0+AAAAAADAK1JDY1Jra2s+97nPZfjw4TnyyCPz9a9/PWvWrEm1Ws1hhx2Wa665Jo899liuuOKKvOlNb0qS9O3bNx/5yEdy//335+///u9TrVbzn//5n438NgAAAAAAAF6xmup9ww0bNmTu3Ln5+te/nttvvz2bNm1KtVpNkvTv3z8f+tCHcuqpp2b48OEdXqdHjx75+Mc/nuuuuy6/+93v6jE6AAAAAABAt1P3mHTAAQfkz3/+c5KkWq2mR48eOeqoo3LqqaempaUlu++++w5f69WvfnWSZOPGjbUYFQAAAAAAoNure0x68sknkySDBw/OKaeckg9/+MN57Wtf+5Kute++++b888/vzPEAAAAAAABop+4x6bjjjsupp56ad73rXalUKi/rWq961avEJAAAAAAAgBqqe0z67ne/W+9bAgAAAAAA8BL1aPQAAAAAAAAAdF11fzJpzZo1mT59epLktNNOy/7779/h8StXrszXvva1JMm5556b3r1713xGAAAAAAAAXlD3J5Pmzp2bCy64IN/61re2G5KSZP/998+3vvWtXHjhhbn55pvrMCEAAAAAAACb1T0m3XjjjalUKjnxxBN36PhKpZJJkyalWq3m+uuvr/F0AAAAAAAAtFf3mPTggw8mSQ499NAdPmf8+PFJkl/96lc1mQkAAAAAAIBtq3tMWrFiRZLkgAMO2OFzNr8Or7W1tSYzAQAAAAAAsG11j0k9erxwy2effXaHz9l87MaNG2syEwAAAAAAANtW95i0+YmkxYsX7/A5m4/d/IQSAAAAAAAA9VH3mHTEEUekWq3miiuuyHPPPbfd45977rlcccUVqVQqOfzww+swIQAAAAAAAJvVPSadcsopSZLf/va3+Yd/+IcOX3f37LPP5v3vf39+85vfbHEuAAAAAAAA9dFU7xseeuihmTRpUr797W/nxhtvzE9/+tN85CMfyZFHHpkDDjgglUoljz32WBYsWJCrrroqK1asSKVSyXvf+95MmDCh3uMCAAAAAAB0a3WPSUly9dVXZ/Xq1bn99tvT2tqaCy64YJvHVavVJMlRRx2Vb3zjG3WcEAAAAAAAgKQBr7lLkl69euX73/9+pk+fngEDBqRarW7zx+DBg/PlL3858+bNS69evRoxKgAAAAAAQLfWkCeTkqRSqeSss87Kxz72sdx3331ZsmRJVq9enSTp169f3vSmN+Vv/uZvUqlUGjUiAAAAAABAt9ewmLRZpVLJqFGjMmrUqEaPAgAAAAAAwIs05DV3AAAAAAAA7BrEJAAAAAAAAIoa+pq7n//857nzzjvz8MMPZ82aNXn++ec7PL5SqWTWrFl1mg4AAAAAAICGxKRf//rX+fCHP5xFixbt8DnValVMAgAAAAAAqLO6x6TW1tYceeSRWb16darVapKkb9++edWrXpUePbx1DwAAAAAAoCupe0y65JJL8sQTT6RSqeTUU0/NOeeck2HDhtV7DAAAAAAAAHZA3WPSvHnzUqlU8qEPfSgzZ86s9+0BAAAAAADYCXV/r9xjjz2WJPnQhz5U71sDAAAAAACwk+oek171qlclSfbZZ5963xoAAAAAAICdVPeYNHr06CTJb37zm3rfGgAAAAAAgJ1U95j0sY99LNVq1eclAQAAAAAA7AKa6n3Do446Kp/85Cczbdq0nHnmmfnyl7+c3Xffvd5jAGzT8PNvb/QI7KS9e1Zz0SEvbB/5xTvzlw2Vut7/1xe+va73AwAAAIB6q3tMuvbaazNy5MgceuihmTlzZm6++ea8973vzYgRI7LHHnts9/wPfehDdZgSAAAAAACApAEx6eSTT06l8j//1/jKlSszY8aMHTq3UqmISQAAAAAAAHVU95iUJNVqtRG3BQAAAAAAYCfVPSYtX7683rcEAAAAAADgJap7THrd615X71sCAAAAAADwEvVo9AAAAAAAAAB0XWISAAAAAAAARXV/zV17y5Yty7XXXpuFCxfm8ccfz9q1azNv3rz8r//1v9qOeeCBB/L73/8+ffr0yYQJExo4LQAAAAAAQPfTkJi0adOmnHfeebn88suzadOmVKvVJEmlUsmGDRu2OPbRRx/Nu9/97jQ1NWX58uUZOHBgI0YGAAAAAADolhrymrvTTz89X/rSl/L8889nwIABee9731s89uijj87rX//6PP/887nhhhvqOCUAAAAAAAB1j0l33HFHZs2alST5v//3/+aRRx7Jd77znQ7Ped/73pdqtZqf/OQn9RgRAAAAAACA/1b319xdeeWVSZKJEyfm4osv3qFzxo4dmyT55S9/WbO5AAAAAAAA2Frdn0xauHBhKpVKJk+evMPnDBo0KEny+OOP12osAAAAAAAAtqHuMWnVqlVJkiFDhuzwOU1NLzxA9dxzz9VkJgAAAAAAALat7jGpd+/eSZJnn312h8/5/e9/nyR51ateVZOZAAAAAAAA2La6x6TNTyQtWbJkh8+55ZZbkiQjR46syUwAAAAAAABsW91j0jve8Y5Uq9XMnDkzmzZt2u7xP/vZz/LNb34zlUol73rXu+owIQAAAAAAAJvVPSZ99KMfTe/evXP//ffnIx/5SIefg/Td734373rXu7Jhw4bstddeOe200+o4KQAAAAAAAE31vuHAgQPz5S9/OR/5yEdyzTXX5Ac/+EHe8573tO2fNWtWnn322dx+++15+OGHU61WU6lUMnPmzOy99971HhcAAAAAAKBbq3tMSpLJkyenUqnkYx/7WFpbW/PVr341lUolSXL55ZcnSarVapKkubk5V155Zd73vvc1YlQAAAAAAIBure6vudvswx/+cB588MF84hOfyNChQ1OtVrf4MXDgwJx55plZunRpTjrppEaNCQAAAAAA0K015MmkzQYNGpQvfOEL+cIXvpCnnnoqq1atyvPPP59Xv/rV6devX83u+9RTT+V73/te7r333ixevDitra154oknsnbt2uyzzz4ZOXJkJk6cmMmTJ+fVr371dq83b968zJw5M/fcc0+eeOKJ9O/fP2PHjs1pp52Wd73rXTX7PgAAAAAAAGqtoTGpvb322it77bVXXe51zz335P3vf/829z3xxBOZP39+5s+fn89//vP5j//4j7zzne/c5rHVajVnnHFGZs6cucXXW1tbM2fOnMyZMyennXZarrzyyrbX+AEAAAAAAOxKukxMqrfBgwfnrW99aw455JAMHjw4BxxwQDZt2pQVK1bkhhtuyI033pjVq1fnmGOOyb333ps3vvGNW13jU5/6VFtIGjVqVD75yU9m6NCheeihhzJt2rQsWbIkM2fOTP/+/XPxxRfX+1sEAAAAAAB42bplTHrrW9+a3//+98X9J554YubOnZvjjjsuGzZsyIUXXpjvfve7WxyzbNmyTJs2LUkyevToLFiwIL17906SjBkzJsccc0wmTJiQxYsX57LLLsspp5ySoUOH1u6bAgAAAAAAqIG6x6S/+7u/e8nnViqV/OhHP3rZM+y2227bPebYY4/NiBEj8uCDD2bBggVb7Z8+fXo2btyYJJkxY0ZbSNpsjz32yIwZMzJ+/Phs3Lgxl19+eWbMmPGyZwcAAAAAAKinusekO+64I5VKJdVqtXjMiz9faPOx9f7coT59+iRJ1q1bt9U8N910U5JkxIgRGTdu3DbPHzduXIYPH55f//rXmTt3br785S/77CQAAAAAAGCXUveYdOSRR243qDzzzDP57W9/m7/85S+pVCoZNmxYDjjggDpN+IKlS5fmvvvuS/JCMGpv+fLlaW1tTZJMmDChw+tMmDAhv/71r7NixYo88sgjGTJkSE3mBQAAAAAAqIWGPJm0I6rVam699dacddZZ+dOf/pSrrroqhx9+eE1ne/bZZ9Pa2pqbb74506ZNy/PPP58kOeuss7Y4bunSpW3bLw5NL9Z+/9KlS8UkAAAAAABgl1L3mLSjKpVK3v3ud+eQQw7Jm970phx33HG57777MnDgwE69zzXXXJNTTjmluP+cc87JBz7wgS2+9uijj7ZtDxo0qMPrDx48eJvn7agVK1Z0uH/lypVt2+vXr9/qlXyN1n6erjYbbMvePcuv4KRr2mv36ja368Xaxs6yzuxaGr3GJNYZeKXzdyag1qwzQK1ZZ7qe9evXd/o1u2xM2uyAAw7IJz7xiZx33nmZNm1a/vVf/7Uu9/3bv/3bXHnllXnzm9+81b41a9a0bfft27fD62z+3KUkefrpp3d6jvYxansWLlyYfv367fQ96mXRokWNHgG266JDGj0BL8c5b9xU93vu6BO3sJl1ZtfViDUmsc5Ad+LvTECtWWeAWrPOdA2rV6/u9Gv26PQr1sDm19vdeuutnX7tY489Nvfff3/uv//+3HPPPZk9e3bbU1Af+MAHcsstt2x1Tvu62rNnzw6v39zc3La9du3azhscAAAAAACgDrr8k0nJ/wSbxx57rNOvvc8++2SfffZp+/mYMWMyadKkfPOb38xJJ52UlpaWzJo1KyeffHLbMb169Wrb3rBhQ4fXb/84We/evXd6vu29Gm/lypUZO3ZskmT8+PGd/hrAl2vdunVtNXrcuHFb/NpBV3TkF+9s9AjspL12r7Y9LfCFX/TIU89V6nr/BWcfUdf7seuzzuxaGr3GJNYZeKXzdyag1qwzQK1ZZ7qe1tbWTr/mLhGT7rrrriTJHnvsUbd7fvCDH8wtt9yS73znO/noRz+alpaWvOpVr0qS7Lnnnm3Hbe/Vdc8880zb9vZeibct2/tMpvaam5u79G/UXr16den5IEn+sqH+/0hI53nquUrd/xta19hZ1pldVyPWmMQ6A92JvzMBtWadAWrNOtM1tH9jWmfp8q+5W7hwYS666KJUKpW2J3DqpaWlJckLQei2225r+3r7wLNixYoOr9H+yaKd+fwjAAAAAACArqDuTyZddNFF2z1m06ZNefLJJ7N48eL89Kc/zaZNm1KpVPLxj3+8DhP+j/79+7dt/+53v2vbHjlyZNv2gw8+2OE12u8/+OCDO3E6AAAAAACA2qt7TLrgggtSqez460Gq1Wqampoybdq0HHXUUTWcbGvt3yvY/hV1Q4YMyYABA/LYY49l/vz5HV5jwYIFSZKBAwfmwAMPrMmcAAAAAAAAtdKQ19xVq9UOfyQvfC7RG9/4xnzsYx/Lfffdl6lTp9Z9zuuvv75t+w1veEPbdqVSaXsF3oMPPtj24WIvtmjRorYnk1paWnYqogEAAAAAAHQFdY9JmzZt2u6P559/Pn/+85+zZMmSXH755Vu8Vq4zXHPNNVm3bl2Hx0yfPj3f+973kiQHHnhgDj/88C32T506NU1NLzzYNWXKlKxdu3aL/WvXrs2UKVOSJE1NTQ2JYQAAAAAAAC9X3V9z1xVccMEFOfvss3PCCSfk8MMPz9ChQ9O3b9+sWbMm999/f771rW/l7rvvTpL07NkzX/va19rC0WbDhg3LOeeck0svvTSLFy/OYYcdlvPOOy9Dhw7NQw89lMsuuyxLlixJkpx77rk56KCD6v59AgAAAAAAvFzdMiYlyZ/+9Kd87Wtfy9e+9rXiMYMGDcrVV1+dt7/97dvcf8kll2TVqlW5+uqrs2TJkkyaNGmrYyZPnpyLL7640+YGAAAAAACop24Zk370ox/l9ttvz09+8pMsXbo0f/jDH/LHP/4xvXr1ymte85r87d/+bd797nfnxBNPzB577FG8To8ePTJr1qyccMIJmTlzZu69996sXr06/fr1y5gxY3L66afn6KOPruN3BgAAAAAA0LnqHpN+//vf1+S6r33ta3f42KFDh2bo0KE5/fTTO+XeEydOzMSJEzvlWgAAAAAAAF1J3WPSkCFDOv2alUolGzdu7PTrAgAAAAAAdHd1j0nVarXetwQAAAAAAOAlqntM+vrXv54kueKKK3Lvvfdm9913zzve8Y6MHTs2r3nNa1KtVrNq1arce++9+cEPfpDnnnsuY8aMyZlnnlnvUQEAAAAAALq9usekk046KaeeemoWL16cd7zjHZk1a1YGDhy4zWNbW1vzkY98JN///vfzhje8IV/72tfqPC0AAAAAAED31qPeN7zhhhty9dVXZ/To0bn11luLISlJBg4cmJtvvjmHHHJIrr766nznO9+p46QAAAAAAADUPSZ99atfTaVSySc+8Ynstttu2z1+t912y9lnn51qtZqZM2fWYUIAAAAAAAA2q3tM+sUvfpEkGTZs2A6fs/nY+++/vyYzAQAAAAAAsG11j0lr1qxJkqxatWqHz9l87OZzAQAAAAAAqI+6x6TXve51SZJrr712h8/ZfOxrX/vamswEAAAAAADAttU9JrW0tKRarebb3/52pk2btt3jv/CFL2T27NmpVCo57rjj6jAhAAAAAAAAmzXV+4b//M//nGuvvTZ/+MMf8n/+z//J7Nmzc9JJJ2XMmDHZb7/9UqlU8oc//CH33ntvvvnNb+a+++5Lkuy///4577zz6j0uAAAAAABAt1b3mLTPPvvk9ttvzzvf+c60trbmF7/4Rc4+++zi8dVqNYMGDcq8efOyzz771G9QAAAAAAAA6v+auyQZOXJkfvnLX+bjH/949tlnn1Sr1W3+2GefffKJT3wiDzzwQEaOHNmIUQEAAAAAALq1uj+ZtNlee+2VL37xi/nc5z6Xn/3sZ7n//vvz5JNPplqtZt99980b3vCGHHLIIenZs2ejRgQAAAAAAOj2GhaTNuvZs2fGjx+f8ePHN3oUAAAAAAAAXqQhr7kDAAAAAABg19DwJ5MefvjhLFy4MI8//nieffbZnHnmmenXr1+jxwIAAAAAACANjElLlizJ1KlTc9ddd23x9RNOOGGLmPTv//7vufDCC7P33nvnV7/6VXbfffd6jwoAAAAAANBtNeQ1d7feemsOPfTQ3HXXXalWq20/tuWkk07K2rVr8/DDD+eWW26p86QAAAAAAADdW91j0uOPP573v//9Wb9+fUaOHJnbbrsta9asKR7ft2/fHHvssUmS2267rU5TAgAAAAAAkDQgJk2fPj1PP/10Xve61+XOO+/MO9/5zvTp06fDc97ylrekWq3mZz/7WZ2mBAAAAAAAIGlATPr+97+fSqWSs88+O/vss88OnTN8+PAkySOPPFK7wQAAAAAAANhK3WPS8uXLkyRjx47d4XP23HPPJMnTTz9dk5kAAAAAAADYtrrHpOeeey5Jsvvuu+/wOX/+85+TZLuvwwMAAAAAAKBz1T0m7b///kn+5wmlHbFw4cIkyaBBg2oyEwAAAAAAANtW95h02GGHJUnmzJmzQ8c/++yzufLKK1OpVHLkkUfWcjQAAAAAAABepO4x6aSTTkq1Ws3s2bPzgx/8oMNjn3766Zx44on5/e9/nySZPHlyPUYEAAAAAADgv9U9Jr397W/Psccem02bNuWYY47Jueeem3vuuadt/5/+9Kf89Kc/zb/8y79k+PDhue2221KpVPKhD30oo0aNqve4AAAAAAAA3VpTI276H//xH3n3u9+dO+64I1/60pfypS99KZVKJUkyYcKEtuOq1WqS5G1ve1uuvPLKRowKAAAAAADQrdX9yaQk2WOPPXL77bfn85//fPbff/9Uq9Vt/th3333z2c9+Nt///vfT3NzciFEBAAAAAAC6tYY8mZQkPXr0yNlnn52zzjor99xzTxYvXpxVq1bl+eefz6tf/eqMGjUqhx9+uIgEAAAAAADQQHWPSddee22SZPjw4Xnzm9+cpqamHHrooTn00EPrPQoAAAAAAADbUffX3J188sk55ZRT8rvf/a7etwYAAAAAAGAn1T0m7b333kmSgw46qN63BgAAAAAAYCfVPSYNGTIkSfLkk0/W+9YAAAAAAADspLrHpOOOOy7VajU333xzvW8NAAAAAADATqp7TDrrrLPyute9Ll/5ylfy4x//uN63BwAAAAAAYCfUPSbttdde+eEPf5gRI0bkne98Z0477bTccccd+dOf/pRqtVrvcQAAAAAAAOhAU71vuNtuu7VtV6vVzJo1K7NmzdqhcyuVSjZu3Fir0QAAAAAAAHiRusekFz995GkkAAAAAACArqvuMen888+v9y0BAAAAAAB4iWoak6699tokybHHHpu99toriZgEAAAAAACwK6lpTDr55JNTqVQyevTojBw5cqv9TzzxRL7yla+kUqnk05/+dC1HAQAAAAAA4CWo+2vu2lu1alUuuOACMQkAAAAAAKCL6tHoAQAAAAAAAOi6xCQAAAAAAACKxCQAAAAAAACKxCQAAAAAAACKxCQAAAAAAACKxCQAAAAAAACKmupxkyuuuCL77bffVl9ftWpV2/ZFF120Q9f6zGc+02lzAQAAAAAA0LG6xKSvfOUrxX2VSiVJcuGFF+7QtcQkAAAAAACA+ql5TKpWq512rc3hCQAAAAAAgPqoaUz6yU9+UsvLAwAAAAAAUGM1jUkTJkyo5eUBAAAAAACosR6NHgAAAAAAAICuS0wCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgSEwCAAAAAACgqKnRAwAAAGXDz7+90SMANbR3z2ouOuSF7SO/eGf+sqFS9xl+feHb635PAAB2LZ5MAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoEhMAgAAAAAAoKip0QNALQ0///ZGjwAAAAAAALs0TyYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQ1NToAQBgVzb8/NsbPQIAAAAA1JQnkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACgSkwAAAAAAACjqtjHpv/7rv/LZz342Rx99dAYPHpzm5ub07ds3w4YNy8knn5w777xzp643b968HH/88Rk0aFCam5szaNCgHH/88Zk3b16NvgMAAAAAAIDaa2r0AI0wYcKELFiwYKuvb9iwIb/97W/z29/+Nt/4xjfywQ9+MFdddVV69uxZvFa1Ws0ZZ5yRmTNnbvH11tbWzJkzJ3PmzMlpp52WK6+8MpVKpdO/FwAAAAAAgFrqlk8mtba2JkkGDBiQs846KzfccEPuueeeLFy4MF/60pcycODAJMk3v/nNnHzyyR1e61Of+lRbSBo1alRmz56de+65J7Nnz86oUaOSJDNnzsynP/3p2n1DAAAAAAAANdItn0waMWJEPvvZz+aEE07IbrvttsW+cePG5YMf/GAOO+yw/OY3v8ns2bNz5pln5ogjjtjqOsuWLcu0adOSJKNHj86CBQvSu3fvJMmYMWNyzDHHZMKECVm8eHEuu+yynHLKKRk6dGjtv0EAAAAAAIBO0i2fTLrlllty4oknbhWSNuvXr1+++MUvtv38hhtu2OZx06dPz8aNG5MkM2bMaAtJm+2xxx6ZMWNGkmTjxo25/PLLO2F6AAAAAACA+umWMWlHvOUtb2nbfuihh7baX61Wc9NNNyV54UmncePGbfM648aNy/Dhw5Mkc+fOTbVa7fxhAQAAAAAAakRMKtiwYUPbdo8eW/8yLV++vO2zlyZMmNDhtTbvX7FiRR555JHOGxIAAAAAAKDGxKSC+fPnt22PGDFiq/1Lly7tcH977fe3Pw8AAAAAAKCra2r0AF3Rpk2bcumll7b9/MQTT9zqmEcffbRte9CgQR1eb/Dgwds8b0esWLGiw/0rV65s216/fn3WrVu3U9evtfbzNGK2vXt6rSC80u21e3Wb2wCdwRoD1FpXWGe62t8jgc7V6H+bAV75rDNdz/r16zv9mmLSNkyfPj333HNPkuS4447L6NGjtzpmzZo1bdt9+/bt8Hp9+vRp23766ad3apb2IWp7Fi5cmH79+u3U9etp0aJFdb/nRYfU/ZZAA53zxk2NHgF4BbPGALXWqHXmjjvuaMh9gfprxL/NAN2LdaZrWL16dadf02vuXmT+/Pn553/+5yTJfvvtl6985SvbPK59Ye3Zs2eH12xubm7bXrt2bSdMCQAAAAAAUB+eTGrnl7/8ZY477rhs3Lgxzc3N+c53vpPXvOY12zy2V69ebdsbNmzo8LrtHynr3bv3Ts20vdfirVy5MmPHjk2SjB8/PgMHDtyp69faunXr2mr0uHHjtvh1q4cjv3hnXe8H1N9eu1fb/i/eL/yiR556rtLgiYBXEmsMUGtdYZ1ZcPYRdb8nUD+N/rcZ4JXPOtP1tLa2dvo1xaT/tnz58rzjHe/Ik08+md122y2zZ8/OhAkTisfvueeebdvbe3XdM88807a9vVfivdj2Po+pvebm5i79G7VXr151n+8vG/yDD3QnTz1X8fseqBlrDFBrjVpnuvLfI4HO1Yh/mwG6F+tM19D+bWmdxWvukjz22GN5+9vfnsceeyyVSiVXX311jjvuuA7PaR95VqxY0eGx7Z8u2pnPQAIAAAAAAGi0bh+TVq9enaOOOioPP/xwkmTGjBn50Ic+tN3zRo4c2bb94IMPdnhs+/0HH3zwS5wUAAAAAACg/rp1TPrLX/6Sd77znfnVr36VJLn00kvzT//0Tzt07pAhQzJgwIAkyfz58zs8dsGCBUmSgQMH5sADD3zpAwMAAAAAANRZt41Jzz77bP73//7f+a//+q8kyf/3//1/Oe+883b4/EqlkpaWliQvPHm0+QPGXmzRokVtTya1tLSkUvGefQAAAAAAYNfRLWPShg0bctxxx+Xuu+9Okpx11lm5+OKLd/o6U6dOTVNTU5JkypQpWbt27Rb7165dmylTpiRJmpqaMnXq1Jc3OAAAAAAAQJ01NXqARnj/+9+fH/zgB0mSv/u7v8vkyZPzwAMPFI/v2bNnhg0bttXXhw0blnPOOSeXXnppFi9enMMOOyznnXdehg4dmoceeiiXXXZZlixZkiQ599xzc9BBB9XmGwIAAAAAAKiRbhmTbrzxxrbtH//4x3njG9/Y4fGve93r8sgjj2xz3yWXXJJVq1bl6quvzpIlSzJp0qStjpk8efJLevIJAAAAAACg0brla+46U48ePTJr1qzceuutaWlpyYABA9KzZ88MGDAgLS0t+d73vperrroqPXr4pQYAAAAAAHY93fLJpGq12unXnDhxYiZOnNjp1wUAAAAAAGgkj8sAAAAAAABQJCYBAAAAAABQJCYBAAAAAABQJCYBAAAAAABQ1NToAQAAAIDGGX7+7Y0egV3Mry98e6NHAADqzJNJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFIlJAAAAAAAAFDU1egAAAAAAdh3Dz7+90SOwE/buWc1Fh7ywfeQX78xfNlTqPsOvL3x73e8JQOfyZBIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhIAAAAAAABF3TYmrVq1Krfccks+85nP5Oijj06/fv1SqVRSqVRy8skn7/T15s2bl+OPPz6DBg1Kc3NzBg0alOOPPz7z5s3r/OEBAAAAAADqpKnRAzTKa17zmk65TrVazRlnnJGZM2du8fXW1tbMmTMnc+bMyWmnnZYrr7wylUqlU+4JAAAAAABQL932yaT2Bg8enHe84x0v6dxPfepTbSFp1KhRmT17du65557Mnj07o0aNSpLMnDkzn/70pzttXgAAAAAAgHrptk8mfeYzn8mYMWMyZsyYvOY1r8kjjzySIUOG7NQ1li1blmnTpiVJRo8enQULFqR3795JkjFjxuSYY47JhAkTsnjx4lx22WU55ZRTMnTo0E7/XgAAAAAAAGql2z6ZdOGFF+bd7373y3rd3fTp07Nx48YkyYwZM9pC0mZ77LFHZsyYkSTZuHFjLr/88pd8LwAAAAAAgEbotjHp5apWq7npppuSJCNGjMi4ceO2edy4ceMyfPjwJMncuXNTrVbrNiMAAAAAAMDLJSa9RMuXL09ra2uSZMKECR0eu3n/ihUr8sgjj9R6NAAAAAAAgE4jJr1ES5cubdseMWJEh8e239/+PAAAAAAAgK6uqdED7KoeffTRtu1BgwZ1eOzgwYO3ed6OWLFiRYf7V65c2ba9fv36rFu3bqeuX2vt52nEbHv39FpBeKXba/fqNrcBOoM1Bqg16wxQa11hnelq/14FdK5G/xswW1u/fn2nX1NMeonWrFnTtt23b98Oj+3Tp0/b9tNPP71T92kforZn4cKF6dev305dv54WLVpU93tedEjdbwk00Dlv3NToEYBXMGsMUGvWGaDWGrXO3HHHHQ25L1B/jfg3YLa2evXqTr+m19y9RO0La8+ePTs8trm5uW177dq1NZsJAAAAAACgs3ky6SXq1atX2/aGDRs6PLb9I2W9e/feqfts77V4K1euzNixY5Mk48ePz8CBA3fq+rW2bt26tho9bty4LX7d6uHIL95Z1/sB9bfX7tW2/7vuC7/okaeeqzR4IuCVxBoD1Jp1Bqi1rrDOLDj7iLrfE6ifRv8bMFtrbW3t9GuKSS/Rnnvu2ba9vVfXPfPMM23b23sl3ott7/OY2mtubu7Sv1F79epV9/n+ssFfxKA7eeq5it/3QM1YY4Bas84AtdaodaYr/3sV0Lka8W/AbK3929I6i9fcvUTtI8+KFSs6PLb900U78xlIAAAAAAAAjSYmvUQjR45s237wwQc7PLb9/oMPPrhmMwEAAAAAAHQ2MeklGjJkSAYMGJAkmT9/fofHLliwIEkycODAHHjggbUeDQAAAAAAoNOISS9RpVJJS0tLkheePNr8AWMvtmjRorYnk1paWlKpeP81AAAAAACw6xCTXoapU6emqakpSTJlypSsXbt2i/1r167NlClTkiRNTU2ZOnVqvUcEAAAAAAB4WZoaPUCj3HXXXVm2bFnbz1evXt22vWzZslxzzTVbHH/yySdvdY1hw4blnHPOyaWXXprFixfnsMMOy3nnnZehQ4fmoYceymWXXZYlS5YkSc4999wcdNBBNfleAAAAAAAAaqXbxqSrrroq3/jGN7a57+67787dd9+9xde2FZOS5JJLLsmqVaty9dVXZ8mSJZk0adJWx0yePDkXX3zxy54ZAAAAAACg3rzm7mXq0aNHZs2alVtvvTUtLS0ZMGBAevbsmQEDBqSlpSXf+973ctVVV6VHD7/UAAAAAADArqfbPpl0zTXXbPUqu5dj4sSJmThxYqddDwAAAAAAoCvwuAwAAAAAAABFYhIAAAAAAABFYhIAAAAAAABFYhL8/+3dfZBV5X0H8O+SBVxBDAgYDIwIAm5obS2ibkApxiR1IBJttTVNxJeYFCsTqlFbp8NLElpJlJdmnBIGgrVNNZPWSBVMDbTiKyNSNckUfFkUxfgChiryssvK9g+GOxA5gOxdLrt+PjPMPHvv757zu47zzLnne85zAAAAAACAQsIkAAAAAAAACgmTAAAAAAAAKCRMAgAAAAAAoJAwCQAAAAAAgELCJAAAAAAAAAoJkwAAAAAAACgkTAIAAAAAAKCQMAkAAAAAAIBCwiQAAAAAAAAKCZMAAAAAAAAoJEwCAAAAAACgkDAJAAAAAACAQsIkAAAAAAAACgmTAAAAAAAAKCRMAgAAAAAAoJAwCQAAAAAAgELCJAAAAAAAAAoJkwAAAAAAACgkTAIAAAAAAKCQMAkAAAAAAIBCwiQAAAAAAAAKCZMAAAAAAAAoJEwCAAAAAACgkDAJAAAAAACAQsIkAAAAAAAACgmTAAAAAAAAKCRMAgAAAAAAoJAwCQAAAAAAgELCJAAAAAAAAAoJkwAAAAAAACgkTAIAAAAAAKCQMAkAAAAAAIBCwiQAAAAAAAAKCZMAAAAAAAAoJEwCAAAAAACgkDAJAAAAAACAQsIkAAAAAAAACgmTAAAAAAAAKCRMAgAAAAAAoJAwCQAAAAAAgELCJAAAAAAAAAoJkwAAAAAAACgkTAIAAAAAAKCQMAkAAAAAAIBCwiQAAAAAAAAKCZMAAAAAAAAoJEwCAAAAAACgkDAJAAAAAACAQsIkAAAAAAAACgmTAAAAAAAAKCRMAgAAAAAAoJAwCQAAAAAAgELCJAAAAAAAAAoJkwAAAAAAACgkTAIAAAAAAKCQMAkAAAAAAIBCwiQAAAAAAAAKCZMAAAAAAAAoJEwCAAAAAACgkDAJAAAAAACAQsIkAAAAAAAACgmTAAAAAAAAKCRMAgAAAAAAoJAwCQAAAAAAgELCJAAAAAAAAAoJkwAAAAAAACgkTAIAAAAAAKCQMAkAAAAAAIBCwiQAAAAAAAAKCZMAAAAAAAAoJEwCAAAAAACgkDAJAAAAAACAQsIkAAAAAAAACgmTAAAAAAAAKCRMAgAAAAAAoJAwCQAAAAAAgELCJAAAAAAAAAoJkwAAAAAAACgkTAIAAAAAAKCQMAkAAAAAAIBCwiQAAAAAAAAKCZMAAAAAAAAoJEwCAAAAAACgkDAJAAAAAACAQsIkAAAAAAAACgmTAAAAAAAAKCRMAgAAAAAAoJAwCQAAAAAAgELCJAAAAAAAAAoJkwAAAAAAACgkTAIAAAAAAKCQMAkAAAAAAIBCwiQAAAAAAAAKCZMAAAAAAAAoJEwCAAAAAACgkDAJAAAAAACAQsIkAAAAAAAACgmTAAAAAAAAKCRMAgAAAAAAoJAwCQAAAAAAgELCJAAAAAAAAAoJkwAAAAAAACgkTAIAAAAAAKCQMAkAAAAAAIBCwiQAAAAAAAAKCZMAAAAAAAAoJEwCAAAAAACgkDAJAAAAAACAQsIkAAAAAAAACgmTAAAAAAAAKCRMAgAAAAAAoJAwCQAAAAAAgELCJAAAAAAAAAoJkwAAAAAAACgkTAIAAAAAAKCQMAkAAAAAAIBCwiQAAAAAAAAKCZMAAAAAAAAoJEwCAAAAAACgkDAJAAAAAACAQsIkAAAAAAAACgmTAAAAAAAAKCRMAgAAAAAAoJAwCQAAAAAAgELCJAAAAAAAAApVV7oBAAAAAKD9GjJlaaVbAFrRsZ2a861hu8bn3PZI3mmsOqz7f27aeYd1fx9V7kwCAAAAAACgkDAJAAAAAACAQsIkAAAAAAAACgmTAAAAAAAAKCRMAgAAAAAAoJAwqYxeeeWVfPOb30xtbW26dOmSHj165Iwzzsitt96arVu3Vro9AAAAAACAD6260g20F4sXL86f//mf55133im9tnXr1qxcuTIrV67M/Pnzs2TJkgwYMKCCXQIAAAAAAHw47kwqg2effTaXXHJJ3nnnnXTt2jXTp0/P448/nmXLluXqq69Okjz33HMZM2ZM3nvvvQp3CwAAAAAAcPDcmVQGkyZNytatW1NdXZ0HH3wwdXV1pffOPffcDBo0KDfeeGPWrFmTmTNnZvLkyRXsFgAAAAAA4OC5M6mFVq5cmYceeihJctVVV+0VJO12/fXXp7a2Nkkye/bs7Nix43C2CAAAAAAAcMiESS107733lsZXXHHFPms6dOiQyy67LEmyadOmUvgEAAAAAABwpBMmtdAjjzySJOnSpUuGDRtWWDdq1KjS+NFHH231vgAAAAAAAMpBmNRCq1evTpKcfPLJqa4ufgTVKaec8oHPAAAAAAAAHOmK0w8OaPv27dm4cWOSpG/fvvut7d69e7p06ZItW7bk1VdfPeh9rF+/fr/v77mtdevWpaGh4aC3fTg0NDSU/hutXbs2nTt3Pqz7r9m+4bDuDzj8Ojc1Z+PGnbvGWzukpqmqwh0B7Yk5Bmht5hmgtZlngNZW6Xmmvr7+sO6vLXjjjTdK46amprJsU5jUAps3by6Nu3btesD63WHSe++9d9D76Nev30HXfuYznznoWoD2ZGWlGwDaNXMM0NrMM0BrM88Ara2S88zQORXceRuwYcOG9O/fv8XbscxdC2zfvr007tSp0wHrd9+Vs23btlbrCQAAAAAAoJzcmdQCRx11VGnc2Nh4wPrdS9DV1NQc9D4OtCTe9u3bs2bNmhx//PHp1avXfp/bVAmvv/56zjjjjCTJk08+mT59+lS4I6C9Mc8ArckcA7Q28wzQ2swzQGszzxx5mpqasmHDrkfA/O7v/m5ZtnlkJQ9tzDHHHFMaH8zSdVu2bElycEvi7XagZzElycknn3zQ26ukPn36HNT3AThU5hmgNZljgNZmngFam3kGaG3mmSNHOZa225Nl7lrgqKOOSs+ePZMk69ev32/tpk2bSmHSh3kOEgAAAAAAQCUJk1qotrY2SfLiiy+mqampsG7NmjUf+AwAAAAAAMCRTpjUQiNHjkyyawm7VatWFdYtX768NB4xYkSr9wUAAAAAAFAOwqQW+uIXv1gaL1y4cJ81O3fuzJ133pkk+fjHP57Ro0cfjtYAAAAAAABaTJjUQmeccUbOPvvsJMmCBQvyxBNPfKDmtttuy+rVq5Mk3/jGN9KxY8fD2iMAAAAAAMChqq50A+3BnDlzMmLEiGzbti2f+9zncvPNN2f06NHZtm1b7r777sybNy9JMnjw4Fx//fUV7hYAAAAAAODgCZPK4LTTTsuPf/zjfPnLX867776bm2+++QM1gwcPzuLFi3PMMcdUoEMAAAAAAIBDU9Xc3Nxc6Sbai3Xr1mXOnDlZvHhx1q9fn06dOuXkk0/OxRdfnGuvvTZHH310pVsEAAAAAAD4UIRJAAAAAAAAFOpQ6QYAAAAAAAA4cgmTAAAAAAAAKCRMAgAAAAAAoJAwCQAAAAAAgELCJAAAAAAAAAoJkwAAAAAAACgkTAIAAAAAAKCQMAkAAAAAAIBCwiRazcaNG/Pd7343I0aMyCc+8Yl07tw5J5xwQs4888zccMMNeeKJJyrdItCGNTY2ZsGCBfmjP/qj9OnTJ507d07Xrl0zZMiQXHnllVmxYkWlWwSOQG+99Vbuv//+TJ48Oeeff3569uyZqqqqVFVV5fLLL//Q2/vZz36Wiy66KH379k3nzp3Tt2/fXHTRRfnZz35W/uaBNqEc88z27duzaNGiTJw4MWeeeWZ69OiRjh07pkePHqmrq8vUqVPz+uuvt+4XAY5I5T6W2dPWrVszYMCA0vb69+9flp6BtqU15pknn3wy11xzTWpra9OtW7d07do1AwcOzJgxYzJz5sxs2LChvF+CVlFd6QZon37yk59kwoQJefvtt/d6/fXXX8/rr7+eJ598Mi+88ELuvffeyjQItGmvvvpqxowZk1/+8pd7vd7Y2Jjnn38+zz//fBYuXJi/+qu/ym233ZaqqqoKdQocaY4//viybKe5uTl/8Rd/kXnz5u31+muvvZaf/vSn+elPf5qvfe1rmTt3rjkIPmJaOs/84he/yMiRI7N58+YPvLdp06asWLEiK1asyMyZMzN//vxccsklLdof0LaU61hmXyZPnpyXXnqp1bYPtA3lnGcaGhpy7bXXZsGCBWlubt7rvbVr12bt2rVZsmRJBgwYkC9+8Ytl2y+tQ5hE2d1555254oorsnPnzvTu3TsTJkzIyJEj06NHj7zxxhupr6/Pfffdl44dO1a6VaANampq2itIOvXUU3PddddlyJAh2bx5cx599NHcdttt2bJlS2bNmpU+ffrkhhtuqHDXwJGoX79+qa2tzYMPPvihP/u3f/u3pSDptNNOy4033piBAwemvr4+3/3ud/P0009n3rx56dWrV77zne+Uu3WgjTiUeebdd98tBUkjRozI2LFjc/rpp+e4447Lhg0bcs8992T+/PnZvHlzvvSlL+WYY47J+eef31pfATiCteRY5rc9/fTTmT17do466qh07Nhxn4E28NHTknmmsbExF154YR544IEkydlnn53LLrsstbW1qa6uzrp16/Lss8/mJz/5SbnbppVUNf92JAgtsHr16px22mlpaGjI2Wefnfvuuy/HHnvsPmsbGxvTqVOnw9wh0Nb9+7//e/7kT/4kSVJXV5dHHnkkH/vYx/aqWbVqVerq6rJjx4507949b731VqqrXT8BJFOmTMnw4cMzfPjwHH/88Xn55Zdz0kknJUnGjx+fO+6444DbePHFF1NbW5umpqacfvrpefjhh1NTU1N6f+vWrRk1alSeeuqpVFdXZ82aNRk4cGBrfSXgCNPSeebxxx/PnDlzMmXKlHzqU5/aZ82iRYty4YUXprm5OQMHDswLL7zgLkj4iCjHscxve//993PmmWdm1apV+da3vpUFCxZk3bp1OfHEE/Pyyy+X9wsAR7xyzTOTJ0/Ot7/97STJrbfemuuvv76wdseOHW48aAM8M4mymjhxYhoaGtKzZ8/cc889hUFSEkEScEgee+yx0vhv/uZvPhAkJcmwYcMyduzYJLuWg1mzZs1h6w84sk2bNi1jx45t0dINs2bNSlNTU5Lk+9///l5BUpIcffTR+f73v59k192Us2fPPuR9AW1PS+eZT3/60/nxj39cGCQlybhx43LRRRclSerr6/PMM88c0r6AtqccxzK/bc6cOVm1alWGDBmSm266qWzbBdqmcswza9euzS233JIkufzyy/cbJCURJLURwiTKZs2aNVm2bFmS5Nprr03Pnj0r3BHQHjU2NpbGAwYMKKzb8y6AhoaGVu0J+Ohobm7OokWLkiSnnHJKzjrrrH3WnXXWWRkyZEiS5N577/3A+uAALTV69OjSuL6+voKdAG3ZunXrMnny5CTJP/7jP7rwFyiLefPmZceOHamqqirNMbR9wiTKZs/1LS+++OLSeNOmTXnhhRfy9ttvV6ItoJ0ZPHhwabx27drCut0nVaqqqjJo0KBW7wv4aHjppZfy2muvJUlGjRq139rd769fv94SMUDZ7XmxTIcOftoDh+aaa67Jli1b8pWvfGWvkBqgJXafJz799NNLS+Tt3Lkz69evz0svvZRt27ZVsj0OkSNOymbFihVJkmOPPTa1tbX50Y9+lN/7vd9Ljx49Mnjw4PTs2TMDBgzItGnT8t5771W4W6CtuvTSS9OtW7ckyYwZM/L+++9/oObpp5/O4sWLkyR/9md/VqoHaKnVq1eXxqeccsp+a/d8f8/PAZTD8uXLS+MDzUcA+3L33XdnyZIl6d69e2699dZKtwO0Exs2bChd/FtXV5d33303kyZNSs+ePdOvX78MGDAg3bp1y6hRo0rnbmgbhEmUzf/+7/8mSfr375+JEyfmy1/+cn7xi1/sVfPSSy9l6tSpqaury69//etKtAm0cb169codd9yRmpqaPPbYYxk+fHjuvPPOrFixIkuXLs20adMyatSoNDY25vd///czc+bMSrcMtCOvvvpqady3b9/91vbr12+fnwNoqWeffbZ08mXo0KH7fb4SwL5s2rQpkyZNSpLccsst6d27d2UbAtqN3eeIk6SmpiZ/8Ad/kDlz5mTTpk2l15uamvLwww9n7Nixue666yrRJodAmETZ/OY3v0my69lJt99+ez7+8Y9n7ty5eeutt7J9+/asXLky559/fpLkV7/6VS6++OLs3Lmzki0DbdSFF16Yp556KldddVWeeeaZjB8/PnV1dfnsZz+bqVOn5uijj87MmTPz6KOP5hOf+ESl2wXakc2bN5fGXbt23W9tly5dSmN3ZQPl0tDQkK9+9aulu7P/7u/+rsIdAW3RDTfckDfffDN1dXW5+uqrK90O0I7sPkecJLNnz059fX0+/elPZ/ny5dm6dWt+85vf5Ec/+lH69OmTJJk1a1bmzp1bqXb5EIRJlM2WLVuS7Ppx87GPfSwPPPBAvv71r6dXr17p3LlzTj/99Nx///2lQOnxxx/PPffcU8mWgTZqx44d+dd//dfcd999+3yo/Ztvvpm77rorDz300OFvDmjXtm/fXhof6AHVnTt3Lo2tCQ6Uy7XXXpunnnoqSTJ+/PhccMEFFe4IaGsefvjh/PCHP0x1dXXmzp2bqqqqSrcEtCO7zxEnu84TDxs2LMuWLcs555yTmpqadO/ePV/60peyfPny0gV4kydP9pupDRAmUTZHHXVUaXzxxRfnrLPO+kBNhw4d8r3vfa/091133XVYegPajy1btuS8887L9OnT8/bbb+fGG2/M6tWr09DQkHfeeScPPvhgRo4cmZUrV+YLX/hC5syZU+mWgXZkz+OdxsbG/dY2NDSUxjU1Na3WE/DR8fd///eZP39+kmTYsGG5/fbbK9wR0NY0NDTka1/7Wpqbm/ONb3wjp556aqVbAtqZPX8zJcn06dM/8FqSDBo0KBMmTEiy6zlLS5cuPSz9ceiESZTNMcccUxrvvvtoX4YOHZpPfvKTSZKVK1e2el9A+zJlypQ8/PDDSZIFCxZkxowZOeWUU9KpU6d069Ytn/3sZ/Pf//3fGT16dJqbm3Pdddd94PltAIdqz+OdAy1dt+cVeQdaEg/gQH7wgx/k5ptvTpIMGTIkDzzwwF7LaQIcjOnTp+e5555Lv379MnXq1Eq3A7RDe/5m6tSpU0aPHl1Y+/nPf740dp74yFdd6QZoP/r165c33ngjycE9kPq1117LW2+9dThaA9qJ5ubmLFy4MEkyePDgjB8/fp911dXV+fa3v52RI0dm586dWbhwYWbNmnU4WwXaqT2PcdavX7/f2ldffbU07tevX6v1BLR/d911V6655pokyYknnpilS5emV69eFe4KaItmzJiRJDnvvPNy//3377Nm9wUxW7Zsyd13350k6d27d84999zD0yTQpu352+f444/f7/Lge9Y6T3zkEyZRNkOHDi0lyLsfBltk9/vV1f4XBA7em2++WXqQ42mnnbbf2mHDhpXGa9asadW+gI+OT33qU6XxgeaWPd+vra1ttZ6A9u0//uM/ctlll2Xnzp3p06dPli1bdsCL9wCK7F6md+HChaUL9Yps3Lgxl156aZJk1KhRwiTgoAwaNCgdO3bMjh07DvocceI8cVtgmTvK5pxzzimN6+vr91u7du3aJCktdwdwMPY8sGhqatpv7Y4dO/b5OYCWOOmkk3LCCSckSZYvX77f2t1Lcn7yk59M//79W7s1oB1atmxZLrnkkjQ1NeW4447Lz3/+8wwcOLDSbQEAFOrYsWPq6uqS7LooeM/lv3/bnueQnSc+8gmTKJsLLrggHTt2TJLcc889hXXLly/P22+/nSQ5++yzD0tvQPvQo0ePdOvWLUnyxBNP7DdQ2vMk70knndTqvQEfDVVVVRk3blySXXcerVixYp91K1asKN2ZNG7cuFRVVR22HoH24fHHH8+4cePS0NCQbt265T//8z8zdOjQSrcFtHHNzc0H/HfiiScm2bWs5u7XHnrooco2DrQpf/zHf5xk151HixYtKqzb8xyy88RHPmESZXPcccflq1/9apLk5z//eWld3T1t3rw5kyZNKv399a9//XC1B7QDHTp0yJgxY5Ikv/71rzN9+vR91m3atCk33XRT6e+xY8celv6Aj4ZJkyaV7nicOHFitm3bttf727Zty8SJE5PsujNyz2MfgIPxzDPPZMyYMdmyZUu6dOmSJUuW7LWELwDAkezKK69M7969kyQ333xz3nzzzQ/UPPTQQ/nnf/7nJMnv/M7vZMSIEYe1Rz486/5QVtOmTcvixYvzyiuv5Ctf+Uoee+yxXHTRRenWrVt++ctfZsaMGaWrdCdMmJDhw4dXuGOgrZk8eXIWLVqUrVu3ZurUqVm1alXGjx+fAQMGZPv27VmxYkVmz56dV155JUnymc98Jp/73Ocq3DVwpHj00Ufz4osvlv7euHFjafziiy/mjjvu2Kv+8ssv/8A2Bg8enG9+85u55ZZb8tRTT2XEiBG56aabMnDgwNTX12fGjBl5+umnkyQ33HBDBg0a1CrfBTgytXSeqa+vz+c///n83//9X5LkO9/5To499tj86le/Ktxn7969SydsgPatHMcyAPtTjnmma9eu+Yd/+IdceumlWbduXYYPH56//uu/zhlnnJHt27fngQceyKxZs/L++++nuro6c+fOtZpDG1DV3NzcXOkmaF9Wr16dCy64YK9J57ddeeWVmTt3bmlZPIAPY+nSpbn00kv3OqDZl3PPPTf/9m//lu7dux+mzoAj3eWXX55/+qd/Ouj6okPlnTt35uqrr84Pf/jDws9eddVVmTdvXjp0sBgAfJS0dJ654447csUVV3yofU6ZMiVTp079UJ8B2qZyHcvsT//+/bNu3bqceOKJefnllz/054G2rZzzzO23357rrrsujY2N+3y/a9eu+Zd/+ZfSUuIc2fyypexqa2vzzDPP5Hvf+17OPPPM9OjRI506dUrfvn3zp3/6p/mv//qvLFiwQJAEHLLzzjsva9asyYwZM/KHf/iH6dWrVzp27JiampqcdNJJueSSS3Lvvfdm6dKlgiSgVXTo0CELFizI4sWLM27cuJxwwgnp1KlTTjjhhIwbNy5LlizJ/PnzBUkAAMBH1l/+5V/mf/7nfzJhwoScfPLJqampSdeuXXPqqafmxhtvzPPPPy9IakPcmQQAAAAAAEAhl0oCAAAAAABQSJgEAAAAAABAIWESAAAAAAAAhYRJAAAAAAAAFBImAQAAAAAAUEiYBAAAAAAAQCFhEgAAAAAAAIWESQAAAAAAABQSJgEAAAAAAFBImAQAAAAAAEAhYRIAAAAAAACFhEkAAAAAAAAUEiYBAAAAAABQSJgEAAAAAABAIWESAAAAAAAAhYRJAAAAAAAAFBImAQAAAAAAUEiYBAAAAAAAQCFhEgAAAAAAAIWESQAAAAAAABQSJgEAAAAAAFBImAQAAAAAAEAhYRIAAAAAAACFhEkAAAAAAAAUEiYBAAAAAABQ6P8B8ea/fdnGXfUAAAAASUVORK5CYII=", | |
"text/plain": [ | |
"<Figure size 1000x618.034 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 519, | |
"width": 841 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"minutes = before_df.duration.dt.total_seconds() / 60\n", | |
"minutes.plot.hist()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 196, | |
"id": "0c9de8d8-8cae-4cee-8825-b1278ad0f343", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0 osx_64_mpimpichpython3.9.____cpythonscalarreal\n", | |
"1 osx_64_mpiopenmpipython3.11.____cpythonscalarreal\n", | |
"2 osx_64_mpiopenmpipython3.10.____cpythonscalarc...\n", | |
"3 osx_64_mpiopenmpipython3.12.____cpythonscalarc...\n", | |
"4 osx_64_mpiopenmpipython3.11.____cpythonscalarc...\n", | |
" ... \n", | |
"95 linux_ppc64le_mpiopenmpipython3.13.____cp313sc...\n", | |
"96 linux_ppc64le_mpiopenmpipython3.13.____cp313sc...\n", | |
"97 linux_ppc64le_mpiopenmpipython3.9.____cpythons...\n", | |
"98 linux_ppc64le_mpiopenmpipython3.9.____cpythons...\n", | |
"99 osx_arm64_mpiopenmpipython3.10.____cpythonscal...\n", | |
"Name: name, Length: 100, dtype: object" | |
] | |
}, | |
"execution_count": 196, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"split_df.name" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 197, | |
"id": "b451505e-0751-435e-849b-4720126c65d2", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# artificial: split_df had one retry, which skews things\n", | |
"# set start of last job to start of second to last job\n", | |
"last_split_df = split_df.iloc[-1]\n", | |
"next_to_last = split_df.iloc[-2]\n", | |
"offset = last_split_df.started - next_to_last.started\n", | |
"last_split_df.started -= offset\n", | |
"last_split_df.completed -= offset\n", | |
"split_df.iloc[-1] = last_split_df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 199, | |
"id": "b98728b9-9e4b-470c-9268-62fd9d6f776c", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Timedelta('0 days 01:33:20')" | |
] | |
}, | |
"execution_count": 199, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"flat_df.completed.max() - flat_df.started.min()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 200, | |
"id": "18a7be47-ea7c-40ad-8567-58b8fbc4a992", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Timedelta('0 days 01:03:48')" | |
] | |
}, | |
"execution_count": 200, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"split_df.completed.max() - split_df.started.min()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 201, | |
"id": "1274220b-7a90-45c2-9e21-3d9f6659d73d", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"label\n", | |
"flat 0 days 18:14:53\n", | |
"split 1 days 08:19:22\n", | |
"Name: duration, dtype: timedelta64[ns]" | |
] | |
}, | |
"execution_count": 201, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"flat_df['label'] = 'flat'\n", | |
"split_df['label'] = 'split'\n", | |
"merged = pd.concat([flat_df, split_df])\n", | |
"merged.groupby('label').duration.sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 202, | |
"id": "573393e1-1099-47fa-8d45-e4e3c7992961", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"label\n", | |
"flat 0 days 00:18:39\n", | |
"split 0 days 00:06:32\n", | |
"Name: duration, dtype: timedelta64[ns]" | |
] | |
}, | |
"execution_count": 202, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"gb = merged.groupby('label')\n", | |
"gb.duration.min()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 203, | |
"id": "7c2011a0-33df-4567-b887-1dc2fe0074a6", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"label\n", | |
"flat 0 days 01:33:13\n", | |
"split 0 days 00:41:30\n", | |
"Name: duration, dtype: timedelta64[ns]" | |
] | |
}, | |
"execution_count": 203, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"gb.duration.max()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 228, | |
"id": "d37e0c29-8cd5-447b-99f4-575e473e7b5c", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0 osx_64\n", | |
"1 osx_arm64\n", | |
"2 osx_64\n", | |
"3 osx_64\n", | |
"4 linux_64\n", | |
"5 linux_64\n", | |
"6 osx_arm64\n", | |
"7 osx_arm64\n", | |
"8 linux_aarch64\n", | |
"9 linux_aarch64\n", | |
"10 linux_aarch64\n", | |
"11 linux_64\n", | |
"12 linux_aarch64\n", | |
"13 linux_ppc64le\n", | |
"14 osx_64\n", | |
"15 linux_ppc64le\n", | |
"16 linux_ppc64le\n", | |
"17 osx_arm64\n", | |
"18 linux_ppc64le\n", | |
"19 linux_64\n", | |
"Name: name, dtype: object" | |
] | |
}, | |
"execution_count": 228, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"flat_df.name.str.split(\"_\", n=2).str[:2].str.join(\"_\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 229, | |
"id": "828d1b74-66b6-4176-902d-425ac4a4e242", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"flat_df['plat'] = flat_df.name.str.split(\"_\", n=2).str[:2].str.join(\"_\")\n", | |
"split_df['plat'] = split_df.name.str.split(\"_\", n=2).str[:2].str.join(\"_\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 230, | |
"id": "d2243573-4ec8-4640-82a0-f9a29f9ebc7e", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"plat\n", | |
"linux_64 0 days 03:04:59\n", | |
"linux_aarch64 0 days 05:05:18\n", | |
"linux_ppc64le 0 days 05:14:42\n", | |
"osx_64 0 days 03:27:21\n", | |
"osx_arm64 0 days 01:22:33\n", | |
"Name: duration, dtype: timedelta64[ns]" | |
] | |
}, | |
"execution_count": 230, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"flat_df.groupby('plat').duration.sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 231, | |
"id": "94a5f961-f059-449d-a01c-788383290356", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"plat\n", | |
"linux_64 0 days 04:24:43\n", | |
"linux_aarch64 0 days 09:33:57\n", | |
"linux_ppc64le 0 days 10:01:46\n", | |
"osx_64 0 days 05:16:08\n", | |
"osx_arm64 0 days 03:02:48\n", | |
"Name: duration, dtype: timedelta64[ns]" | |
] | |
}, | |
"execution_count": 231, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"split_df.groupby('plat').duration.sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 232, | |
"id": "64a563e4-9b95-4968-9608-88d6bba37afb", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.2916666666666667" | |
] | |
}, | |
"execution_count": 232, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"5.25 / 18" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 233, | |
"id": "2f5f5061-9b44-4d7b-ad51-ed3118009d6c", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.3125" | |
] | |
}, | |
"execution_count": 233, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"10 / 32" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 208, | |
"id": "0c65f47b-5361-4bb0-9515-4389333ab7e3", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Timedelta('0 days 18:14:53')" | |
] | |
}, | |
"execution_count": 208, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"flat_df.duration.sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 209, | |
"id": "da44053d-4ca5-4597-accc-b90f76753026", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"100" | |
] | |
}, | |
"execution_count": 209, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"len(split_df)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 210, | |
"id": "8583725a-6ad9-4312-852f-cbb4c5bc6f14", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from matplotlib import pyplot as plt" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 211, | |
"id": "41f82b96-2f13-4eb3-a347-a0fd5ce1a24a", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0 2025-01-09 14:18:33+00:00\n", | |
"1 2025-01-09 14:18:34+00:00\n", | |
"2 2025-01-09 14:18:34+00:00\n", | |
"3 2025-01-09 14:18:34+00:00\n", | |
"4 2025-01-09 14:18:34+00:00\n", | |
" ... \n", | |
"95 2025-01-09 14:46:07+00:00\n", | |
"96 2025-01-09 14:46:09+00:00\n", | |
"97 2025-01-09 14:49:11+00:00\n", | |
"98 2025-01-09 14:54:42+00:00\n", | |
"99 2025-01-09 14:54:42+00:00\n", | |
"Name: started, Length: 100, dtype: datetime64[ns, UTC]" | |
] | |
}, | |
"execution_count": 211, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"split_df.started" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 212, | |
"id": "2336ae14-92bd-4ffc-8c94-0ba32600493f", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0 1736441406000000000\n", | |
"1 1736441407000000000\n", | |
"2 1736441408000000000\n", | |
"3 1736441409000000000\n", | |
"4 1736441410000000000\n", | |
"5 1736441410000000000\n", | |
"6 1736441410000000000\n", | |
"7 1736441410000000000\n", | |
"8 1736441410000000000\n", | |
"9 1736441410000000000\n", | |
"10 1736441411000000000\n", | |
"11 1736441411000000000\n", | |
"12 1736441411000000000\n", | |
"13 1736441411000000000\n", | |
"14 1736441412000000000\n", | |
"15 1736441412000000000\n", | |
"16 1736441412000000000\n", | |
"17 1736441413000000000\n", | |
"18 1736441413000000000\n", | |
"19 1736441422000000000\n", | |
"Name: started, dtype: int64" | |
] | |
}, | |
"execution_count": 212, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"flat_df.started.astype(int)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 213, | |
"id": "a8cb069d-e3c8-4928-bb72-ea710540c018", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(0 0.0\n", | |
" 1 1.0\n", | |
" 2 2.0\n", | |
" 3 3.0\n", | |
" 4 4.0\n", | |
" 5 4.0\n", | |
" 6 4.0\n", | |
" 7 4.0\n", | |
" 8 4.0\n", | |
" 9 4.0\n", | |
" 10 5.0\n", | |
" 11 5.0\n", | |
" 12 5.0\n", | |
" 13 5.0\n", | |
" 14 6.0\n", | |
" 15 6.0\n", | |
" 16 6.0\n", | |
" 17 7.0\n", | |
" 18 7.0\n", | |
" 19 16.0\n", | |
" Name: started, dtype: float64,)" | |
] | |
}, | |
"execution_count": 213, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"(flat_df.started.astype(int).astype(float) - flat_df.started.astype(int).astype(float).min()) * 1e-9," | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 214, | |
"id": "a635c5aa-f2c9-42ef-bbd0-8328b0a27dc8", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABo8AAAPwCAYAAADgSudZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AABULUlEQVR4nOzdfZDW5X3v8Q+4ggurkigxRWg0IA+O6egMUChWTI9JzUpESHTIZHzIUIgNoOQo5OTU1DgnagDPEaFRsoKDrYnVRCFTTbRVEZBICJZTqmEJS7QRgkZT0SBP7mHPHwzX7GaXXQgsu6av10xmfnv/rvt7XzftTGb67vW7uzQ0NDQEAAAAAAAAknTt6A0AAAAAAADQeYhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAUdHRG+Dw7N69O//+7/+eJOndu3cqKvyPEAAAAAAA/quqr6/PG2+8kST52Mc+lhNOOOGIZyoP7zP//u//nuHDh3f0NgAAAAAAgE5mzZo1GTZs2BHP8dg6AAAAAAAACieP3md69+5drleuXJk/+qM/6sDdAAAAAAAAHWnbtm358z//8yRNG8KREI/eZxr/xtEf/dEfpW/fvh24GwAAAAAAoLNo3BCOhMfWAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAABFRUdvAAAAAAAADtWgm5/q6C20u423XNTRW+C/OCePAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoKjp6AwAAAEdi0M1PdfQW2t3GWy7q6C0AAAD/hTh5BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAABFu8ajLl26HNJ/LrzwwjZnPfHEExk/fnz69u2b7t27p2/fvhk/fnyeeOKJQ97Pzp07M2fOnAwfPjwf/OAHU1VVlSFDhuTGG2/ML3/5y0Oe89JLL+Xaa6/NgAEDUllZmd69e+eCCy7It7/97dTX1x/yHAAAAAAAgM6moqM30JaGhoZce+21qampafL61q1bs2TJkixZsiSTJ0/OggUL0qVLl4PO2bx5cy655JJs3Lixyeu1tbWpra3NwoUL893vfjfV1dWt7mfRokWZMmVK9uzZU17bvXt3Vq5cmZUrV2bx4sV57LHHcsopp/we3xYAAAAAAKBjHZN49Nd//df50pe+dND7PXv2POi9m266qYSj8847LzNnzkz//v2zefPmzJ49O+vWrUtNTU169+6db3zjGy3O2LFjR8aMGVPC0aRJkzJhwoRUVlZm2bJluf322/P222/n8ssvz/PPP58/+ZM/aXHOk08+mcmTJ2ffvn057bTT8jd/8zf50z/90/znf/5n7r333jz66KNZvXp1xo8fn2XLlqVrV08FBAAAAAAA3l+OSTz60Ic+lHPOOeew31dXV5fZs2cnSYYOHZoVK1aksrIySTJs2LBceumlGT16dNauXZtZs2blC1/4Qvr3799szh133JHa2tokyezZszNjxoxyb+TIkfn4xz+eCy64IDt37sz06dPzzDPPNJtRX1+fqVOnZt++fTnppJOyatWqJp918cUXZ8qUKbn77ruzYsWKPPDAA7nqqqsO+zsDAAAAAAB0pE59NObOO+8svyE0f/78Eo4O6NGjR+bPn59kf9yZO3dusxnvvfde7rrrriTJkCFDcsMNNzRbM3LkyEycODFJsmzZsrzwwgvN1ixZsiR1dXVJkq9+9astRqo5c+bkAx/4QLkGAAAAAAB4v+m08aihoSE/+MEPkiSDBw/OiBEjWlw3YsSIDBo0KEmydOnSNDQ0NLn/7LPPZvv27UmSq6+++qCPkrvmmmvK9aOPPtrs/tKlS1tc21iPHj1yxRVXJElefPHFbNq0qcV1AAAAAAAAnVWnjUcvv/xytm7dmiQZPXp0q2sP3N+yZUteeeWVJvdWrlzZbF1Lhg4dWn576bnnnmt2/8CcQYMG5cMf/nCbeznYHAAAAAAAgM7smMSj733vexk0aFAqKytz4okn5qyzzsrVV1+dZcuWHfQ9GzZsKNeDBw9udX7j+43fdzhzKioqyqPofnfGjh07smXLliPeCwAAAAAAQGdXcSw+5Gc/+1mTv+vq6lJXV5e///u/z2WXXZbFixfn5JNPbrLm1VdfLdd9+/ZtdX6/fv1afF/jv3v27JlevXq1OWf9+vV54403smfPnnTv3j3J/hNNBx6HdyR7ORQHItXBbNu27bBnAgAAAAAAHKp2jUc9evTIpZdemv/23/5bBg8enKqqqrzxxhtZvnx5FixYkN/85jdZunRpxo4dm3/5l3/J8ccfX97729/+tlxXVVW1+jkHHjeX7D8l1NiBOW3NaGnOgXh0tPZyKBrHJwAAAAAAgGOtXePR1q1bWzzt84lPfCLTpk3Lpz71qaxbty7Lly/PPffck+uuu66s2b17d7nu1q1bq59zIPIkya5du5rcOzCnrRmtzTlaewEAAAAAAOjs2jUetfaYuNNOOy3f//73M2TIkOzduzfz589vEo9OOOGEcr13795WP2fPnj3lurKyssm9A3PamtHanKO1l0PR1qPutm3bluHDhx/2XAAAAAAAgENxTH7z6GA++tGP5hOf+EQef/zx1NXV5Ve/+lX69OmTJDnxxBPLurYe//buu++W6999rNyBOYfyCLmDzTlaezkUbf2mEgAAAAAAQHvq2tEbOPvss8v11q1by3XjiLJly5ZWZzQ+rfO7vxl0YM67776b7du3H9Kc3r17N3n83NHaCwAAAAAAQGfX4fGooaGhxdcbR6Xa2tpWZzS+P2TIkN9rTn19fTZv3tzijKqqqhKCjmQvAAAAAAAAnV2Hx6Of/exn5frAI+uS5Mwzzyx/L1++vNUZK1asSJKcfvrpOeOMM5rcO//888t1a3PWrl1bHjk3atSoZvcPzNm4cWNee+21g85p/BktzQEAAAAAAOjMOjQe/eIXv8i//Mu/JNn/+0enn356udelS5eMHTs2yf7TPKtXr25xxurVq8tpn7Fjx6ZLly5N7l944YU5+eSTkyT333//QU86LV68uFyPGzeu2f3LLrusxbWN7dy5Mw8//HCS/SeeBg4c2OI6AAAAAACAzqrd4tE//dM/pb6+/qD3X3/99Xz2s5/Ne++9lySZMmVKszXTp09PRUVFkmTatGnZtWtXk/u7du3KtGnTkiQVFRWZPn16sxndunXLddddlyTZsGFD7rjjjmZrnn/++SxatChJMnr06AwbNqzZmnHjxqV///5Jkttvv7084q6xGTNm5K233irXAAAAAAAA7zcV7TV42rRpee+99/KZz3wmI0eOzBlnnJHKysq8+eabefbZZ7NgwYL85je/SbL/kXAtxaOBAwfmxhtvzDe/+c2sXbs2o0aNyle+8pX0798/mzdvzqxZs7Ju3bok+2PNWWed1eJeZsyYkYceeig///nPM3PmzNTV1WXChAmprKzMsmXLctttt6W+vj6VlZWZO3duizOOP/74zJs3L5/+9KfzzjvvZNSoUbnpppsyfPjwvPXWW7n33nvzyCOPlO9z5ZVXHoV/RQAAAAD4wzXo5qc6egvtbuMtF3X0FgAOW5eGgz3H7QidccYZ+Y//+I82133mM5/JwoUL06tXrxbv79u3L5MmTcp999130BkTJ05MTU1NunY9+EGqurq6VFdXZ9OmTS3eP+mkk/Kd73wnY8aMaXW/9957b6ZOnZq9e/e2eH/48OF5/PHHc+qpp7Y65/e1ZcuW9OvXL8n+79S3b992+RwAAHi/8H90AoD3L/89zu/D/95AU1u2bMmAAQOSJK+++upR6QbtdvLo/vvvz/Lly/P888/nF7/4Rd5888288847qaqqSr9+/fJnf/ZnufrqqzNy5MhW53Tt2jWLFi3KZz7zmdTU1OSnP/1p3nzzzZx66qkZNmxYvvjFL+ZTn/pUm/sZMGBA1q1bl29961v53ve+l7q6uuzduzf9+vVLdXV1rr/++nzkIx9pc86kSZMycuTIzJs3L08//XR+9atfpWfPnhkyZEg+//nP56/+6q/Ko/YAAAAAAADeb9qtcowePTqjR48+avOqq6tTXV19RDN69uyZmTNnZubMmUc055xzzklNTc0RzQAAAAAAAOiMDv6cNwAAAAAAAP7LEY8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAIqKjt4AAAAA0HkMuvmpjt5Cu9t4y0UdvQUAgE7NySMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAACKio7eAAAAAAD8IRt081MdvYV2t/GWizp6CwAcRU4eAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABQVHb0BAAAA2segm5/q6C20u423XNTRWwAAgD84Th4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAARUVHfOjMmTMzZ86c8veyZcty4YUXtvqeJ554IjU1NVmzZk3eeOON9O7dO8OHD8/kyZNz8cUXH9Ln7ty5M9/61rfyve99L3V1ddm7d2/69euXSy65JNddd13++I//+JDmvPTSS5k/f36eeuqpbN26NVVVVRkyZEg+//nPZ+LEiamo6JB/VgAA/oANuvmpjt5Cu9t4y0UdvQUAAADSAfHo3/7t33LnnXce8vqGhoZce+21qampafL61q1bs2TJkixZsiSTJ0/OggUL0qVLl4PO2bx5cy655JJs3Lixyeu1tbWpra3NwoUL893vfjfV1dWt7mfRokWZMmVK9uzZU17bvXt3Vq5cmZUrV2bx4sV57LHHcsoppxzydwQAAAAAAOgsjulj6/bt25dJkyalvr4+H/rQhw7pPTfddFMJR+edd14efPDBrFmzJg8++GDOO++8JElNTU2+9rWvHXTGjh07MmbMmBKOJk2alKeffjo//vGPc+utt6aqqipvv/12Lr/88qxfv/6gc5588slMnjw5e/bsyWmnnZZ58+blJz/5SX70ox9l/PjxSZLVq1dn/Pjx2bdv3yF9PwAAAAAAgM7kmMajefPm5ac//WkGDx6ciRMntrm+rq4us2fPTpIMHTo0q1atyoQJEzJs2LBMmDAhzz33XIYOHZokmTVrVjZv3tzinDvuuCO1tbVJktmzZ6empiZ/8Rd/kZEjR+Z//s//mX/+539ORUVFdu7cmenTp7c4o76+PlOnTs2+ffty0kknZdWqVZk2bVqGDx+eiy++OI888ki+9KUvJUlWrFiRBx544HD/eQAAAAAAADrcMYtHr776ajkddM8996Rbt25tvufOO+9MfX19kmT+/PmprKxscr9Hjx6ZP39+kv1xZ+7cuc1mvPfee7nrrruSJEOGDMkNN9zQbM3IkSNLzFq2bFleeOGFZmuWLFmSurq6JMlXv/rV9O/fv9maOXPm5AMf+EC5BgAAAAAAeL85ZvHoS1/6Unbs2JGrr746F154YZvrGxoa8oMf/CBJMnjw4IwYMaLFdSNGjMigQYOSJEuXLk1DQ0OT+88++2y2b9+eJLn66qvTtWvLX/maa64p148++miz+0uXLm1xbWM9evTIFVdckSR58cUXs2nTphbXAQAAAAAAdFbHJB49/PDDeeyxx/LBD37wkE/kvPzyy9m6dWuSZPTo0a2uPXB/y5YteeWVV5rcW7lyZbN1LRk6dGh69uyZJHnuueea3T8wZ9CgQfnwhz/c5l4ONgcAAAAAAKAza/d4tH379lx//fVJ9v8uUe/evQ/pfRs2bCjXgwcPbnVt4/uN33c4cyoqKsqj6H53xo4dO7Jly5Yj3gsAAAAAAEBnV9HeHzBz5sy89tpr+bM/+7Pyu0KH4tVXXy3Xffv2bXVtv379Wnxf47979uyZXr16tTln/fr1eeONN7Jnz5507949yf4TTQceh3ckezkUByLVwWzbtu2wZwIAAAAAAByqdo1Hzz33XBYuXJiKioosWLAgXbp0OeT3/va3vy3XVVVVra498Li5ZP8poZbmtDWjpTkH4tHR2suhaByfAAAAgM5l0M1PdfQW2tXGWy7q6C0AAJ1Auz22bu/evZk8eXIaGhry5S9/OR/72McO6/27d+8u1926dWt17YHIkyS7du1qcU5bM1qbc7T2AgAAAAAA0Nm128mj2267LRs2bMgf//Ef5+abbz7s959wwgnleu/eva2u3bNnT7murKxscU5bM1qbc7T2cijaetTdtm3bMnz48MOeCwAAAAAAcCjaJR7V1tbm9ttvT5LMnz+/yaPcDtWJJ55Yrtt6/Nu7775brn/3sXIH5hzKI+QONudo7eVQtPWbSgAAAAAAAO2pXeLRnXfemb179+ajH/1odu7cmX/8x39stubFF18s188880xee+21JMmnP/3p9OzZs0lE2bJlS6uf1/i0zu/+ZlDfvn3zk5/8JO+++262b9+eXr16tTmnd+/eTR4/d7T2AgAAAAAA0Nm1Szw68Oi2X/ziF/nc5z7X5vr/9b/+V7l++eWX07Nnz5x99tnltdra2lbf3/j+kCFDmtw7++yz88gjj5R1I0aMaHFGfX19Nm/e3OKMqqqq9OvXL6+++uoR7QUAAAAAAKCz69rRGziYM888M3369EmSLF++vNW1K1asSJKcfvrpOeOMM5rcO//888t1a3PWrl1bHjk3atSoZvcPzNm4cWM5JdWSxp/R0hwAAAAAAIDOrF3i0eLFi9PQ0NDqf26++eayftmyZeX1A/GnS5cuGTt2bJL9p3lWr17d4metXr26nPYZO3ZsunTp0uT+hRdemJNPPjlJcv/996ehoeGgez5g3Lhxze5fdtllLa5tbOfOnXn44YeT7D/xNHDgwBbXAQAAAAAAdFad9uRRkkyfPj0VFfufrDdt2rTs2rWryf1du3Zl2rRpSZKKiopMnz692Yxu3brluuuuS5Js2LAhd9xxR7M1zz//fBYtWpQkGT16dIYNG9Zszbhx49K/f/8kye23314ecdfYjBkz8tZbb5VrAAAAAACA95tOHY8GDhyYG2+8Mcn+x8qNGjUqDz30UNauXZuHHnooo0aNytq1a5PsjzVnnXVWi3NmzJhRTgHNnDkzX/ziF7Ns2bKsXr06t99+ez75yU+mvr4+lZWVmTt3boszjj/++MybNy9du3bNO++8k1GjRuXv/u7vsmbNmjz55JP57Gc/m7vvvjvJ/kfcXXnllUf5XwMAAAAAAKD9VXT0Btpy66235te//nXuu+++rFu3LhMmTGi2ZuLEifnGN75x0BknnnhiHn/88VRXV2fTpk2pqalJTU1NkzUnnXRSvvOd7+Tcc8896Jzq6uosWLAgU6dOzeuvv15OPTU2fPjwLFmyJMcdd9yhf0kAAAAAAIBOolOfPEqSrl27ZtGiRXn88cczduzY9OnTJ926dUufPn0yduzY/PCHP8zChQvTtWvrX2XAgAFZt25dZs2alaFDh6ZXr17p0aNHBg0alC9/+ctZv359xowZ0+Z+Jk2alBdeeCGTJk3KRz/60Zxwwgk55ZRTcv755+eee+7JqlWrcuqppx6trw8AAAAAAHBMddjJo69//ev5+te/fsjrq6urU11dfUSf2bNnz8ycOTMzZ848ojnnnHNOs5NLAAAAAAAAfwg6/ckjAAAAAAAAjh3xCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAAioqO3gAAAAAA73+Dbn6qo7fQ7jbeclFHbwEAjgknjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAICioqM3AEfToJuf6ugttLuNt1zU0VsAAAAAAOAPmJNHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFBUdPQGAIA/PINufqqjt9DuNt5yUUdvAQAAAKBdOHkEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEDRbvHonXfeyT/+4z/mhhtuyOjRozNgwICcfPLJ6datWz70oQ/lwgsvzOzZs/Ob3/zmkOY98cQTGT9+fPr27Zvu3bunb9++GT9+fJ544olD3tPOnTszZ86cDB8+PB/84AdTVVWVIUOG5MYbb8wvf/nLQ57z0ksv5dprr82AAQNSWVmZ3r1754ILLsi3v/3t1NfXH/IcAAAAAACAzqaivQavWbMmn/vc51q898Ybb2T58uVZvnx55syZkwceeCB/+Zd/2eLahoaGXHvttampqWny+tatW7NkyZIsWbIkkydPzoIFC9KlS5eD7mfz5s255JJLsnHjxiav19bWpra2NgsXLsx3v/vdVFdXt/q9Fi1alClTpmTPnj3ltd27d2flypVZuXJlFi9enMceeyynnHJKq3MAAAAAAAA6o3Z9bF2/fv1y1VVX5a677sqjjz6a559/PqtWrcpDDz2Uyy+/PMcdd1zefPPNXHrppVm/fn2LM2666aYSjs4777w8+OCDWbNmTR588MGcd955SZKampp87WtfO+g+duzYkTFjxpRwNGnSpDz99NP58Y9/nFtvvTVVVVV5++23c/nllx90H0ny5JNPZvLkydmzZ09OO+20zJs3Lz/5yU/yox/9KOPHj0+SrF69OuPHj8++fft+r38zAAAAAACAjtRuJ48+/vGPt/oouCuuuCJLly7NuHHjsnfv3txyyy155JFHmqypq6vL7NmzkyRDhw7NihUrUllZmSQZNmxYLr300owePTpr167NrFmz8oUvfCH9+/dv9ll33HFHamtrkySzZ8/OjBkzyr2RI0fm4x//eC644ILs3Lkz06dPzzPPPNNsRn19faZOnZp9+/blpJNOyqpVq5p81sUXX5wpU6bk7rvvzooVK/LAAw/kqquuOox/MQAAAAAAgI7XbiePjjvuuDbXXHbZZRk8eHCSZMWKFc3u33nnneU3hObPn1/C0QE9evTI/Pnzk+yPO3Pnzm0247333stdd92VJBkyZEhuuOGGZmtGjhyZiRMnJkmWLVuWF154odmaJUuWpK6uLkny1a9+tcVINWfOnHzgAx8o1wAAAAAAAO837frYukPRs2fPJPt/N6ixhoaG/OAHP0iSDB48OCNGjGjx/SNGjMigQYOSJEuXLk1DQ0OT+88++2y2b9+eJLn66qvTtWvLX/maa64p148++miz+0uXLm1xbWM9evTIFVdckSR58cUXs2nTphbXAQAAAAAAdFYdGo82bNiQ//t//2+SlBNIB7z88svZunVrkmT06NGtzjlwf8uWLXnllVea3Fu5cmWzdS0ZOnRoCVnPPfdcs/sH5gwaNCgf/vCH29zLweYAAAAAAAB0Zu32m0cHs3PnzmzdujX/9E//lNmzZ+f//b//lyS5/vrrm6zbsGFDuf7dsPS7Gt/fsGFDzjzzzMOeU1FRkf79+2f9+vVN3pMkO3bsyJYtW36vvRyuA59zMNu2bTvsmQAAAAAAAIfqmMSjxYsX5wtf+MJB79944435/Oc/3+S1V199tVz37du31fn9+vVr8X2N/+7Zs2d69erV5pz169fnjTfeyJ49e9K9e/ck+4POgcfhHcleDkXj9wMAAAAAABxrx/zkUWPnnntuFixYkD/90z9tdu+3v/1tua6qqmp1zoHHzSX7Twm1NKetGS3NORCPjtZeAAAAAAAAOrtjEo8uu+yyDB06NEmya9eubN68OQ8//HCWLFmSz3/+85k7d27GjBnT5D27d+8u1926dWt1/oHIc2B+S3PamtHanKO1l0PR1mmlbdu2Zfjw4Yc9FwAAAAAA4FAck3jUq1evJo+MGzZsWCZMmJB/+Id/yNVXX52xY8dm0aJFueaaa8qaE044oVzv3bu31fl79uwp15WVlU3uHZjT1ozW5hytvRyKth6LBwAAAAAA0J66duSHX3nllbn88suzb9++TJ06NW+99Va5d+KJJ5brth7/9u6775br332s3IE5h/IIuYPNOVp7AQAAAAAA6Ow6NB4lydixY5Psjy4/+tGPyuuNT+Bs2bKl1RmNH/XWr1+/JvcOzHn33Xezffv2Q5rTu3fvJo+fO1p7AQAAAAAA6Ow6PB717t27XP/Hf/xHuT777LPLdW1tbaszGt8fMmRIk3uHOqe+vj6bN29ucUZVVVUJQUeyFwAAAAAAgM6uw+PR1q1by3Xjx7ydeeaZ6dOnT5Jk+fLlrc5YsWJFkuT000/PGWec0eTe+eefX65bm7N27dryyLlRo0Y1u39gzsaNG/Paa68ddE7jz2hpDgAAAAAAQGfW4fHoe9/7Xrn+2Mc+Vq67dOlSHmlXW1ub1atXt/j+1atXl9M+Y8eOTZcuXZrcv/DCC3PyyScnSe6///40NDS0OGfx4sXlety4cc3uX3bZZS2ubWznzp15+OGHk+w/8TRw4MAW1wEAAAAAAHRW7RaPFi9enN27d7e65s4778wPf/jDJMkZZ5zR5JRQkkyfPj0VFRVJkmnTpmXXrl1N7u/atSvTpk1LklRUVGT69OnNPqNbt2657rrrkiQbNmzIHXfc0WzN888/n0WLFiVJRo8enWHDhjVbM27cuPTv3z9Jcvvtt5dH3DU2Y8aMvPXWW+UaAAAAAADg/abd4tHXv/71nH766Zk8eXL+/u//PqtWrcq//du/5bnnnss999yT888/P//9v//3JPsDz7333ltC0QEDBw7MjTfemGT/Y+VGjRqVhx56KGvXrs1DDz2UUaNGZe3atUn2x5qzzjqrxb3MmDGjnAKaOXNmvvjFL2bZsmVZvXp1br/99nzyk59MfX19KisrM3fu3BZnHH/88Zk3b166du2ad955J6NGjcrf/d3fZc2aNXnyySfz2c9+NnfffXeS/Y+4u/LKK4/43xAAAAAAAOBYq2h7ye/vP//zP3Pvvffm3nvvPeiavn375r777stFF13U4v1bb701v/71r3Pfffdl3bp1mTBhQrM1EydOzDe+8Y2DfsaJJ56Yxx9/PNXV1dm0aVNqampSU1PTZM1JJ52U73znOzn33HMPOqe6ujoLFizI1KlT8/rrr5dTT40NHz48S5YsyXHHHXfQOQAAAAAAAJ1Vu8Wjp59+Ok899VSWLVuWDRs25PXXX89vfvObnHDCCTnttNNy7rnnZsyYMbniiivSo0ePg87p2rVrFi1alM985jOpqanJT3/607z55ps59dRTM2zYsHzxi1/Mpz71qTb3M2DAgKxbty7f+ta38r3vfS91dXXZu3dv+vXrl+rq6lx//fX5yEc+0uacSZMmZeTIkZk3b16efvrp/OpXv0rPnj0zZMiQfP7zn89f/dVfNTtBBQAAQOcy6OanOnoL7W7jLS3/P2kCAEBb2q1y9O/fP/37988Xv/jFozKvuro61dXVRzSjZ8+emTlzZmbOnHlEc84555xmJ5cAAAAAAAD+ELTbbx4BAAAAAADw/iMeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAUFR29AQAAAAAA4OgYdPNTHb2FdrXxlos6egv/JTh5BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAARUVHbwCAzm3QzU919Bba3cZbLuroLQAAAABAp+HkEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAABFRUdvAKAzGHTzUx29hXa38ZaLOnoLAAAAAMD7gJNHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEBR0dEbAID3q0E3P9XRW2h3G2+5qKO3AAAAAMAx5uQRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAARbvGo3/913/Nbbfdlk996lPp169funfvnqqqqgwcODDXXHNNVq5ceVjznnjiiYwfPz59+/ZN9+7d07dv34wfPz5PPPHEIc/YuXNn5syZk+HDh+eDH/xgqqqqMmTIkNx444355S9/echzXnrppVx77bUZMGBAKisr07t371xwwQX59re/nfr6+sP6XgAAAAAAAJ1FRXsNHj16dFasWNHs9b1792bTpk3ZtGlT7r///lx55ZVZuHBhunXrdtBZDQ0Nufbaa1NTU9Pk9a1bt2bJkiVZsmRJJk+enAULFqRLly4HnbN58+Zccskl2bhxY5PXa2trU1tbm4ULF+a73/1uqqurW/1uixYtypQpU7Jnz57y2u7du7Ny5cqsXLkyixcvzmOPPZZTTjml1TkAAAAAAACdTbudPNq6dWuSpE+fPrn++uvz/e9/P2vWrMnzzz+f//N//k9OP/30JMk//MM/5Jprrml11k033VTC0XnnnZcHH3wwa9asyYMPPpjzzjsvSVJTU5Ovfe1rB52xY8eOjBkzpoSjSZMm5emnn86Pf/zj3Hrrramqqsrbb7+dyy+/POvXrz/onCeffDKTJ0/Onj17ctppp2XevHn5yU9+kh/96EcZP358kmT16tUZP3589u3bd2j/WAAAAAAAAJ1Eu508Gjx4cG677bZ85jOfyXHHHdfk3ogRI3LllVdm1KhR+fnPf54HH3wwf/3Xf50///M/bzanrq4us2fPTpIMHTo0K1asSGVlZZJk2LBhufTSSzN69OisXbs2s2bNyhe+8IX079+/2Zw77rgjtbW1SZLZs2dnxowZ5d7IkSPz8Y9/PBdccEF27tyZ6dOn55lnnmk2o76+PlOnTs2+ffty0kknZdWqVU0+6+KLL86UKVNy9913Z8WKFXnggQdy1VVX/R7/egAAAAAAAB2j3U4ePfbYY7niiiuahaMDTj311Pzv//2/y9/f//73W1x35513lt8Qmj9/fglHB/To0SPz589Psj/uzJ07t9mM9957L3fddVeSZMiQIbnhhhuarRk5cmQmTpyYJFm2bFleeOGFZmuWLFmSurq6JMlXv/rVFiPVnDlz8oEPfKBcAwAAAAAAvJ+0Wzw6FBdeeGG53rx5c7P7DQ0N+cEPfpBk/0mmESNGtDhnxIgRGTRoUJJk6dKlaWhoaHL/2Wefzfbt25MkV199dbp2bflrN3583qOPPtrs/tKlS1tc21iPHj1yxRVXJElefPHFbNq0qcV1AAAAAAAAnVGHxqO9e/eW65aCzssvv1x+O2n06NGtzjpwf8uWLXnllVea3Fu5cmWzdS0ZOnRoevbsmSR57rnnmt0/MGfQoEH58Ic/3OZeDjYHAAAAAACgs2q33zw6FMuXLy/XgwcPbnZ/w4YNrd5vrPH9DRs25MwzzzzsORUVFenfv3/Wr1/f5D1JsmPHjmzZsuX32svhOPAZB7Nt27bDmgcAAAAAAHA4Oiwe7du3L9/85jfL3wce9dbYq6++Wq779u3b6rx+/fq1+L7Gf/fs2TO9evVqc8769evzxhtvZM+ePenevXuS/VHnwOPwjmQvbWn8XgAAAAAAgGOtwx5bd+edd2bNmjVJknHjxmXo0KHN1vz2t78t11VVVa3OO/C4uWT/KaGW5rQ1o7U5R2svAAAAAAAAnVmHnDxavnx5/sf/+B9Jkg996EO55557Wly3e/fuct2tW7dWZx44IZQku3btanFOWzNam3O09tKWtk4qbdu2LcOHDz+smQAAAAAAAIfqmMejl156KePGjUt9fX26d++ehx9+OKeddlqLa0844YRyvXfv3lbn7tmzp1xXVla2OKetGa3NOVp7aUtbj8QDAAAAAABoT8f0sXUvv/xyPvnJT+att97KcccdlwcffDCjR48+6PoTTzyxXLf1+Ld33323XP/uY+UOzDmUR8gdbM7R2gsAAAAAAEBndszi0a9+9atcdNFF+dWvfpUuXbrkvvvuy7hx41p9T+NTOFu2bGl1bePHvfXr16/FOe+++262b99+SHN69+7d5PFzR2svAAAAAAAAndkxiUdvvvlmPvGJT+QXv/hFkmT+/Pm56qqr2nzf2WefXa5ra2tbXdv4/pAhQ36vOfX19dm8eXOLM6qqqkoIOpK9AAAAAAAAdGbtHo/efvvt/OVf/mV+9rOfJUm++c1vZsqUKYf03jPPPDN9+vRJkixfvrzVtStWrEiSnH766TnjjDOa3Dv//PPLdWtz1q5dWx45N2rUqGb3D8zZuHFjXnvttYPOafwZLc0BAAAAAADorNo1Hu3cuTOXXHJJ/vVf/zVJ8jd/8zf5yle+csjv79KlS8aOHZtk/2me1atXt7hu9erV5bTP2LFj06VLlyb3L7zwwpx88slJkvvvvz8NDQ0tzlm8eHG5bumRepdddlmLaxvbuXNnHn744ST7TzwNHDiwxXUAAAAAAACdUbvFo71792bcuHFZtWpVkuT666/PN77xjcOeM3369FRUVCRJpk2bll27djW5v2vXrkybNi1JUlFRkenTpzeb0a1bt1x33XVJkg0bNuSOO+5otub555/PokWLkiSjR4/OsGHDmq0ZN25c+vfvnyS5/fbbyyPuGpsxY0beeuutcg0AAAAAAPB+UtFegz/3uc/ln//5n5Mkf/EXf5GJEyfmxRdfPOj6bt26tXhKZ+DAgbnxxhvzzW9+M2vXrs2oUaPyla98Jf3798/mzZsza9asrFu3Lsn+WHPWWWe1OH/GjBl56KGH8vOf/zwzZ85MXV1dJkyYkMrKyixbtiy33XZb6uvrU1lZmblz57Y44/jjj8+8efPy6U9/Ou+8805GjRqVm266KcOHD89bb72Ve++9N4888kiS/Y+4u/LKKw/nnwwAAAAAAKDDtVs8evTRR8v1M888kz/5kz9pdf1HPvKRvPLKKy3eu/XWW/PrX/869913X9atW5cJEyY0WzNx4sRWTzadeOKJefzxx1NdXZ1NmzalpqYmNTU1TdacdNJJ+c53vpNzzz33oHOqq6uzYMGCTJ06Na+//no59dTY8OHDs2TJkhx33HEHnQMAAAAAANAZtetvHh0tXbt2zaJFi/L4449n7Nix6dOnT7p165Y+ffpk7Nix+eEPf5iFCxema9fWv86AAQOybt26zJo1K0OHDk2vXr3So0ePDBo0KF/+8pezfv36jBkzps39TJo0KS+88EImTZqUj370oznhhBNyyimn5Pzzz88999yTVatW5dRTTz1aXx8AAAAAAOCYabeTRw0NDUd9ZnV1daqrq49oRs+ePTNz5szMnDnziOacc845zU4uAQAAAAAAvN+9L04eAQAAAAAAcGyIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAUFR29AQAAAAAAmhp081MdvYV2t/GWizp6C8BBOHkEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU4hEAAAAAAACFeAQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUFR09AaAY2fQzU919Bba1cZbLuroLQAAAAAAvO85eQQAAAAAAEAhHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQFHR0RsAAPivZNDNT3X0Ftrdxlsu6ugtAAAAAEfAySMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAIqKjt4AAAAcMOjmpzp6C+1q4y0XdfQWAAAAoE1OHgEAAAAAAFCIRwAAAAAAABTiEQAAAAAAAIV4BAAAAAAAQCEeAQAAAAAAUIhHAAAAAAAAFOIRAAAAAAAAhXgEAAAAAABAIR4BAAAAAABQiEcAAAAAAAAU7RqPfv3rX+exxx7L3/7t3+ZTn/pUTj311HTp0iVdunTJNddcc9jznnjiiYwfPz59+/ZN9+7d07dv34wfPz5PPPHEIc/YuXNn5syZk+HDh+eDH/xgqqqqMmTIkNx444355S9/echzXnrppVx77bUZMGBAKisr07t371xwwQX59re/nfr6+sP+bgAAAAAAAJ1BRXsOP+20047KnIaGhlx77bWpqalp8vrWrVuzZMmSLFmyJJMnT86CBQvSpUuXg87ZvHlzLrnkkmzcuLHJ67W1tamtrc3ChQvz3e9+N9XV1a3uZ9GiRZkyZUr27NlTXtu9e3dWrlyZlStXZvHixXnsscdyyimn/B7fFgAAAAAAoOMcs8fW9evXL5/85Cd/r/fedNNNJRydd955efDBB7NmzZo8+OCDOe+885IkNTU1+drXvnbQGTt27MiYMWNKOJo0aVKefvrp/PjHP86tt96aqqqqvP3227n88suzfv36g8558sknM3ny5OzZsyennXZa5s2bl5/85Cf50Y9+lPHjxydJVq9enfHjx2ffvn2/1/cFAAAAAADoKO168uhv//ZvM2zYsAwbNiynnXZaXnnllZx55pmHNaOuri6zZ89OkgwdOjQrVqxIZWVlkmTYsGG59NJLM3r06KxduzazZs3KF77whfTv37/ZnDvuuCO1tbVJktmzZ2fGjBnl3siRI/Pxj388F1xwQXbu3Jnp06fnmWeeaTajvr4+U6dOzb59+3LSSSdl1apVTT7r4osvzpQpU3L33XdnxYoVeeCBB3LVVVcd1vcFAAAAAADoSO168uiWW27JmDFjjujxdXfeeWf5DaH58+eXcHRAjx49Mn/+/CT7487cuXObzXjvvfdy1113JUmGDBmSG264odmakSNHZuLEiUmSZcuW5YUXXmi2ZsmSJamrq0uSfPWrX20xUs2ZMycf+MAHyjUAAAAAAMD7yTF7bN3vo6GhIT/4wQ+SJIMHD86IESNaXDdixIgMGjQoSbJ06dI0NDQ0uf/ss89m+/btSZKrr746Xbu2/LWvueaacv3oo482u7906dIW1zbWo0ePXHHFFUmSF198MZs2bWpxHQAAAAAAQGfUqePRyy+/nK1btyZJRo8e3eraA/e3bNmSV155pcm9lStXNlvXkqFDh6Znz55Jkueee67Z/QNzBg0alA9/+MNt7uVgcwAAAAAAADqrdv3NoyO1YcOGcj148OBW1za+v2HDhia/rXSocyoqKtK/f/+sX7++yXuSZMeOHdmyZcvvtZfDceAzDmbbtm2HNQ8AAAAAAOBwdOp49Oqrr5brvn37trq2X79+Lb6v8d89e/ZMr1692pyzfv36vPHGG9mzZ0+6d++eZH/UOfA4vCPZS1savxcAAAAAAOBY69SPrfvtb39brquqqlpde+Bxc8n+U0ItzWlrRmtzjtZeAAAAAAAAOrNOffJo9+7d5bpbt26trj1wQihJdu3a1eKctma0Nudo7aUtbZ1U2rZtW4YPH35YMwEAAAAAAA5Vp45HJ5xwQrneu3dvq2v37NlTrisrK1uc09aM1uYcrb20pa1H4gEAAAAAALSnTv3YuhNPPLFct/X4t3fffbdc/+5j5Q7MOZRHyB1sztHaCwAAAAAAQGfWqeNR41M4W7ZsaXVt48e99evXr8U57777brZv335Ic3r37t3k8XNHay8AAAAAAACdWaeOR2effXa5rq2tbXVt4/tDhgz5vebU19dn8+bNLc6oqqoqIehI9gIAAAAAANCZdep4dOaZZ6ZPnz5JkuXLl7e6dsWKFUmS008/PWeccUaTe+eff365bm3O2rVryyPnRo0a1ez+gTkbN27Ma6+9dtA5jT+jpTkAAAAAAACdVaeOR126dMnYsWOT7D/Ns3r16hbXrV69upz2GTt2bLp06dLk/oUXXpiTTz45SXL//fenoaGhxTmLFy8u1+PGjWt2/7LLLmtxbWM7d+7Mww8/nGT/iaeBAwe2uA4AAAAAAKAz6tTxKEmmT5+eioqKJMm0adOya9euJvd37dqVadOmJUkqKioyffr0ZjO6deuW6667LkmyYcOG3HHHHc3WPP/881m0aFGSZPTo0Rk2bFizNePGjUv//v2TJLfffnt5xF1jM2bMyFtvvVWuAQAAAAAA3k8q2nP4c889l7q6uvL3m2++Wa7r6uqand655pprms0YOHBgbrzxxnzzm9/M2rVrM2rUqHzlK19J//79s3nz5syaNSvr1q1Lsj/WnHXWWS3uZcaMGXnooYfy85//PDNnzkxdXV0mTJiQysrKLFu2LLfddlvq6+tTWVmZuXPntjjj+OOPz7x58/LpT38677zzTkaNGpWbbropw4cPz1tvvZV77703jzzySJL9j7i78sorD+NfCwAAAAAAoOO1azxauHBh7r///hbvrVq1KqtWrWryWkvxKEluvfXW/PrXv859992XdevWZcKECc3WTJw4Md/4xjcOupcTTzwxjz/+eKqrq7Np06bU1NSkpqamyZqTTjop3/nOd3LuuecedE51dXUWLFiQqVOn5vXXXy+nnhobPnx4lixZkuOOO+6gcwAAAAAAADqjTv/YuiTp2rVrFi1alMcffzxjx45Nnz590q1bt/Tp0ydjx47ND3/4wyxcuDBdu7b+dQYMGJB169Zl1qxZGTp0aHr16pUePXpk0KBB+fKXv5z169dnzJgxbe5n0qRJeeGFFzJp0qR89KMfzQknnJBTTjkl559/fu65556sWrUqp5566tH6+gAAAAAAAMdMu548Wrx4cbNH0x2J6urqVFdXH9GMnj17ZubMmZk5c+YRzTnnnHOanVwCAAAAAAB4v3tfnDwCAAAAAADg2BCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEIwAAAAAAAArxCAAAAAAAgEI8AgAAAAAAoBCPAAAAAAAAKMQjAAAAAAAACvEIAAAAAACAQjwCAAAAAACgEI8AAAAAAAAoxCMAAAAAAAAK8QgAAAAAAIBCPAIAAAAAAKAQjwAAAAAAACjEI/5/e/cXmvPfx3H8TTN/NiWRVpR0WXbgSBYhTTcnO3HCCSnJmaImBw7UfeAMcSpSjhwq5kApIivLgaNNOcFqB+5aY/+w7D74db/73fG57LLNtZ89Hkff7LvvPr3YTp7tCwAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPEIAAAAAACAJB4BAAAAAACQxCMAAAAAAACSeAQAAAAAAEASjwAAAAAAAEjiEQAAAAAAAEk8AgAAAAAAIIlHAAAAAAAAJPFoBt69exdnz56Ntra2aGpqitWrV0d7e3tcunQpxsbG6n08AAAAAACAmjXU+wD/VN3d3XHkyJEYHh7OPxsbG4ve3t7o7e2NGzduxIMHD2LTpk11PCUAAAAAAEBt/ObRL3j16lUcPnw4hoeHo7m5OS5evBjPnz+PR48excmTJyMi4vXr19HZ2RkjIyN1Pi0AAAAAAMD0+c2jX3DmzJkYGxuLhoaGePjwYezcuTM/tm/fvti8eXOcO3cu+vv748qVK3HhwoU6nhYAAAAAAGD6/OZRjXp7e+Px48cREXHixIn/C0f/09XVFW1tbRERcfXq1fj69evvPCIAAAAAAMAvE49qdPfu3bw+fvz4D+9ZvHhxHDt2LCIihoaGMjYBAAAAAADMd15bV6OnT59GRERTU1Ns27ateN/evXvz+tmzZ7F///45PxsAAAAAAAvb63//q95H4A8gHtWor68vIiIqlUo0NJTn27Jly3efMx0DAwNVP/7+/fu8HhwcnPZzF4rJj/+p9xHm3M/+jVTzp+9jm+p+dR/blNmmzDZltqnuT9/HNtX5viqzTZltymxT5udxmW2q831VZpsy25TZpmwmP49ZeP7eCiYnJ2flmYumpqamZuVJC8DExEQsX748IiI6Ozvj/v37Ve9vbm6O0dHR2LFjR/T09EzrayxatGjG5wQAAAAAABaeFy9exPbt22f8HP/nUQ0+ffqU183NzT+9v6mpKSIiRkZG5uxMAAAAAAAAs8lr62owMTGR142NjT+9f+nSpRERMT4+Pu2v8ffX0pXO0N/fH+vWrYu1a9dWfXUec2twcDDa29sj4q+a29LSUucTzR+2KbNNmW2qs0+ZbcpsU2abMtuU2aY6+5TZpsw2ZbYps02ZbaqzT5ltymxTZpv5Y3JyMj58+BAREVu3bp2VZyoPNVi2bFlef/ny5af3f/78OSIiX3U3HevXr//pPZVKZdrP4/doaWmZ1t/dQmSbMtuU2aY6+5TZpsw2ZbYps02ZbaqzT5ltymxTZpsy25TZpjr7lNmmzDZltqm/jRs3zurzvLauBitXrszr6byKbnR0NCKm94o7AAAAAACA+UA8qsGyZctizZo1ERExMDBQ9d6hoaGMRxs2bJjzswEAAAAAAMwG8ahGbW1tERHx5s2bmJycLN7X39//3ecAAAAAAADMd+JRjXbv3h0Rf72S7uXLl8X7njx5kte7du2a83MBAAAAAADMBvGoRgcPHszrW7du/fCeb9++xe3btyMiYtWqVdHR0fE7jgYAAAAAADBj4lGN2tvbY8+ePRERcfPmzejp6fnunsuXL0dfX19ERJw+fTqWLFnyW88IAAAAAADwqxrqfYB/omvXrsWuXbtifHw8Dhw4EOfPn4+Ojo4YHx+PO3fuxPXr1yMiorW1Nbq6uup8WgAAAAAAgOlbNDU1NVXvQ/wT3bt3L44ePRofP3784cdbW1uju7s7KpXKbz4ZAAAAAADArxOPZuDt27dx7dq16O7ujoGBgWhsbIxKpRKHDh2KU6dOxYoVK+p9RAAAAAAAgJqIRwAAAAAAAKTF9T4AAAAAAAAA84d4BAAAAAAAQBKPAAAAAAAASOIRAAAAAAAASTwCAAAAAAAgiUcAAAAAAAAk8QgAAAAAAIAkHgEAAAAAAJDEIwAAAAAAAJJ4BAAAAAAAQBKPAAAAAAAASOIRAAAAAAAASTwCAAAAAAAgiUcAAAAAAAAk8QgAAAAAAIAkHgEAAAAAAJDEIwAAAAAAAJJ4BAAAAAAAQBKPAAAAAAAASOIRAAAAAAAASTwCAAAAAAAgiUcAAAAAAAAk8QgAAAAAAIAkHgEAAAAAAJD+Cya5KHj28LjLAAAAAElFTkSuQmCC", | |
"text/plain": [ | |
"<Figure size 1000x618.034 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 504, | |
"width": 839 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.bar(\n", | |
" x=flat_df.name,\n", | |
" height=flat_df.duration.astype(int).astype(float) * 1e-9,\n", | |
" bottom=(flat_df.started.astype(int).astype(float) - flat_df.started.astype(int).astype(float).min()) * 1e-9,\n", | |
")\n", | |
"plt.grid(False)\n", | |
"plt.tick_params(labelbottom=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 215, | |
"id": "0c911a63-c4f7-4c92-9c60-bcc45207489c", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABo8AAAP3CAYAAAD9T9fhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AAB4mklEQVR4nOzde5DV1Z0u/AftgA14B8kgnGggIrmVVoDIwYDMMLkgipDRmLJULAWdQaM5CpmUJgxvEk0ER0MmRhFSeGJ0JCpODSY6pSKgAQ2JM0YDBDCOghjFeAmiYId+/+Cwptu+YzfdwOdTtasWe631/a29u3tzeVjr16m6uro6AAAAAAAAkGS/9l4AAAAAAAAAHYfwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKBol/Bo6tSp6dSpU3k88sgjTc65//77M378+PTp0yddunRJnz59Mn78+Nx///3Nvu6WLVsyY8aMDBkyJIcddli6d++egQMH5oorrsjzzz/f7DrPPPNMLrroovTv3z+VlZXp2bNnhg8fnptvvjlVVVXNrgMAAAAAANDRdKqurq7enRf8r//6rwwaNKhWyLJo0aKcdNJJ9Y6vrq7ORRddlNmzZzdYc9KkSbnpppvSqVOnBsesW7cuJ598clavXl1v/8EHH5zbb789o0ePbnT9c+fOzeTJk7N169Z6+0844YQsXLgwhx9+eKN1AAAAAAAAOqLduvNo+/btmThxYqqqqnLEEUc0a85VV11VgqPjjz8+d9xxR5544onccccdOf7445Mks2fPzje+8Y0Ga2zevDljxowpwdHEiRPz0EMP5Ze//GW+853vpHv37nnjjTdy+umn56mnnmqwzgMPPJBJkyZl69at6dWrV2bNmpXHH388v/jFLzJ+/PgkyfLlyzN+/Phs3769Wa8PAAAAAACgI9mtO49uuOGGfPWrX82xxx6bcePG5ZprrknS8M6jtWvXZuDAgamqqsqgQYOyZMmSVFZWlv4tW7ZkxIgRWbFiRSoqKrJq1ar069evTp1/+qd/yvTp05Mk1157baZMmVKrf9myZRk+fHiqqqoycuTIPPzww3VqVFVVZeDAgVm7dm0OOuig/OY3v6lzrcmTJ+fGG29Mktx6660555xzWvYGNcM777yT3/72t0mSnj17pqKiotWvAQAAAAAA7BmqqqryyiuvJEk+8YlP5IADDnj/Rat3k+eff766e/fu1UmqFy1aVD1t2rTqJOXX9fmHf/iHMmbZsmX1jlm2bFkZc/HFF9fp37ZtW/UhhxxSnaR64MCB1X/5y1/qrXPhhReWOitWrKjTP3/+/NJ/zTXX1Fvjrbfeqj700EOrk1R//OMfb+CdeH+eeOKJsg4PDw8PDw8PDw8PDw8PDw8PDw8PDw8PD4+djyeeeKJVsojddmzdP/zDP2Tz5s0599xzG7y/UU3V1dX5t3/7tyTJsccemxNOOKHecSeccEIGDBiQJLn33ntT/Z6NVI888khef/31JMm5556b/far/yVPmDChtO+55546/ffee2+9Y2vq2rVrzjjjjCTJ008/nTVr1tQ7DgAAAAAAoKPaLWeezZ8/PwsXLsxhhx2WGTNmNGvOH/7wh2zYsCFJMmLEiEbHjhgxIqtXr8769evz3HPP5eijjy59S5curTWuIYMGDUq3bt3y1ltv5dFHH63Tv7POgAED8sEPfrDRtdx8881JkkcffTQf+chHGl17S/Xs2bPWmv7qr/6qVesDAAAAAAB7jo0bN+Yzn/lMktoZwvvR5uHR66+/nksvvTRJ8r3vfa/ZC1+5cmVpH3vssY2Ordm/cuXKWuFRc+tUVFSkX79+eeqpp2rNSZLNmzdn/fr1u7SW1lbzHkd/9Vd/lT59+rT6NQAAAAAAgD1PzQzhfdVplSqNmDp1al566aX87//9v3P++ec3e94LL7xQ2k0FJH379q13Xs1fd+vWLYccckiTdZ566qm88sor2bp1a7p06ZIkWb9+fTkO7/2spTl2hlQN2bhxY2lv3bo177zzTouvAQAAAAAA7B22bt3a6jXbNDx69NFHM2fOnFRUVOSmm25Kp06dmj33z3/+c2l379690bHdunUr7c2bN9dbp6ka9dXZGR611lqao2b41JRly5alR48eLb4GAAAAAACwd9i0aVOr19yv1Sv+P9u2bcukSZNSXV2dr371q/nEJz7Rovk1d9R07ty50bE7Q54kefvtt+ut01SNxuq01loAAAAAAAA6ujbbeXT11Vdn5cqV+V//639l2rRpLZ5/wAEHlPa2bdsaHVtzS1ZlZWW9dZqq0Vid1lpLczR11N3GjRszZMiQJMnQoUNz5JFHtvgaAAAAAADA3mHDhg2tXrNNwqNVq1blmmuuSZL84Ac/qHWUW3MdeOCBpd3U8W9vvfVWab/3WLmddZpzhFxDdVprLc3R1D2VaurSpUutYAsAAAAAANi31DwRrbW0SXh0/fXXZ9u2bfnwhz+cLVu25F//9V/rjHn66adL++GHH85LL72UJDnllFPSrVu3WiHK+vXrG71ezd06771nUJ8+ffL444/nrbfeyuuvv55DDjmkyTo9e/as9Wa31loAAAAAAAA6ujYJj3Ye3fbss8/my1/+cpPjv/Wtb5X2H/7wh3Tr1i0f/ehHy3OrVq1qdH7N/oEDB9bq++hHP5q77767jDvhhBPqrVFVVZV169bVW6N79+7p27dvXnjhhfe1FgAAAAAAgI5uv/ZeQEOOPvro9O7dO0myePHiRscuWbIkSXLkkUfmqKOOqtV34oknlnZjdVasWFGOnBs2bFid/p11Vq9eXXZJ1afmNeqrAwAAAAAA0JG1SXg0b968VFdXN/qYNm1aGb9o0aLy/M7wp1OnThk7dmySHbt5li9fXu+1li9fXnb7jB07Np06darVf9JJJ+Xggw9Oktx6662prq5ucM07jRs3rk7/aaedVu/YmrZs2ZL58+cn2bHj6Zhjjql3HAAAAAAAQEfVYXceJclll12WioodJ+tdcsklefvtt2v1v/3227nkkkuSJBUVFbnsssvq1OjcuXO+8pWvJElWrlyZmTNn1hmzbNmyzJ07N0kyYsSIDB48uM6YcePGpV+/fkmSa665phxxV9OUKVPy2muvlTYAAAAAAMCepkOHR8ccc0yuuOKKJDuOlRs2bFjuvPPOrFixInfeeWeGDRuWFStWJNkR1nzkIx+pt86UKVPKLqCpU6fmwgsvzKJFi7J8+fJcc801+exnP5uqqqpUVlbmhhtuqLfGBz7wgcyaNSv77bdf3nzzzQwbNiz/8i//kieeeCIPPPBA/u7v/i433nhjkh1H3J199tmt/G4AAAAAAAC0vYr2XkBTvvOd7+Tll1/Oj3/84zz55JM588wz64w5//zz8+1vf7vBGgceeGDuu+++jB49OmvWrMns2bMze/bsWmMOOuig/PSnP81xxx3XYJ3Ro0fnpptuysUXX5w//vGPZddTTUOGDMmCBQuy//77N/9FAgAAAAAAdBAdeudRkuy3336ZO3du7rvvvowdOza9e/dO586d07t374wdOzY///nPM2fOnOy3X+MvpX///nnyySfzve99L4MGDcohhxySrl27ZsCAAfnqV7+ap556KmPGjGlyPRMnTsyvf/3rTJw4MR/+8IdzwAEH5PDDD8+JJ56YH/3oR3nsscfSo0eP1nr5AAAAAAAAu1Wn6urq6vZeBM23fv369O3bN0mydu3a9OnTp51XBAAAAAAAtJf169enf//+SZIXXnihVXKDDr/zCAAAAAAAgN1HeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACgq2nsBAAAAAACwuw2Y9mCLxq+ePqqNVgIdj51HAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAEVFey8AAAAAAADY8w2Y9mCzx66ePqoNV8L7ZecRAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKNosPHrzzTfzr//6r7n88sszYsSI9O/fPwcffHA6d+6cI444IieddFKuvfbavPrqqw3WmDdvXjp16tSsx7x585pc05YtWzJjxowMGTIkhx12WLp3756BAwfmiiuuyPPPP9/s1/bMM8/koosuSv/+/VNZWZmePXtm+PDhufnmm1NVVdXsOgAAAAAAAB1NRVsVfuKJJ/LlL3+53r5XXnklixcvzuLFizNjxozcdttt+dznPtdWS0mSrFu3LieffHJWr15d6/lVq1Zl1apVmTNnTm6//faMHj260Tpz587N5MmTs3Xr1vLcO++8k6VLl2bp0qWZN29eFi5cmMMPP7xNXgcAAAAAAEBbarPwKEn69u2bkSNH5lOf+lT69u2bv/qrv8r27duzfv363HXXXbnnnnuyadOmnHrqqfnVr36VT37ykw3WeuCBB9K7d+8G+/v06dNg3+bNmzNmzJgSHE2cODFnnnlmKisrs2jRolxzzTV54403cvrpp2fZsmUNruOBBx7IpEmTsn379vTq1StXXnllPv3pT+dPf/pTbrnlltxzzz1Zvnx5xo8fn0WLFmW//ZwKCAAAAAAA7FnaLDwaOXJko0fBnXHGGbn33nszbty4bNu2LdOnT8/dd9/d4PhjjjkmRx111C6tZebMmVm1alWS5Nprr82UKVNK39ChQzNy5MgMHz48W7ZsyWWXXZaHH364To2qqqpcfPHF2b59ew466KA89thj6devX+n//Oc/n8mTJ+fGG2/MkiVLctttt+Wcc87ZpfUCAAAAAAC0lzbbGrP//vs3Oea0007LsccemyRZsmRJm6zj3Xffzfe///0kycCBA3P55ZfXGTN06NCcf/75SZJFixbl17/+dZ0xCxYsyNq1a5MkX//612sFRzvNmDEjhx56aGkDAAAAAADsadr9XLVu3bol2XHfoLbwyCOP5PXXX0+SnHvuuQ0eJTdhwoTSvueee+r033vvvfWOralr164544wzkiRPP/101qxZs0trBgAAAAAAaC/tGh6tXLky//mf/5kkZQdSa1u6dGlpjxgxosFxgwYNKkHWo48+2mCdAQMG5IMf/GCDdWpeo746AAAAAAAAHdluD4+2bNmSNWvW5J//+Z8zcuTI/OUvf0mSXHrppY3OmzBhQnr16pXOnTunR48eOeGEE3LVVVdlw4YNjc5buXJlaTcWUFVUVJSj6GrOSZLNmzdn/fr1TdZ4b/976wAAAAAAAHR0FbvjIvPmzct5553XYP8VV1yRs846q9EaixcvLu1XX301r776ah5//PFcd911ueGGG3LhhRfWO++FF15IsuN4vEMOOaTRa/Tt2zdPPfVUXnnllWzdujVdunRJkqxfvz7V1dVJkj59+jRZ473XbomdIVVDNm7cWNpbt25ts+P+AAAAAAD2Zgd3rm7ReP8W27SWvKfez9azdevWVq+5W8Kjhhx33HG56aab8ulPf7rBMR/+8Iczfvz4DB06tAQzzz77bO6+++7cddddeeedd3LRRRelU6dOmTRpUp35f/7zn5Mk3bt3b3I9O4+tS3bsNtoZHu2s0Zw6763RUjXDp6YsW7YsPXr0aPE1AAAAAAD2df/fp1o2/pFHHmmTdexNWvKeej9bz6ZNm1q95m4Jj0477bQMGjQoSfL2229n3bp1mT9/fhYsWJCzzjorN9xwQ8aMGVNn3rhx43LuueemU6dOtZ4fPHhwvvSlL2XhwoUZP3583n333Xz1q1/NqaeeWud+RDvTy86dOze5zp1h0c51vrdGc+o0VAMAAAAAAGBPsFvCo0MOOaTWkXGDBw/OmWeemZ/85Cc599xzM3bs2MydOzcTJkyoNe/ggw9utO6YMWMybdq0XHXVVdmyZUvmzp2bK6+8staYAw44IEmybdu2JtdZc2tXZWVlnRrNqdNQjeZq6qi7jRs3ZsiQIUmSoUOH5sgjj2zxNQAAAAAA9nXDr1vaovFLLv9MG61k79GS99T72Xo2bNjQ6jXb9di6s88+OwsXLsz8+fNz8cUXZ+zYsTn00ENbVGPixIn5xje+kerq6ixevLhOeHTggQcmad4Rcm+99VZp1zyebmeN5tRpqEZzNXVPpZq6dOlSK9gCAAAAAKB53tjWqelBNfi32Ka15D31fraemieitZb9Wr1iC40dOzbJjtDlF7/4RYvnH3HEEeW+P/WlazvDmLfeeiuvv/56o7V27vrp2bNnrTe7ZqCzfv36ZtVIWnb/IgAAAAAAgI6g3cOjnj17lvZ///d/71KN6urqBvs++tGPlvaqVasaHFdVVZV169YlSQYOHFirr3v37iUIaqzGe/vfWwcAAAAAAKCja/fwqOZuoV055u3ll1/Oq6++miTp3bt3nf4TTzyxtBcvXtxgnRUrVpQj54YNG9ZgndWrV+ell15qsE7Na9RXBwAAAAAAoCNr9/DoZz/7WWl/4hOfaPH82bNnl51HI0aMqNN/0kkn5eCDD06S3HrrrQ3uUpo3b15pjxs3rk7/aaedVu/YmrZs2ZL58+cn2bHj6ZhjjmnOSwAAAAAAAOgw2iw8mjdvXt55551Gx1x//fX5+c9/niQ56qijau0Seu655/Lkk082On/hwoX51re+lWTHzbXOO++8OmM6d+6cr3zlK0mSlStXZubMmXXGLFu2LHPnzk2yI4AaPHhwnTHjxo1Lv379kiTXXHNNOeKupilTpuS1114rbQAAAAAAgD1NRVsV/qd/+qdcfvnl+eIXv5gTTzwx/fr1S/fu3fPnP/85v/3tb/PTn/40jz32WJIdAc8tt9ySior/Wc5zzz2XkSNHZujQoTnllFNy3HHH5Ygjjkh1dXWeffbZ3HXXXbnrrrvKTqKZM2fmyCOPrHctU6ZMyZ133pnf//73mTp1atauXZszzzwzlZWVWbRoUa6++upUVVWlsrIyN9xwQ701PvCBD2TWrFk55ZRT8uabb2bYsGG56qqrMmTIkLz22mu55ZZbcvfddyfZccTd2Wef3YrvJgAAAAAAwO7Rqbqhc9zep6OOOir//d//3eS4Pn365Mc//nH+9m//ttbzjzzySEaOHNnk/K5du+b666/PpEmTGh23du3ajB49OmvWrKm3/6CDDspPf/rTjBkzptE6t9xySy6++OJs27at3v4hQ4bkvvvuS48ePZpc+65Yv359+vbtm2THa+rTp0+bXAcAAAAAYG82YNqDLRq/evqoNlrJ3qMl76n3s/WsX78+/fv3T5K88MILrZIbtNnOo4ceeigPPvhgFi1alJUrV+aPf/xjXn311RxwwAHp1atXjjvuuIwZMyZnnHFGunbtWmf+pz71qdx2221ZtmxZVqxYkY0bN2bTpk2pqqrKoYcemo997GP5m7/5m1xwwQU54ogjmlxP//798+STT+aHP/xhfvazn2Xt2rXZtm1b+vbtm9GjR+fSSy/Nhz70oSbrTJw4MUOHDs2sWbPy0EMP5cUXX0y3bt0ycODAnHXWWbngggtq7aACAAAAAKBpggfoONps5xFtw84jAAAAAGBvtLvDIzuPWp8AsH20xc6j/d53BQAAAAAAAPYawiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKCoaO8FAAAAAADAnmLAtAdbNH719FFttBJoO3YeAQAAAAAAUAiPAAAAAAAAKBxbBwAAAAAAFC05ms+xfHsnO48AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAABFRXsvAAAAAAAAaH0Dpj3Y7LGrp49qw5Wwp7HzCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFBXtvQAAAAAAAKBhA6Y92Oyxq6ePasOVsK+w8wgAAAAAAIBCeAQAAAAAAEDh2DoAAABgr+N4HwCAXWfnEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAEVFey8AAAAAAAD2BQOmPdjssaunj2rDlUDj7DwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAABFRXsvAAAAAAD2NQOmPdii8aunj2qjlQBAXXYeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAARUV7LwAAAAAAAHbVgGkPtmj86umj2mglsPew8wgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUFS09wIAAAAAANh7DJj2YLPHrp4+qg1XAuwqO48AAAAAAAAohEcAAAAAAAAUjq0DAABgt3GMDQAAdHx2HgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQtFl49Oabb+Zf//Vfc/nll2fEiBHp379/Dj744HTu3DlHHHFETjrppFx77bV59dVXm1Xv/vvvz/jx49OnT5906dIlffr0yfjx43P//fc3e01btmzJjBkzMmTIkBx22GHp3r17Bg4cmCuuuCLPP/98s+s888wzueiii9K/f/9UVlamZ8+eGT58eG6++eZUVVU1uw4AAAAAAEBHU9FWhZ944ol8+ctfrrfvlVdeyeLFi7N48eLMmDEjt912Wz73uc/VO7a6ujoXXXRRZs+eXev5DRs2ZMGCBVmwYEEmTZqUm266KZ06dWpwPevWrcvJJ5+c1atX13p+1apVWbVqVebMmZPbb789o0ePbvR1zZ07N5MnT87WrVvLc++8806WLl2apUuXZt68eVm4cGEOP/zwRusAAAAAAAB0RG16bF3fvn1zzjnn5Pvf/37uueeeLFu2LI899ljuvPPOnH766dl///2zadOmnHrqqXnqqafqrXHVVVeV4Oj444/PHXfckSeeeCJ33HFHjj/++CTJ7Nmz841vfKPBdWzevDljxowpwdHEiRPz0EMP5Ze//GW+853vpHv37nnjjTdy+umnN7iOJHnggQcyadKkbN26Nb169cqsWbPy+OOP5xe/+EXGjx+fJFm+fHnGjx+f7du379J7BgAAAAAA0J7abOfRyJEjGz0K7owzzsi9996bcePGZdu2bZk+fXruvvvuWmPWrl2ba6+9NkkyaNCgLFmyJJWVlUmSwYMH59RTT82IESOyYsWKfO9738t5552Xfv361bnWzJkzs2rVqiTJtddemylTppS+oUOHZuTIkRk+fHi2bNmSyy67LA8//HCdGlVVVbn44ouzffv2HHTQQXnsscdqXevzn/98Jk+enBtvvDFLlizJbbfdlnPOOacF7xgAAAAAAED7a7OdR/vvv3+TY0477bQce+yxSZIlS5bU6b/++uvLPYR+8IMflOBop65du+YHP/hBkh3hzg033FCnxrvvvpvvf//7SZKBAwfm8ssvrzNm6NChOf/885MkixYtyq9//es6YxYsWJC1a9cmSb7+9a/XG1LNmDEjhx56aGkDAAAAAADsadps51FzdevWLcmO+wbVVF1dnX/7t39Lkhx77LE54YQT6p1/wgknZMCAAVm9enXuvffezJo1q9a9jx555JG8/vrrSZJzzz03++1Xf142YcKE3HzzzUmSe+65J5/61Kdq9d977721xtana9euOeOMM3LzzTfn6aefzpo1a/KRj3yk/hcOAADQzgZMe7BF41dPH9VGKwEAADqSNr3nUVNWrlyZ//zP/0ySsgNppz/84Q/ZsGFDkmTEiBGN1tnZv379+jz33HO1+pYuXVpnXH0GDRpUgqxHH320Tv/OOgMGDMgHP/jBJtfSUB0AAAAAAICObLeHR1u2bMmaNWvyz//8zxk5cmT+8pe/JEkuvfTSWuNWrlxZ2u8Nlt6rZn/NeS2pU1FRUY6ie2+NzZs3Z/369e97LQAAAAAAAB3dbjm2bt68eTnvvPMa7L/iiity1lln1XruhRdeKO0+ffo0Wr9v3771zqv5627duuWQQw5pss5TTz2VV155JVu3bk2XLl2S7NjRVF1d/b7X0hw7Q6qGbNy4sbS3bt1a57g/AACA5jq4c3WLxrfG3z9ack1/3+H98L1GR9cen8Gwu+zqZ/DumFdz7u6e19K5+9I83p+tW7e2es12vefRcccdl5tuuimf/vSn6/T9+c9/Lu3u3bs3WmfncXPJjl1C9dVpqkZ9dXaGR621luaoGT41ZdmyZenRo0eLrwEAAJAk/9+nmh5T0yOPPLJbr9ka12Pf5XuNjq49PoNhd9nVz+DdMa/m3N09r6Vz96V5vD+bNm1q9Zq75di60047Lb/97W/z29/+Nk888UTuuOOOjBs3Lv/5n/+Zs846KwsXLqwzp2bq2Llz50br7wx5kuTtt9+ut05TNRqr01prAQAAAAAA6Oh2y86jQw45pNaRcYMHD86ZZ56Zn/zkJzn33HMzduzYzJ07NxMmTChjDjjggNLetm1bo/VrbsmqrKys1bezTlM1GqvTWmtpjqaOutu4cWOGDBmSJBk6dGiOPPLIFl8DAAAgSYZft7RF45dc/pndes3WuB77Lt9rdHTt8RkMu8uufgbvjnk15+7ueS2duy/N4/3ZsGFDq9ds12Przj777CxcuDDz58/PxRdfnLFjx+bQQw9Nkhx44IFlXFPHv7311lul/d5j5XbWac4Rcg3Vaa21NEdT91SqqUuXLrWCLQAAgJZ4Y1unFo1vjb9/tOSa/r7D++F7jY6uPT6DYXfZ1c/g3TGv5tzdPa+lc/elebw/NU9Eay275di6xowdOzbJjtDlF7/4RXm+Zoiyfv36RmvU3K3z3nsG7azz1ltv5fXXX29WnZ49e9Z6s1trLQAAAAAAAB1du4dHPXv2LO3//u//Lu2PfvSjpb1q1apGa9TsHzhwYK2+5tapqqrKunXr6q3RvXv3EgS9n7UAAAAAAAB0dO0eHtU8i6/mMW9HH310evfunSRZvHhxozWWLFmSJDnyyCNz1FFH1eo78cQTS7uxOitWrChHzg0bNqxO/846q1evzksvvdRgnZrXqK8OAAAAAABAR9bu4dHPfvaz0v7EJz5R2p06dSpH2q1atSrLly+vd/7y5cvLbp+xY8emU6faZyqedNJJOfjgg5Mkt956a6qrq+utM2/evNIeN25cnf7TTjut3rE1bdmyJfPnz0+yY8fTMcccU+84AAAAAACAjqrNwqN58+blnXfeaXTM9ddfn5///OdJkqOOOqrWLqEkueyyy1JRUZEkueSSS/L222/X6n/77bdzySWXJEkqKipy2WWX1blG586d85WvfCVJsnLlysycObPOmGXLlmXu3LlJkhEjRmTw4MF1xowbNy79+vVLklxzzTXliLuapkyZktdee620AQAAAAAA9jRtFh790z/9U4488shMmjQp//f//t889thj+a//+q88+uij+dGPfpQTTzwx/+f//J8kOwKeW265pQRFOx1zzDG54oorkuw4Vm7YsGG58847s2LFitx5550ZNmxYVqxYkWRHWPORj3yk3rVMmTKl7AKaOnVqLrzwwixatCjLly/PNddck89+9rOpqqpKZWVlbrjhhnprfOADH8isWbOy33775c0338ywYcPyL//yL3niiSfywAMP5O/+7u9y4403JtlxxN3ZZ5/9vt9DAAAAAACA3a2i6SG77k9/+lNuueWW3HLLLQ2O6dOnT3784x9n1KhR9fZ/5zvfycsvv5wf//jHefLJJ3PmmWfWGXP++efn29/+doPXOPDAA3Pfffdl9OjRWbNmTWbPnp3Zs2fXGnPQQQflpz/9aY477rgG64wePTo33XRTLr744vzxj38su55qGjJkSBYsWJD999+/wToAAAAAAAAdVZuFRw899FAefPDBLFq0KCtXrswf//jHvPrqqznggAPSq1evHHfccRkzZkzOOOOMdO3atcE6++23X+bOnZsvfvGLmT17dn71q19l06ZN6dGjRwYPHpwLL7wwX/jCF5pcT//+/fPkk0/mhz/8YX72s59l7dq12bZtW/r27ZvRo0fn0ksvzYc+9KEm60ycODFDhw7NrFmz8tBDD+XFF19Mt27dMnDgwJx11lm54IIL6uygAgAAAAAA2FO0WcrRr1+/9OvXLxdeeGGr1Bs9enRGjx79vmp069YtU6dOzdSpU99XnY9//ON1di4BAAAAAADsDdrsnkcAAAAAAADseYRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAAior2XgAAAAAAtJYB0x5s9tjV00e14UoAYM9l5xEAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAIqK9l4AAAAAAOypBkx7sEXjV08f1UYrAYDWY+cRAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgKKivRcAAAAAAO81YNqDzR67evqoNlwJAOx77DwCAAAAAACgEB4BAAAAAABQOLYOAAAAYB/iODgAoCnCIwAAAAAAoN34jw0dj2PrAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUFe29AAAAAPY8A6Y92Oyxq6ePasOVAAAArc3OIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUFe29AAAAAACg+QZMe7DZY1dPH9WGKwFgb2XnEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFBXtvQAAAACAjmLAtAebPXb19FFtuJK9h/cUAPY8bbrz6De/+U2uvvrqfOELX0jfvn3TpUuXdO/ePcccc0wmTJiQpUuXNllj3rx56dSpU7Me8+bNa7Leli1bMmPGjAwZMiSHHXZYunfvnoEDB+aKK67I888/3+zX9swzz+Siiy5K//79U1lZmZ49e2b48OG5+eabU1VV1ew6AAAAAAAAHUmb7TwaMWJElixZUuf5bdu2Zc2aNVmzZk1uvfXWnH322ZkzZ046d+7cVksp1q1bl5NPPjmrV6+u9fyqVauyatWqzJkzJ7fffntGjx7daJ25c+dm8uTJ2bp1a3nunXfeydKlS7N06dLMmzcvCxcuzOGHH94mrwMAAAAAAKCttFl4tGHDhiRJ7969c/rpp+czn/lM/tf/+l/5y1/+kmXLluW6667Lhg0b8pOf/CRVVVW5/fbbm6z5wAMPpHfv3g329+nTp8G+zZs3Z8yYMSU4mjhxYs4888xUVlZm0aJFueaaa/LGG2/k9NNPz7Jly/LJT36ywTVMmjQp27dvT69evXLllVfm05/+dP70pz/llltuyT333JPly5dn/PjxWbRoUfbbz22lAAAAAACAPUebhUfHHntsrr766nzxi1/M/vvvX6vvhBNOyNlnn51hw4bl97//fe644478/d//fT7zmc80WvOYY47JUUcdtUvrmTlzZlatWpUkufbaazNlypTSN3To0IwcOTLDhw/Pli1bctlll+Xhhx+uU6OqqioXX3xxtm/fnoMOOiiPPfZY+vXrV/o///nPZ/LkybnxxhuzZMmS3HbbbTnnnHN2ab0AAAAAAADtoc22xSxcuDBnnHFGneBopx49euS6664rv77rrrvaail599138/3vfz9JMnDgwFx++eV1xgwdOjTnn39+kmTRokX59a9/XWfMggULsnbt2iTJ17/+9VrB0U4zZszIoYceWtoAAAAAAAB7knY9U+2kk04q7XXr1rXZdR555JG8/vrrSZJzzz23waPkJkyYUNr33HNPnf5777233rE1de3aNWeccUaS5Omnn86aNWt2ac0AAAAAAADtoV3Do23btpV2W94baOnSpaU9YsSIBscNGjQo3bp1S5I8+uijDdYZMGBAPvjBDzZYp+Y16qsDAAAAAADQUbVreLR48eLSPvbYY5scP2HChPTq1SudO3dOjx49csIJJ+Sqq67Khg0bGp23cuXKZl2noqKiHEVXc06SbN68OevXr2/WWmv2v7cOAAAAAABAR1bRXhfevn17vvvd75Zf7zzqrTE1w6ZXX301r776ah5//PFcd911ueGGG3LhhRfWO++FF15IknTr1i2HHHJIo9fo27dvnnrqqbzyyivZunVrunTpkiRZv359qqurkyR9+vRpssZ7r91cOwOqhmzcuLG0t27dmnfeeadF9QEAAHY6uHN1i8bX/PtHS+a2xjxoKd+jDdvdr3F3fy068uurec32+AyG3aUj/9zXnLsn/fyaV/88dti6dWur1+xUvTMR2c2uu+66XHHFFUmScePG1XuPoSSZN29evvWtb2X8+PEZOnRoCWaeffbZ3H333bnrrrtKqHPzzTdn0qRJdWp87GMfy+9+97v06tUrL730UqPr+tKXvpT58+cnSTZt2pTDDz88SfKrX/0qQ4YMSZJ87WtfqxV8vdfbb7+drl27JknGjBmTf//3f2/0mjV16tSp2WPnzJmTHj16NHs8AAAAAACwd9m0aVMuuOCCJDs2tDS1AaY52mXn0eLFi/OP//iPSZIjjjgiP/rRjxocO27cuJx77rl1QpXBgwfnS1/6UhYuXJjx48fn3XffzVe/+tWceuqpde5HtDOJ7Ny5c5Nr27nTKNkRAr23RnPqNFQDAAAAAACgo9vt4dEzzzyTcePGpaqqKl26dMn8+fPTq1evBscffPDBjdYbM2ZMpk2blquuuipbtmzJ3Llzc+WVV9Yac8ABByRJtm3b1uT6am7vqqysrFOjOXUaqtEcTR1zt3HjxrIDaujQoTnyyCNbVB8AAGCn4dctbdH4JZd/Zpfmtsa8XbW7r0fHsad8j7aHPeXncE/5Gu7qZ2l7fAbD7tKRf+5rzt2Tfn7Nq38eO2zYsKHVa+7W8OgPf/hDPvvZz+a1117L/vvvnzvuuCMjRox433UnTpyYb3zjG6murs7ixYvrhEcHHnhgkmTz5s1N1nrrrbdKu3v37nVqNKdOQzWaoyXbybp06VIr1AIAAGiJN7Y1/9jspPZ/qmvJ3NaYt6t29/XoOPaU79H2sKf8HO4pX8Nd/Sxtj89g2F068s99zbl70s+vefXPY4eap6G1lv1avWIDXnzxxYwaNSovvvhiOnXqlB//+McZN25cq9Q+4ogjyr1/6kvYdgYyb731Vl5//fVGa+3c+dOzZ89ab3jNUGf9+vXNqpGk3KMJAAAAAABgT7BbwqNNmzblb//2b/Pss88mSX7wgx/knHPOadVrVFdXN9j30Y9+tLRXrVrV4LiqqqqsW7cuSTJw4MBafd27dy9BUGM13tv/3joAAAAAAAAdWZuHR2+88UY+97nP5Xe/+12S5Lvf/W4mT57cqtd4+eWX8+qrryZJevfuXaf/xBNPLO3Fixc3WGfFihXlyLlhw4Y1WGf16tV56aWXGqxT8xr11QEAAAAAAOio2jQ82rJlS04++eT85je/SZJceeWV+drXvtbq15k9e3bZeVTfPZROOumkHHzwwUmSW2+9tcFdSvPmzSvt+o7UO+200+odW9OWLVsyf/78JDt2PB1zzDHNeQkAAAAAAAAdQpuFR9u2bcu4cePy2GOPJUkuvfTSfPvb325Rjeeeey5PPvlko2MWLlyYb33rW0l23CjrvPPOqzOmc+fO+cpXvpIkWblyZWbOnFlnzLJlyzJ37twkOwKowYMH1xkzbty49OvXL0lyzTXXlCPuapoyZUpee+210gYAAAAAANiTVLRV4S9/+cv5j//4jyTJX//1X+f888/P008/3eD4zp0719ml89xzz2XkyJEZOnRoTjnllBx33HE54ogjUl1dnWeffTZ33XVX7rrrrrKTaObMmTnyyCPrrT9lypTceeed+f3vf5+pU6dm7dq1OfPMM1NZWZlFixbl6quvTlVVVSorK3PDDTfUW+MDH/hAZs2alVNOOSVvvvlmhg0blquuuipDhgzJa6+9lltuuSV33313kh1H3J199tktfdsAAAAAAADaVZuFR/fcc09pP/zww/nkJz/Z6PgPfehDee655+rtW7ZsWZYtW9bg3K5du+b666/PpEmTGhxz4IEH5r777svo0aOzZs2azJ49O7Nnz6415qCDDspPf/rTHHfccQ3WGT16dG666aZcfPHF+eMf/5hLLrmkzpghQ4ZkwYIF2X///RusAwAAAAAA0BG1WXjUGj71qU/ltttuy7Jly7JixYps3LgxmzZtSlVVVQ499NB87GMfy9/8zd/kggsuyBFHHNFkvf79++fJJ5/MD3/4w/zsZz/L2rVrs23btvTt2zejR4/OpZdemg996ENN1pk4cWKGDh2aWbNm5aGHHsqLL76Ybt26ZeDAgTnrrLNywQUXpKKiQ7+1AAAAAAAA9WqzhGPnUXLvx4EHHpizzjorZ511ViusaIdu3bpl6tSpmTp16vuq8/GPf7zOziUAAAAAAIA93X7tvQAAAAAAAAA6DuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAUdHeCwAAAAB2vwHTHmz22NXTR7XhSoDdxc89AM1l5xEAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQFHR3gsAAACAfd2AaQ+2aPzq6aPaaCUAAGDnEQAAAAAAADUIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoKho7wUAAABARzNg2oPNHrt6+qg2XAkAAOx+dh4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAU7nkEAAAAdFjuPwUAsPvZeQQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABQV7b0AAAAA3p8B0x5s0fjV00e10UoAAIC9gZ1HAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgKKivRcAAAAATRkw7cFmj109fVQbrgQAAPZ+dh4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFBUtPcCAAAAAACAPd/q6aN26zzajp1HAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAoqK9FwAAsLcbMO3BZo91k1AAAACgvdl5BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQNGm4dFvfvObXH311fnCF76Qvn37pkuXLunevXuOOeaYTJgwIUuXLm1Rvfvvvz/jx49Pnz590qVLl/Tp0yfjx4/P/fff3+waW7ZsyYwZMzJkyJAcdthh6d69ewYOHJgrrrgizz//fLPrPPPMM7nooovSv3//VFZWpmfPnhk+fHhuvvnmVFVVteh1AQAAAAAAdBQVbVV4xIgRWbJkSZ3nt23bljVr1mTNmjW59dZbc/bZZ2fOnDnp3Llzg7Wqq6tz0UUXZfbs2bWe37BhQxYsWJAFCxZk0qRJuemmm9KpU6cG66xbty4nn3xyVq9eXev5VatWZdWqVZkzZ05uv/32jB49utHXNnfu3EyePDlbt24tz73zzjtZunRpli5dmnnz5mXhwoU5/PDDG60DAAAAAADQ0bTZzqMNGzYkSXr37p1LL700d911V5544oksW7Ys//zP/5wjjzwySfKTn/wkEyZMaLTWVVddVYKj448/PnfccUeeeOKJ3HHHHTn++OOTJLNnz843vvGNBmts3rw5Y8aMKcHRxIkT89BDD+WXv/xlvvOd76R79+554403cvrpp+epp55qsM4DDzyQSZMmZevWrenVq1dmzZqVxx9/PL/4xS8yfvz4JMny5cszfvz4bN++vXlvFgAAAAAAQAfRZjuPjj322Fx99dX54he/mP33379W3wknnJCzzz47w4YNy+9///vccccd+fu///t85jOfqVNn7dq1ufbaa5MkgwYNypIlS1JZWZkkGTx4cE499dSMGDEiK1asyPe+972cd9556devX506M2fOzKpVq5Ik1157baZMmVL6hg4dmpEjR2b48OHZsmVLLrvssjz88MN1alRVVeXiiy/O9u3bc9BBB+Wxxx6rda3Pf/7zmTx5cm688cYsWbIkt912W84555xdePcAAAAAAADaR5vtPFq4cGHOOOOMOsHRTj169Mh1111Xfn3XXXfVO+76668v9xD6wQ9+UIKjnbp27Zof/OAHSXaEOzfccEOdGu+++26+//3vJ0kGDhyYyy+/vM6YoUOH5vzzz0+SLFq0KL/+9a/rjFmwYEHWrl2bJPn6179eb0g1Y8aMHHrooaUNAAAAAACwJ2mz8Kg5TjrppNJet25dnf7q6ur827/9W5IdO5lOOOGEeuuccMIJGTBgQJLk3nvvTXV1da3+Rx55JK+//nqS5Nxzz81++9X/smsen3fPPffU6b/33nvrHVtT165dc8YZZyRJnn766axZs6becQAAAAAAAB1Ru4ZH27ZtK+36Ap0//OEP5d5JI0aMaLTWzv7169fnueeeq9W3dOnSOuPqM2jQoHTr1i1J8uijj9bp31lnwIAB+eAHP9jkWhqqAwAAAAAA0FG12T2PmmPx4sWlfeyxx9bpX7lyZaP9NdXsX7lyZY4++ugW16moqEi/fv3y1FNP1ZqTJJs3b8769et3aS0tsfMaDdm4cWNpb926Ne+8806L6gMAu9/BnaubHvT/+L0d2BUt+ZxJ/uezZlfntXTuvjRvV72fr8XuuGZ7/v60t3/t20NH/v7eE7+G+8JnMLRUR/65rzl3X/j59Xmxb9i6dWur1+xU/d4z3naT7du3Z+jQoXniiSeSJL/61a8yaNCgWmNuuumm/P3f/32S5Gc/+1n+7u/+rsF6d911V04//fQy78ILLyx9J5xwQh5//PF069YtmzdvbnRdY8aMyX333Zdkxzd9ly5dkiSrVq3KwIEDkySTJ0/Ov/zLvzRYY9OmTenZs2eS5Mwzz8wdd9zR6DVr6tSpU7PHzpkzJz169Gj2eAAAAAAAYO+yadOmXHDBBUmSF154IX369HnfNdvt2Lrrr7++BEfjxo2rExwlyZ///OfS7t69e6P1dh43l6ROQLSzTlM1GqvTWmsBAAAAAADoyNrl2LrFixfnH//xH5MkRxxxRH70ox/VO67mdrfOnTs3WnPnDqEkefvtt+ut01SNxuq01lqa8sILLzTav3HjxgwZMiRJMnTo0Bx55JEtqg8A7H7Dr1va9KD/Z8nln2nDlQB7q5Z8ziT/81mzq/NaOndfmrer3s/XYndcsz1/f9rbv/btoSN/f++JX8N94TMYWqoj/9zXnLsv/Pz6vNg3bNiwodVr7vbw6Jlnnsm4ceNSVVWVLl26ZP78+enVq1e9Yw844IDS3rZtW6N1a57pV1lZWW+dpmo0Vqe11tKUlmwn69KlS611AQAd0xvbmn8srd/bgV3Rks+Z5H8+a3Z1Xkvn7kvzdtX7+Vrsjmu25+9Pe/vXvj105O/vPfFruC98BkNLdeSf+5pz94WfX58X+4aaG1pay249tu4Pf/hDPvvZz+a1117L/vvvnzvuuCMjRoxocPyBBx5Y2k0d//bWW2+V9nuPldtZpzlHyDVUp7XWAgAAAAAA0JHttvDoxRdfzKhRo/Liiy+mU6dO+fGPf5xx48Y1OqfmLpz169c3OrbmcW99+/att85bb72V119/vVl1evbsWSuta621AAAAAAAAdGS7JTzatGlT/vZv/zbPPvtskuQHP/hBzjnnnCbnffSjHy3tVatWNTq2Zv/AgQN3qU5VVVXWrVtXb43u3buXIOj9rAUAAAAAAKAja/Pw6I033sjnPve5/O53v0uSfPe7383kyZObNffoo49O7969kySLFy9udOySJUuSJEceeWSOOuqoWn0nnnhiaTdWZ8WKFeXIuWHDhtXp31ln9erVeemllxqsU/Ma9dUBAAAAAADoqNo0PNqyZUtOPvnk/OY3v0mSXHnllfna177W7PmdOnXK2LFjk+zYzbN8+fJ6xy1fvrzs9hk7dmw6dap9M6+TTjopBx98cJLk1ltvTXV1db115s2bV9r1Hal32mmn1Tu2pi1btmT+/PlJdux4OuaYY+odBwAAAAAA0BG1WXi0bdu2jBs3Lo899liS5NJLL823v/3tFte57LLLUlFRkSS55JJL8vbbb9fqf/vtt3PJJZckSSoqKnLZZZfVqdG5c+d85StfSZKsXLkyM2fOrDNm2bJlmTt3bpJkxIgRGTx4cJ0x48aNS79+/ZIk11xzTTnirqYpU6bktddeK20AAAAAAIA9SUVbFf7yl7+c//iP/0iS/PVf/3XOP//8PP300w2O79y5c727dI455phcccUV+e53v5sVK1Zk2LBh+drXvpZ+/fpl3bp1+d73vpcnn3wyyY6w5iMf+Ui99adMmZI777wzv//97zN16tSsXbs2Z555ZiorK7No0aJcffXVqaqqSmVlZW644YZ6a3zgAx/IrFmzcsopp+TNN9/MsGHDctVVV2XIkCF57bXXcsstt+Tuu+9OsuOIu7PPPrslbxkAAAAAAEC7a7Pw6J577inthx9+OJ/85CcbHf+hD30ozz33XL193/nOd/Lyyy/nxz/+cZ588smceeaZdcacf/75je5sOvDAA3Pfffdl9OjRWbNmTWbPnp3Zs2fXGnPQQQflpz/9aY477rgG64wePTo33XRTLr744vzxj38su55qGjJkSBYsWJD999+/wToAAAAAAAAdUZve86i17Lfffpk7d27uu+++jB07Nr17907nzp3Tu3fvjB07Nj//+c8zZ86c7Ldf4y+nf//+efLJJ/O9730vgwYNyiGHHJKuXbtmwIAB+epXv5qnnnoqY8aMaXI9EydOzK9//etMnDgxH/7wh3PAAQfk8MMPz4knnpgf/ehHeeyxx9KjR4/WevkAAAAAAAC7TZvtPKqurm71mqNHj87o0aPfV41u3bpl6tSpmTp16vuq8/GPf7zOziUAAAAAAIA93R6x8wgAAAAAAIDdQ3gEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAUdHeCwAAAAAAADqO1dNHtfcSaGd2HgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTueQQAAB3MgGkPNnuss8gBAABobXYeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgqGjvBQAAAAAA0HYGTHuw2WNXTx/VhisB9hR2HgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTueQQAAAAA7LNacj+gxD2BgH2DnUcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAoqK9FwAAAAAAsKcZMO3BFo1fPX1UG60EoPXZeQQAAAAAAEAhPAIAAAAAAKBwbB0AAAAAwB6gJUflOSYPeD/sPAIAAAAAAKCw8wgAAAAAADqwXd1JZgcau8rOIwAAAAAAAArhEQAAAAAAAIVj6wAAeF9actPexLEJAACwp2jJn/X9OR/2LsIjAABogr80AwAAsC9xbB0AAAAAAACFnUcAAAAAALAbOKmAPYWdRwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIV7HgEAAAAAQDO5bxH7AuERALDPGTDtwWaP9ZcCAAAAYF/j2DoAAAAAAAAK4REAAAAAAACFY+sAAAA6iJYcq5k4WhMA9lSO0gY6OuERAAAAAAD7HMEcNMyxdQAAAAAAABTCIwAAAAAAAArH1gEAtbjfBgAAAO1hV/9+6e+l0PqERwAAAABAh9GS/9AmNABoG8IjAAAAgHZi1zcA0BEJjwCAVuEfPgCAfZk/CwEAexPhEQDQrvxDCwAAAEDHsl97LwAAAAAAAICOw84jAAAAAPZ5dsQDwP+w8wgAAAAAAIBCeAQAAAAAAEDRpuHRyy+/nIULF+ab3/xmvvCFL6RHjx7p1KlTOnXqlAkTJjSrxrx588qcph7z5s1rst6WLVsyY8aMDBkyJIcddli6d++egQMH5oorrsjzzz/f7Nf2zDPP5KKLLkr//v1TWVmZnj17Zvjw4bn55ptTVVXV7DoAAAAAAAAdSZve86hXr15tWb7F1q1bl5NPPjmrV6+u9fyqVauyatWqzJkzJ7fffntGjx7daJ25c+dm8uTJ2bp1a3nunXfeydKlS7N06dLMmzcvCxcuzOGHH94mrwMAAAAAAKCttGl4VFPfvn0zcODA/Md//Mcu13jggQfSu3fvBvv79OnTYN/mzZszZsyYEhxNnDgxZ555ZiorK7No0aJcc801eeONN3L66adn2bJl+eQnP9ngGiZNmpTt27enV69eufLKK/PpT386f/rTn3LLLbfknnvuyfLlyzN+/PgsWrQo++3nZEAAAAAAAGDP0abh0Te/+c0MHjw4gwcPTq9evfLcc8/l6KOP3uV6xxxzTI466qhdmjtz5sysWrUqSXLttddmypQppW/o0KEZOXJkhg8fni1btuSyyy7Lww8/XKdGVVVVLr744mzfvj0HHXRQHnvssfTr16/0f/7zn8/kyZNz4403ZsmSJbnttttyzjnn7NJ6AQAAAAAA2kObbouZPn16xowZ0+7H17377rv5/ve/nyQZOHBgLr/88jpjhg4dmvPPPz9JsmjRovz617+uM2bBggVZu3ZtkuTrX/96reBopxkzZuTQQw8tbQAAAAAAgD3JPnGm2iOPPJLXX389SXLuuec2eJTchAkTSvuee+6p03/vvffWO7amrl275owzzkiSPP3001mzZs0urRkAAAAAAKA97BPh0dKlS0t7xIgRDY4bNGhQunXrliR59NFHG6wzYMCAfPCDH2ywTs1r1FcHAAAAAACgo9qjwqMJEyakV69e6dy5c3r06JETTjghV111VTZs2NDovJUrV5b2scce2+C4ioqKchRdzTlJsnnz5qxfv77JGu/tf28dAAAAAACAjqyivRfQEosXLy7tV199Na+++moef/zxXHfddbnhhhty4YUX1jvvhRdeSJJ069YthxxySKPX6Nu3b5566qm88sor2bp1a7p06ZIkWb9+faqrq5Mkffr0abLGe6/dXDsDqoZs3LixtLdu3Zp33nmnRfUBoCkHd65u0fidvxft7nnvR0uuuSdeb3drj6/h7uZ7ht1lT/oM3tXv07193q7aF34/3FV7ytfen4Va/3odeV7NufvCZ/CuGn7d0qYH/T9LLv9MaXfk79Ga19yTvoZ7yjxg12zdurXVa3aq3pmI7AbPPfdcjj766CQ77j00b968JufMmzcv3/rWtzJ+/PgMHTq0BDPPPvts7r777tx1110l1Ln55pszadKkOjU+9rGP5Xe/+1169eqVl156qdHrfelLX8r8+fOTJJs2bcrhhx+eJPnVr36VIUOGJEm+9rWv5bvf/W6DNd5+++107do1STJmzJj8+7//e5Ovc6dOnTo1e+ycOXPSo0ePZo8HAAAAAAD2Lps2bcoFF1yQZMeGlqY2wDRHh995NG7cuJx77rl1QpXBgwfnS1/6UhYuXJjx48fn3XffzVe/+tWceuqpde5HtDO97ty5c5PX27nTKNkRAr23RnPqNFQDAAAAAACgo+vw4dHBBx/caP+YMWMybdq0XHXVVdmyZUvmzp2bK6+8staYAw44IEmybdu2Jq9Xc3tXZWVlnRrNqdNQjeZo6pi7jRs3lh1QQ4cOzZFHHtmi+gDQlJYcLZH8z/ESu3ve+7Grx2fsKdfb3drja7i7+Z5hd9mTPoN39ft0b5+3q/aF3w931Z7ytfdnoda/XkeeV3PuvvAZvKv2xnXWvOae9DXcU+YBu2bDhg2tXrPDh0fNMXHixHzjG99IdXV1Fi9eXCc8OvDAA5MkmzdvbrLWW2+9Vdrdu3evU6M5dRqq0Rwt2U7WpUuXWqEWALSGN7Y1/wjV5H/+g8Xunvd+tOSae+L1drf2+Brubr5n2F32pM/gXf0+3dvn7ap94ffDXbWnfO39Waj1r9eR59Wcuy98Bu+qvXGdNa+5J30N95R5wK6peRpaa9mv1Su2gyOOOKLc+6e+hG1nIPPWW2/l9ddfb7TWzp0/PXv2rPWG1wx11q9f36waSco9mgAAAAAAAPYEe0V4lCTV1dUN9n30ox8t7VWrVjU4rqqqKuvWrUuSDBw4sFZf9+7dSxDUWI339r+3DgAAAAAAQEe2V4RHL7/8cl599dUkSe/evev0n3jiiaW9ePHiBuusWLGiHDk3bNiwBuusXr06L730UoN1al6jvjoAAAAAAAAd1V4RHs2ePbvsPBoxYkSd/pNOOikHH3xwkuTWW29tcJfSvHnzSnvcuHF1+k877bR6x9a0ZcuWzJ8/P8mOHU/HHHNMc14CAAAAAABAh1DR3gtozHPPPZfXXnstxx9/fINjFi5cmG9961tJdtxc7bzzzqszpnPnzvnKV76Sb33rW1m5cmVmzpyZKVOm1BqzbNmyzJ07N8mOAGrw4MF16owbNy79+vXLunXrcs011+T0009Pv379ao2ZMmVKXnvttdIGAAAAANiXrJ4+qr2XALxPbRoePfroo1m7dm359aZNm0p77dq1dXbvTJgwodavn3vuuYwcOTJDhw7NKaeckuOOOy5HHHFEqqur8+yzz+auu+7KXXfdVXYSzZw5M0ceeWS9a5kyZUruvPPO/P73v8/UqVOzdu3anHnmmamsrMyiRYty9dVXp6qqKpWVlbnhhhvqrfGBD3wgs2bNyimnnJI333wzw4YNy1VXXZUhQ4bktddeyy233JK77747yY4j7s4+++wWvmMAAAAAAADtq03Dozlz5uTWW2+tt++xxx7LY489Vuu594ZHOy1btizLli1r8Dpdu3bN9ddfn0mTJjU45sADD8x9992X0aNHZ82aNZk9e3Zmz55da8xBBx2Un/70pznuuOMarDN69OjcdNNNufjii/PHP/4xl1xySZ0xQ4YMyYIFC7L//vs3WAcAAADg/Rgw7cFmj7ULAABoiQ59bN2nPvWp3HbbbVm2bFlWrFiRjRs3ZtOmTamqqsqhhx6aj33sY/mbv/mbXHDBBTniiCOarNe/f/88+eST+eEPf5if/exnWbt2bbZt25a+fftm9OjRufTSS/OhD32oyToTJ07M0KFDM2vWrDz00EN58cUX061btwwcODBnnXVWLrjgglRUdOi3FgAAipb842PiHyABAAD2dm2acMybN6/O0XQtceCBB+ass87KWWed1Wpr6tatW6ZOnZqpU6e+rzof//jH6+xcAgAAAAAA2NPt194LAAAAAAAAoOMQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgKKivRcAAAAAAPB+DZj2YLPHrp4+qg1XArDns/MIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQVLT3AgAAAIC9nxvZAwDsOew8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAoqK9FwAAAAAAdFwDpj3Y7LGrp49qw5UAsLvYeQQAAAAAAEBh5xEAAADsoVqyGyCxIwAAgOax8wgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACgq2nsBAAAAsLcYMO3BZo9dPX1UG64EAAB2nfAI9hH+EgsAAAAAQHM4tg4AAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACgq2nsBAAAAAHR8A6Y92Oyxq6ePasOVAABtzc4jAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABQV7b0AAAAAYM8xYNqDzR67evqoNlwJAABtxc4jAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQVLT3AgAAAAAA6HhWTx/V3ksA2omdRwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgKKivRcAsK8ZMO3BZo91Y0oAAAAAYHez8wgAAAAAAIDCziMAAAAAgL2Yk02AlrLzCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKCraewEAAAAAADRt9fRR7b0EYB9h5xEAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKCoaO8FAMC+YsC0B5s91k1QAQAAAGgvdh4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAU7nkEAAAAALAbuc8t0NHZeQQAAAAAAEAhPAIAAAAAAKBwbB0AAAAAQAs5eg7YmwmPAAAAGjBg2oPNHusfkAAAgL2FY+sAAAAAAAAohEcAAAAAAAAUjq1jr9KSY0USR4sAAAAA7Ov8+xBAXXYeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAAior2XgDAnmrAtAebPdbNNwEAAACAPYWdRwAAAAAAABTCIwAAAAAAAIo2DY9efvnlLFy4MN/85jfzhS98IT169EinTp3SqVOnTJgwocX17r///owfPz59+vRJly5d0qdPn4wfPz73339/s2ts2bIlM2bMyJAhQ3LYYYele/fuGThwYK644oo8//zzza7zzDPP5KKLLkr//v1TWVmZnj17Zvjw4bn55ptTVVXV4tcGAAAAAADQEbTpPY969erVKnWqq6tz0UUXZfbs2bWe37BhQxYsWJAFCxZk0qRJuemmm9KpU6cG66xbty4nn3xyVq9eXev5VatWZdWqVZkzZ05uv/32jB49utH1zJ07N5MnT87WrVvLc++8806WLl2apUuXZt68eVm4cGEOP/zwXXi1AAAAAAAA7We3HVvXt2/ffPazn92luVdddVUJjo4//vjccccdeeKJJ3LHHXfk+OOPT5LMnj073/jGNxqssXnz5owZM6YERxMnTsxDDz2UX/7yl/nOd76T7t2754033sjpp5+ep556qsE6DzzwQCZNmpStW7emV69emTVrVh5//PH84he/yPjx45Mky5cvz/jx47N9+/Zder0AAAAAAADtpU13Hn3zm9/M4MGDM3jw4PTq1SvPPfdcjj766BbVWLt2ba699tokyaBBg7JkyZJUVlYmSQYPHpxTTz01I0aMyIoVK/K9730v5513Xvr161enzsyZM7Nq1aokybXXXpspU6aUvqFDh2bkyJEZPnx4tmzZ8v+3d/8xXtf3HcCfx07gOFBXsawCmQryo3VLmwqRYYtu7WKvrmhdK8k2saHuV8WyIGfWNGtMtFWhK45stRQ6bNat2q3aNGizdkVQhxkYMrcI1qO1FYoVGtTwm0tvfxDe+54c94svd9/v3eORmHzg8369Pu/v94P3PXje+/3JkiVL8sMf/vCUHu3t7bntttvyq1/9Kueee26eeeaZTte69tpr86lPfSr/8A//kE2bNuWf/umfcvPNN/fp9QIAAAAAAAymsxoe3XXXXWfc40tf+lJ5htCqVatKcHTSmDFjsmrVqsyZMyft7e1ZuXJlVq1a1WnM8ePH88ADDyRJZs6cmaVLl55ynTlz5mTRokX5yle+kg0bNuS5557Le9/73k5jHn300bS1tSVJ/vqv/7rLkGr58uX5l3/5l+zfvz/Lly8XHgEAAADAAHjxrg8M9hQAhowB27auPzo6OvKd73wnSTJjxoxceeWVXY678sorM3369CTJY489lo6Ojk7nn3zyybz++utJkoULF2bEiK5f9i233FKOv/3tb59y/rHHHutybKUxY8bk4x//eJLkf//3f/PSSy91OQ4AAAAAAKAW1XR49JOf/CS7d+9OksybN6/bsSfP79q1Ky+//HKnc0899dQp47pyxRVXpLm5OUny9NNPn3L+ZJ/p06fnN37jN3qcy+n6AAAAAAAA1Kqzum3dmdq+fXs5njFjRrdjK89v376907OVetunsbExU6ZMyfPPP9+pJkkOHDiQXbt29WsuAAAAAEDv2H4OYPDVdHj0yiuvlONJkyZ1O3by5Mld1lX+urm5Oeeff36PfZ5//vns3bs3R48ezahRo5KcWNF0cju8M5lLT04GVKezZ8+ecnz06NEcOXKkT/2HuvNGdvQ8qMJwev/68t4Mp/flTPT3Pe1v3fu/+FQ3IzvbtPR9vR7LwKmX/w/7+7V0oOvOxEDfi3q59/01HD5/h/qfmeFwD/urXu7FYHwNHujvhdR1Xese1mddZa17WJ91lbXuffXrAOibo0ePVr1nQ8dbHxB0Fr388stlRdDChQuzbt26bscvX748ra2tSZInnngi11577WnHPvHEE2lpaUmSrFixIkuXLi3n3vWud+WFF17IhAkT8uqrr3Z7zZtuuimPPPJIkmTfvn254IILkiRbtmzJ7NmzkyR33nln7r333tP2OHz4cMaMGZMkue666/Ld736322tWamho6PXYNWvWZPz48b0eDwAAAAAADC379u3LJz/5ySQnFrT0tACmN2r6mUeVP3EwcuTIbseeXCGUnAhvuurTU4/u+lRrLgAAAAAAALWspretGz16dDk+duxYt2Mrl2U1NTV12aenHt31qdZcetLTNnd79uwpK6DmzJmTiRMn9qn/UNeXbb2S4bW1ly3Pqq+/7+lA13F6A/2e1ss97O/X0oGuOxPufXUNh8/fof5nZjjcw/6ql3sxGF+D6+V7oaFYV1nrHtZnXWWte1ifdZW17n316wDom927d1e9Z02HR+PGjSvHBw4c6HbswYMHy/HYsWO77NNTj+76VGsuPenLcrJRo0Z1CrVI3jjW+23/kgyr968v781wel/ORH/f04Gu4/QG+j2tl3vY36+lA113Jtz76hoOn79D/c/McLiH/VUv92IwvgbXy/dCQ7GustY9rM+6ylr3sD7rKmvd++rXAdA3lbuhVUtNb1tXGaTs2rWr27GVK3YmT57cZZ+DBw/m9ddf71WfCy+8sNMbXq25AAAAAAAA1LKaDo/e+c53luMdO3Z0O7by/MyZM/vVp729PTt37uyyx9ixY0sQdCZzAQAAAAAAqGU1HR5dcsklueiii5IkGzdu7Hbspk2bkiQTJ07MxRdf3OncVVddVY6767N169ay5dzcuXNPOX+yz4svvphXX331tH0qr9FVHwAAAAAAgFpV0+FRQ0ND5s+fn+TEap5nn322y3HPPvtsWe0zf/78NDR03k/16quvznnnnZckeeihh9LR0dFln3Xr1pXjG2644ZTz119/fZdjKx06dCiPPPJIkhMrnqZNm9blOAAAAAAAgFpU0+FRkixZsiSNjY1JksWLF+fw4cOdzh8+fDiLFy9OkjQ2NmbJkiWn9Bg5cmRuv/32JMn27duzYsWKU8Zs3rw5a9euTZLMmzcvs2bNOmXMDTfckClTpiRJvvCFL5Qt7iotW7Ys+/fvL8cAAAAAAAD1pPFsNn/66afT1tZWfr1v375y3NbWdsrqnVtuueWUHtOmTcsdd9yRe++9N1u3bs3cuXNz5513ZsqUKdm5c2fuu+++bNu2LcmJsOayyy7rci7Lli3Lww8/nB/96EdpbW1NW1tbFixYkKampmzYsCGf//zn097enqampqxcubLLHuecc07+7u/+Ln/wB3+QN998M3Pnzs1nP/vZzJ49O/v3789Xv/rV/Nu//VuSE1vc/cmf/Ekf3i0AAAAAAIDBd1bDozVr1uShhx7q8twzzzyTZ555ptPvdRUeJck999yT1157LV/72teybdu2LFiw4JQxixYtyt13333auYwbNy7r169PS0tLXnrppaxevTqrV6/uNObcc8/NN77xjbz73e8+bZ+WlpY8+OCDue222/KLX/yirHqqNHv27Dz66KP5tV/7tdP2AQAAAAAAqEU1v21dkowYMSJr167N+vXrM3/+/Fx00UUZOXJkLrroosyfPz+PP/541qxZkxEjun85U6dOzbZt23LffffliiuuyPnnn58xY8Zk+vTp+au/+qs8//zzue6663qcz6233prnnnsut956ay699NKMHj06F1xwQa666qp8+ctfzjPPPJPx48dX6+UDAAAAAAAMmLO68mjdunWnbE13JlpaWtLS0nJGPZqbm9Pa2prW1tYz6nP55ZefsnIJAAAAAACg3tXFyiMAAAAAAAAGhvAIAAAAAACA4qxuWwcAAAAADE8v3vWBwZ4CAP1k5REAAAAAAACF8AgAAAAAAIDCtnUAAAAAwGnZfg5g+BEeAQAAAMAwIAQCoLeERwAwRE3/3A96PdZfIgEAoH74/h2As014BIPEP+pS6/wZBQAAOHv8PQqAWiY8AgAAAGDI6G8oM9B1AFDLhEcAAMCAs8IVgJ74+g8Ag2fEYE8AAAAAAACA2mHlEQAA0G9WEHXN+wLw/3ydA4D6IzwCgD7yD4IAAAxHvrcFgOFDeAQA0EuCQ6hf/v8F+H++zgEAPfHMIwAAAAAAAAorjwCoqr78ZHfipx6hlgzG/79WgwAAAEDtsfIIAAAAAACAwsojYEiw2gUAABhu/L0GADhbhEcAAAAAg0QABADUItvWAQAAAAAAUFh5BAAAAHCGrCACAIYS4REAQI3qy/Pc/IMVAHTW389Gn6kAAMIjKPwDHQAAAAAAeOYRAAAAAAAAFYRHAAAAAAAAFLatgzNkuzsAak1fPpsSn08A1DafUwAAA094BAAAQ4TgEAAAgGqwbR0AAAAAAACF8AgAAAAAAIDCtnXAsOe5VQAAcPb5XhoAoH4IjwAAAGAY6m+YIwQCABj6bFsHAAAAAABAYeURAAAA1CmrgAAAOBusPAIAAAAAAKCw8gg4K6Z/7gd9Gn/yJyb7WwcAtagvn2s+0wAAAKgVVh4BAAAAAABQWHkEMMT5qXcAAAAAoC+sPAIAAAAAAKAQHgEAAAAAAFDYtg4AAAAGme2DAQCoJVYeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFJ55BAAA1I3pn/tBr8d6hgwAAED/WHkEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUjYM9AQAAABgqXrzrA4M9BQAAOGNWHgEAAAAAAFAIjwAAAAAAAChsWwcAAABvYfs5AACGM+ERAAAAQ5YQCAAA+k54BHVm+ud+0Oux/qIMAECt6e/3qL63BQCAgeOZRwAAAAAAABTCIwAAAAAAAArb1gHdsk0eAEOJzzUAAADomfAIAACAPhOwAgDA0CU8AqDuDfWVBEP99QEAAABQWzzzCAAAAAAAgEJ4BAAAAAAAQGHbOgAAgGHKdqcAAEBXhEcAAAB1TggEAABUk/AIAIC6M/1zP+j1WP+oDgAAAH0jPAIA6pYAAQAAAKD6Rgz2BAAAAAAAAKgdVh4BUBP6soIksYoEAAAAAM4WK48AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAABFXYRHDQ0Nvfrv6quv7rHX9773vXz0ox/NpEmTMmrUqEyaNCkf/ehH873vfa/X8zl06FCWL1+e2bNn521ve1vGjh2bmTNn5o477sjPfvazM3ilAAAAAAAAg6txsCcwUDo6OvLnf/7nWb16daff3717dx599NE8+uij+dM//dM8+OCDaWhoOG2fnTt35sMf/nBefPHFTr+/Y8eO7NixI2vWrMk///M/p6Wl5ay8DgAAAAAAgLOprsKjv/iLv8hf/uVfnvZ8c3Pzac999rOfLcHRe97znrS2tmbKlCnZuXNn7r///mzbti2rV6/OhRdemLvvvrvLHgcOHMh1111XgqNbb701CxYsSFNTUzZs2JAvfOELeeONN/Kxj30smzdvzm//9m+fwasFAAAAAAAYeHUVHr397W/P5Zdf3ue6tra23H///UmSK664Ips2bUpTU1OSZNasWfnIRz6SefPmZevWrbnvvvvyiU98IlOmTDmlz4oVK7Jjx44kyf33359ly5aVc3PmzMk111yT97///Tl06FCWLFmSH/7wh/15mQAAAAAAAIOmLp55dKa+9KUvpb29PUmyatWqEhydNGbMmKxatSpJ0t7enpUrV57S4/jx43nggQeSJDNnzszSpUtPGTNnzpwsWrQoSbJhw4Y899xz1XwZAAAAAAAAZ92QD486Ojryne98J0kyY8aMXHnllV2Ou/LKKzN9+vQkyWOPPZaOjo5O55988sm8/vrrSZKFCxdmxIiu37pbbrmlHH/7298+w9kDAAAAAAAMrCEfHv3kJz/J7t27kyTz5s3rduzJ87t27crLL7/c6dxTTz11yriuXHHFFeXZS08//XR/pgwAAAAAADBo6io8+ta3vpXp06enqakp48aNy2WXXZaFCxdmw4YNp63Zvn17OZ4xY0a3/SvPV9b1pU9jY2N5XtJbewAAAAAAANS6xsGeQF+88MILnX7d1taWtra2fP3rX8/111+fdevW5bzzzus05pVXXinHkyZN6rb/5MmTu6yr/HVzc3POP//8Hvs8//zz2bt3b44ePZpRo0Z1O77Srl27uj2/Z8+ecnz06NEcOXKk172Hg/NGdvQ8qELl+9eXWnXVrausHei6vtaqq25dZa17WJ91lbXufX3WVda6h8OrrrLWPazPurfWAgAAw9PRo0er3rOh460P96lBzc3N+chHPpLf+73fy4wZMzJ27Njs3bs3GzduzIMPPphf/vKXSU5sJ/f9738/55xzTqldvnx5WltbkyRPPPFErr322tNe54knnkhLS0uSZMWKFVm6dGk59653vSsvvPBCJkyYkFdffbXb+d5000155JFHkiT79u3LBRdc0OvX2tDQ0Ouxa9asyfjx43s9HgAAAAAAGFr27duXT37yk0lOLITpaSFNb9TFyqPdu3d3udrngx/8YBYvXpwPfehD2bZtWzZu3Jgvf/nLuf3228uYyp/EGzlyZLfXqVwhdPjw4U7nTvbpqUdPfQAAAAAAAGpZXYRH3W0TN2HChPzrv/5rZs6cmWPHjmXVqlWdwqPRo0eX42PHjnV7ncqlXU1NTZ3OnezTU4+e+vTkrdvlvdWePXsye/bsJMmcOXMyceLEPvUf6t7/xaf6NH7T0vf1q1Zddesqawe6rq+16qpbV1nrHtZnXWWte1+fdZW17uHwqqusdQ/rs+6ttQAAwPC0e/fuqvesi/CoJ5deemk++MEPZv369Wlra8vPf/7zXHTRRUmScePGlXEHDhzots/BgwfL8dixYzudO9mnpx499elJX5aTjRo1qlM4RvLGsd5v+5d0Dhf7UquuunWVtQNd19daddWtq6x1D+uzrrLWva/Puspa93B41VXWuof1WffWWgAAYHiq3A2tWkZUveMgeec731mOK1O2yjBm165d3faoXPUzefLkTudO9jl48GBef/31XvW58MILz8pNAwAAAAAAOFuGTHjU0dHR5e9Xhko7duzotkfl+ZkzZ/arT3t7e3bu3NllDwAAAAAAgFo3ZMKjF154oRyf3LIuSS655JLy640bN3bbY9OmTUmSiRMn5uKLL+507qqrrirH3fXZunVr2bZu7ty5vZs8AAAAAABAjRgS4dGPf/zjfP/7309y4vlHEydOLOcaGhoyf/78JCdWDD377LNd9nj22WfLiqL58+enoaHzXuNXX311zjvvvCTJQw89dNqVTuvWrSvHN9xwQ/9eEAAAAAAAwCCp+fDou9/9btrb2097/he/+EX+8A//MMePH0+SfOpTnzplzJIlS9LY2JgkWbx4cQ4fPtzp/OHDh7N48eIkSWNjY5YsWXJKj5EjR+b2229Pkmzfvj0rVqw4ZczmzZuzdu3aJMm8efMya9asXrxCAAAAAACA2tE42BPoyeLFi3P8+PHceOONmTNnTi6++OI0NTVl3759efLJJ/Pggw/ml7/8ZZITW8t1FR5NmzYtd9xxR+69995s3bo1c+fOzZ133pkpU6Zk586due+++7Jt27YkybJly3LZZZd1OZdly5bl4Ycfzo9+9KO0tramra0tCxYsSFNTUzZs2JDPf/7zaW9vT1NTU1auXHnW3hMAAAAAAICzpebDoyT5+c9/nlWrVmXVqlWnHXPjjTdmzZo1GTVqVJfn77nnnrz22mv52te+lm3btmXBggWnjFm0aFHuvvvu015j3LhxWb9+fVpaWvLSSy9l9erVWb16dacx5557br7xjW/k3e9+d+9eHAAAAAAAQA2p+fDooYceysaNG7N58+b8+Mc/zr59+/Lmm29m7NixmTx5cn7nd34nCxcuzJw5c7rtM2LEiKxduzY33nhjVq9enS1btmTfvn0ZP358Zs2alT/7sz/Lhz70oR7nM3Xq1Gzbti1///d/n29961tpa2vLsWPHMnny5LS0tOTTn/50fvM3f7NaLx8AAAAAAGBA1Xx4NG/evMybN69q/VpaWtLS0nJGPZqbm9Pa2prW1tYqzQoAAAAAAKA2jBjsCQAAAAAAAFA7hEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI/OwM9+9rPccccdmTlzZpqbm/O2t70ts2fPzooVK3Lo0KHBnh4AAAAAAECfNQ72BOrV+vXr80d/9Ed54403yu8dOnQoW7ZsyZYtW7JmzZo8/vjjufTSSwdxlgAAAAAAAH1j5VE//Pd//3c+/vGP54033sjYsWNzzz335D//8z/zH//xH7n11luTJC+++GI+/OEP58CBA4M8WwAAAAAAgN6z8qgflixZkkOHDqWxsTH//u//njlz5pRzv/u7v5vLLrssra2t2bFjR/72b/82f/M3fzOIswUAAAAAAOg9K4/6aMuWLXnyySeTJIsWLeoUHJ20dOnSzJw5M0mycuXKHD9+fCCnCAAAAAAA0G/Coz567LHHyvEnPvGJLseMGDEiN998c5Jk//79JWwCAAAAAACodcKjPnrqqaeSJM3NzXnve9972nHz5s0rx08//fRZnxcAAAAAAEA1eOZRH23fvj1JMnXq1DQ2nv7tmzFjxik1AABAfXnxrg/URR0AAEA1CY/64MiRI9m3b1+SZNKkSd2O/fVf//U0Nzfn4MGDeeWVV3p9jV27dnV7vrLXT3/60xw9erTXvYeDpiN7+zR+586d/apVV926ytqBrutrrbrq1lXWuof1WVdZ29+6x2++pF91fa1V13PtQNf1tVZddesqa93D09cBAADUuldffbUct7e3V6VnQ0dHR0dVOg0De/fuzdvf/vYkyU033ZRvfvOb3Y6fMGFCXnvttVx++eX5n//5n15do6Gh4YznCQAAAAAADD//9V//lVmzZp1xH8886oMjR46U45EjR/Y4ftSoUUmSw4cPn7U5AQAAAAAAVJNt6/pg9OjR5fjYsWM9jj+5pVxTU1Ovr9HTFndHjhzJjh07MmHChFx44YXdPneJZM+ePZk9e3aSE4nrO97xjiFVV09zVVfdunqaq7rauaa66tbV01zVVbeunuaqrnauqa426upprupq55rqqltXT3NVV926epqrutq5prraqKu3uQ5H7e3t2bv3xOMEfuu3fqsqPSUPfTBu3LhyfODAgR7HHzx4MEkyduzYXl+jp2cpJcnUqVN73Y//9453vKNX72+91g3GNdXVRt1gXFNddesG45rqqls3GNdUVxt1g3FNddWtG4xrqquNusG4prrq1g3GNdVVt24wrqmuNuoG45rqqls3GNdUVxt1g3HNM5nrcHLxxRdXtZ9t6/pg9OjRGT9+fJJk165d3Y7dv39/CY8mT5581ucGAAAAAABQDcKjPpo5c2aSpK2tLe3t7acdt2PHjlNqAAAAAAAAap3wqI+uuuqqJCe2pHvuuedOO27jxo3leO7cuWd9XgAAAAAAANUgPOqj66+/vhz/4z/+Y5djfvWrX+XrX/96kuT888/PNddcMxBTAwAAAAAAOGPCoz6aPXt23ve+9yVJ1q5dm82bN58y5otf/GK2b9+eJPn0pz+dc845Z0DnCAAAAAAA0F+Ngz2BevTAAw9k7ty5OXz4cH7/938/n/nMZ3LNNdfk8OHD+eY3v5nVq1cnSaZNm5alS5cO8mwBAAAAAAB6T3jUD+95z3vy8MMP54//+I/z5ptv5jOf+cwpY6ZNm5b169dn3LhxgzBDAAAAAACA/mno6OjoGOxJ1Kuf/vSneeCBB7J+/frs2rUrI0eOzNSpU/Oxj30st912W8aMGTPYUwQAAAAAAOgT4REAAAAAAADFiMGeAAAAAAAAALVDeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIDi/wAuh+5Z+MJhlgAAAABJRU5ErkJggg==", | |
"text/plain": [ | |
"<Figure size 1000x618.034 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 507, | |
"width": 839 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.bar(\n", | |
" x=split_df.name,\n", | |
" height=split_df.duration.astype(int).astype(float) * 1e-9,\n", | |
" bottom=(split_df.started.astype(int).astype(float) - split_df.started.astype(int).astype(float).min()) * 1e-9,\n", | |
")\n", | |
"plt.grid(True, axis='y')\n", | |
"plt.grid(False, axis='x')\n", | |
"plt.tick_params(labelbottom=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 301, | |
"id": "23e4644d-9fee-4e2f-b759-e80f7d09e527", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABo8AAAPwCAYAAADgSudZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AABQP0lEQVR4nOzde3DV9Z0//lcwAuGiVEUswlRFCbhuR6fASrGi27Rb4wXB1WWno+JQqF1E6Si4nVozzNcbl64o06oIDu6qjFbFzmJr21QEpKCLZYZqIRKUUZB6W1C5mzG/P/jx3sRzcgGSnHOSx2OGmU8+n895nfcJyWHmPHm93kW1tbW1AQAAAAAAABHRKdcLAAAAAAAAIH8IjwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgER4BAAAAAAAQCI8AgAAAAAAIBEeAQAAAAAAkAiPAAAAAAAASIRHAAAAAAAAJMIjAAAAAAAAEuERAAAAAAAAifAIAAAAAACARHgEAAAAAABAIjwCAAAAAAAgKc71Ajg0e/fujb/85S8REdG7d+8oLvZXCAAAAAAAHVVNTU18+OGHERHx93//99G1a9cjril5KDB/+ctfYtiwYbleBgAAAAAAkGdeffXVGDp06BHXMbYOAAAAAACAROdRgendu3c6XrFiRXz1q1/N4WoAAAAAAIBc2rZtW3zrW9+KiPoZwpEQHhWYunscffWrX41+/frlcDUAAAAAAEC+qJshHAlj6wAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgER4BAAAAAAAQCI8AgAAAAAAIBEeAQAAAAAAkAiPAAAAAAAASIRHAAAAAAAAJMIjAAAAAAAAEuERAAAAAAAAifAIAAAAAACARHgEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgER4BAAAAAAAQCI8AgAAAAAAIBEeAQAAAAAAkAiPAAAAAAAASIRHAAAAAAAAJMIjAAAAAAAAEuERAAAAAAAAifAIAAAAAACARHgEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAACS4lwvAAAAAAAAKCylFZUZ56qml+VgJbQGnUcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgER4BAAAAAAAQCI8AgAAAAAAIBEeAQAAAAAAkAiPAAAAAAAASIpzvQAAAAAAAKD9K62ozDhXNb0sByuhKTqPAAAAAAAASIRHAAAAAAAAJMIjAAAAAAAAEuERAAAAAAAAifAIAAAAAACARHgEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiKc70AAAAAAABoL0orKjPOVU0vy8FK4PDpPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgKQ41wsAAAAAAADah9KKyoxzVdPLcrASjoTwCAAAAAAA2rlsoU6EYIfsjK0DAAAAAAAgER4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkxbleAAAAAAAA0DJKKyozzlVNL8vBSihkOo8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiKc70AAAAAAACg4yqtqMw4VzW9LAcr4SCdRwAAAAAAACQ6jwAAAAAAoJVl666J0GFDfhIeAQAAAABAHjLOjVwxtg4AAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAU53oBAAAAAABA7pRWVGacq5peloOVkC90HgEAAAAAAJDoPAIAAAAAoN3L1l0TkR8dNjp/yDc6jwAAAAAAAEh0HgEAAAAAABl0RHVcOo8AAAAAAABIWjU8+vOf/xx33XVXXHTRRdG/f//o0qVL9OjRIwYOHBjjxo2LFStWHFK9F154IcaMGRP9+vWLLl26RL9+/WLMmDHxwgsvNLvG7t27Y9asWTFs2LA47rjjokePHjF48OC45ZZb4p133ml2nTfeeCOuv/76OP3006OkpCR69+4d559/fjz00ENRU1NzSK8LAAAAAAAgX7Ta2LqRI0fG8uXLM87v378/Nm7cGBs3boxHH300rr766pg/f3507ty5wVq1tbVx/fXXx7x58+qd37p1ayxevDgWL14cEydOjAcffDCKiooarLNp06a4+OKLo6qqqt75DRs2xIYNG2L+/PnxxBNPRHl5eaOvbcGCBTFp0qTYt29fOrd3795YsWJFrFixIhYuXBhLliyJ448/vtE6AAAAAAAA+abVOo+2bt0aERF9+/aNm266KZ5++ul49dVXY9WqVfEf//EfcfLJJ0dExH/913/FuHHjGq112223peDonHPOiUWLFsWrr74aixYtinPOOSciIubNmxc/+9nPGqyxc+fOuOSSS1JwNGHChPjjH/8Yf/rTn+LOO++MHj16xCeffBJXXnllrFu3rsE6v/vd72LixImxb9++6NOnT9x///3xyiuvxG9/+9sYM2ZMRESsXr06xowZE1988UXzvlkAAAAAAAB5otU6jwYNGhR33XVXXHHFFXHUUUfVu3buuefG1VdfHSNGjIg333wzFi1aFD/60Y/iW9/6Vkad6urqmDlzZkREDBkyJJYvXx4lJSURETF06NC47LLLYuTIkbFmzZqYMWNGXHfddTFgwICMOrNnz44NGzZERMTMmTNj6tSp6drw4cPjwgsvjPPPPz92794dU6ZMiRdffDGjRk1NTdxwww3xxRdfxDHHHBMrV66s91zf+973YtKkSfHLX/4yli9fHo899lhcc801h/HdAwAAAAAAyI1W6zxasmRJXHXVVRnB0UEnnHBC/PznP09fP/3001nvu/fee9MeQnPnzk3B0UHdunWLuXPnRsSBcGfOnDkZNT7//PO47777IiJi8ODBcfPNN2fcM3z48Bg/fnxERCxdujRee+21jHsWL14c1dXVERHxk5/8JGtINWvWrPjKV76SjgEAAAAAAApJq4VHzXHBBRek402bNmVcr62tjV//+tcRcaCT6dxzz81a59xzz43S0tKIiHjuueeitra23vWXXnopduzYERER1157bXTqlP1l1x2f9+yzz2Zcf+6557LeW1e3bt3iqquuioiI119/PTZu3Jj1PgAAAAAAgHyU0/Bo//796ThboPP222+nvZNGjhzZaK2D17ds2RKbN2+ud23FihUZ92UzZMiQ6N69e0REvPzyyxnXD9YpLS2Nk046qcm1NFQHAAAAAAAgX7XankfNsWzZsnQ8aNCgjOvr169v9Hpdda+vX78+Tj311EOuU1xcHAMGDIh169bVe0xExM6dO2PLli2HtZZDcfA5GrJt27ZDqgcAAAAAAHAochYeffHFF3HPPfekrw+Oeqvr3XffTcf9+vVrtF7//v2zPq7u1927d49evXo1WWfdunXx4Ycfxr59+6JLly4RcSDUOTgO70jW0pS6jwUAAAAAAGhrORtbd++998arr74aERGjR4+OIUOGZNzz2WefpeMePXo0Wu/guLmIA11C2eo0VaOxOi21FgAAAAAAgHyWk86jZcuWxb//+79HRMSJJ54YDzzwQNb79u7dm447d+7caM2DHUIREXv27Mlap6kajdVpqbU0palOpW3btsWwYcMOqSYAAAAAAEBztXl49MYbb8To0aOjpqYmunTpEk899VT06dMn671du3ZNx/v372+07r59+9JxSUlJ1jpN1WisTkutpSlNjcQDAAAAAIDSisqMc1XTy3KwEtqjNh1b9/bbb8d3v/vd2L59exx11FGxaNGiGDlyZIP39+zZMx03Nf5t165d6fjLY+UO1mnOCLmG6rTUWgAAAAAAAPJZm3Uevffee1FWVhbvvfdeFBUVxSOPPBKjR49u9DF1u3C2bNnS6L11x731798/o84rr7wSu3btih07dkSvXr2arNO7d+964+daai0AAAAAAOQXXTxQX5t0Hn300Ufxne98J956662IiJg7d25cc801TT7uzDPPTMcbNmxo9N661wcPHnxYdWpqamLTpk1Za/To0SMFQUeyFgAAAAAAgHzW6uHRJ598Ev/0T/8Uf/3rXyMi4p577olJkyY167Gnnnpq9O3bNyIili1b1ui9y5cvj4iIk08+OU455ZR6184777x03FidNWvWpJFzI0aMyLh+sE5VVVX87W9/a7BO3efIVgcAAAAAACBftWp4tHv37rj44ovjz3/+c0RE/PSnP41bb7212Y8vKiqKUaNGRcSBbp7Vq1dnvW/16tWp22fUqFFRVFRU7/oFF1wQxx57bEREPProo1FbW5u1zsKFC9NxtpF6l19+edZ769q9e3c89dRTEXGg42ngwIFZ7wMAAAAAAMhHrRYe7d+/P0aPHh0rV66MiIibbrop7rjjjkOuM2XKlCguPrA10+TJk2PPnj31ru/ZsycmT54cERHFxcUxZcqUjBqdO3eOG2+8MSIi1q9fH7Nnz864Z9WqVbFgwYKIiBg5cmQMHTo0457Ro0fHgAEDIiLi7rvvTiPu6po6dWps3749HQMAAAAAABSS4tYq/K//+q/x+9//PiIi/vEf/zHGjx8fr7/+eoP3d+7cOWuXzsCBA+OWW26Je+65J9asWRMjRoyIW2+9NQYMGBCbNm2KGTNmxNq1ayPiQFhzxhlnZK0/derUePLJJ+PNN9+MadOmRXV1dYwdOzZKSkpi6dKlcdddd0VNTU2UlJTEnDlzstY4+uij4/77749LL700Pv300xgxYkTcdtttMWzYsNi+fXs8/PDD8cwzz0TEgRF3V1999aF8ywAAAAAAAHKu1cKjZ599Nh2/+OKL8fWvf73R+7/2ta/F5s2bs167884744MPPohHHnkk1q5dG2PHjs24Z/z48Y12NvXs2TOef/75KC8vj40bN8a8efNi3rx59e455phj4vHHH4+zzz67wTrl5eXx4IMPxg033BDvv/9+6nqqa9iwYbF48eI46qijGqwDAAAAAACQj1p1z6OW0qlTp1iwYEE8//zzMWrUqOjbt2907tw5+vbtG6NGjYrf/OY3MX/+/OjUqfGXc/rpp8fatWtjxowZMWTIkOjVq1d069YtSktL48c//nGsW7cuLrnkkibXM2HChHjttddiwoQJcdppp0XXrl3j+OOPj/POOy8eeOCBWLlyZZxwwgkt9fIBAAAAAADaTKt1HtXW1rZ4zfLy8igvLz+iGt27d49p06bFtGnTjqjOWWedldG5BAAAAAAAUOhaLTwCAAAAAID2qrSiMuNc1fSyHKwEWl5BjK0DAAAAAACgbQiPAAAAAAAASIRHAAAAAAAAJMIjAAAAAAAAEuERAAAAAAAAifAIAAAAAACARHgEAAAAAABAUpzrBQAAAAAAQEsprajMOFc1vSwHK4HCpfMIAAAAAACARHgEAAAAAABAIjwCAAAAAAAgsecRAAAAAABkYf8kOiqdRwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgER4BAAAAAAAQCI8AgAAAAAAIBEeAQAAAAAAkAiPAAAAAAAASIRHAAAAAAAAJMW5XgAAAAAAAO1HaUVlxrmq6WU5WAlwuHQeAQAAAAAAkAiPAAAAAAAASIRHAAAAAAAAJPY8AgAAAAAA8o79s3JH5xEAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAElxrhcAAAAAAFBaUZlxrmp6WQ5WQqHwMwOtR+cRAAAAAAAAifAIAAAAAACARHgEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQCI8AAAAAAABIinO9AAAAAACAfFVaUZlxrmp6WQ5W0r75PkN+0XkEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAABJca4XAAAAAABA+1daUZlxrmp6WQ5WAjRFeAQAAAAAQF4SOEFuGFsHAAAAAABAIjwCAAAAAAAgER4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAICkONcLAAAAAAAgP5VWVGacq5peloOVAG1JeAQAAAAA0II6SuDSUV4ndETG1gEAAAAAAJDoPAIAAAAAaEd0BAFHSucRAAAAAAAAifAIAAAAAACAxNg6AAAAAIACk200XYTxdEDL0HkEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQ2PMIAAAAACg42fb8sd/P4fP9BOoSHgEAAAAAdAACIqC5jK0DAAAAAAAgER4BAAAAAACQGFsHAAAAAHCIso2AizAGDmgfdB4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAICkONcLAAAAAADo6EorKjPOVU0vy8FKAHQeAQAAAAAAUIfwCAAAAAAAgMTYOgAAAACgTRjNBlAYdB4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAk9jwCAAAAAMhT9okCckHnEQAAAAAAAInwCAAAAAAAgER4BAAAAAAAQGLPIwAAAACgQfbcAeh4dB4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAABJca4XAAAAAACQa6UVlRnnqqaX5WAlALmn8wgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACTFuV4AAAAAAEBbKK2ozDhXNb0sBysByG86jwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgER4BAAAAAAAQCI8AgAAAAAAIBEeAQAAAAAAkAiPAAAAAAAASIpzvQAAAAAAgJZUWlGZca5qelkOVgJQmHQeAQAAAAAAkAiPAAAAAAAASIRHAAAAAAAAJPY8AgAAACCv2b8GANqWziMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAU53oBAAAAAABAx1U1veyQztP6dB4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAk9jwCAAAAAABanT2MCofwCAAAAAAaUVpRmXHOB6AAtGfCIwAAAAAAoEUI19sHex4BAAAAAACQCI8AAAAAAABIjK0DAAAAoMOzrxEA/B/hEQAAAAB0cNnCswgBGtAw7w/tm/AIAAAAADoIHVYANIc9jwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABJ7HgEAAAAAecs+TZA7ftc6Lp1HAAAAAAAAJMIjAAAAAAAAEuERAAAAAAAAiT2PAAAAAADagP2byFd+Dvky4REAAAAA5DGBAwBtTXgEAAAAQLsjcGl9vscA7Zc9jwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAElxrhcAAAAAAB1FaUVlxrmq6WU5WAnQ0Xiv4VAIjwAAAAAAoJ0QEtEShEcAAAAAAJCHGguChES0JnseAQAAAAAAkOg8AgAAAACAHNJFRL7ReQQAAAAAAEAiPAIAAAAAACAxtg4AAACAglRaUZlxLl9GPx3q2rLd39RjgMLi95lCovMIAAAAAACAROcRAAAAAAC0EB1GtAc6jwAAAAAAAEiERwAAAAAAACTG1gEAAADQqNKKyoxzVdPLGjwPABQ24REAAAAAOSeIAoD8YWwdAAAAAAAAifAIAAAAAACARHgEAAAAAABAYs8jAAAAgDxgzx8AIF/oPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgER4BAAAAAAAQCI8AgAAAAAAICnO9QIAAAAAAKDQVE0vy/USoNXoPAIAAAAAACARHgEAAAAAAJAYWwcAAAAAAFkYTUdH1aqdRx988EEsWbIkbr/99rjooovihBNOiKKioigqKopx48Y1q8bChQvTY5r6s3Dhwibr7d69O2bNmhXDhg2L4447Lnr06BGDBw+OW265Jd55551mv7Y33ngjrr/++jj99NOjpKQkevfuHeeff3489NBDUVNT0+w6AAAAAADkVtX0sow/0JG1audRnz59WrP8Idu0aVNcfPHFUVVVVe/8hg0bYsOGDTF//vx44oknory8vNE6CxYsiEmTJsW+ffvSub1798aKFStixYoVsXDhwliyZEkcf/zxrfI6AAAAAAAAWkubja3r379/DB48OH7/+98fdo3f/e530bdv3wav9+vXr8FrO3fujEsuuSQFRxMmTIixY8dGSUlJLF26NO6+++745JNP4sorr4xVq1bF17/+9QbXMHHixPjiiy+iT58+8dOf/jT+4R/+If73f/83Hn744Xj22Wdj9erVMWbMmFi6dGl06mRbKQAAACB/lFZUZpzzP+wBgLpaNTy6/fbbY+jQoTF06NDo06dPbN68OU499dTDrjdw4MA45ZRTDuuxs2fPjg0bNkRExMyZM2Pq1Knp2vDhw+PCCy+M888/P3bv3h1TpkyJF198MaNGTU1N3HDDDfHFF1/EMcccEytXrowBAwak69/73vdi0qRJ8ctf/jKWL18ejz32WFxzzTWHtV4AAAAAAIBcaNXwaPr06a1Zvtk+//zzuO+++yIiYvDgwXHzzTdn3DN8+PAYP358PPTQQ7F06dJ47bXX4hvf+Ea9exYvXhzV1dUREfGTn/ykXnB00KxZs2LRokWxffv2mDVrlvAIAAAAII/ovIKOy+86NF+HmKn20ksvxY4dOyIi4tprr21wlNy4cePS8bPPPptx/bnnnst6b13dunWLq666KiIiXn/99di4ceNhrRkAAAAAACAX2mzPo1xasWJFOh45cmSD9w0ZMiS6d+8eu3btipdffrnBOqWlpXHSSSc1WGfkyJHx0EMPRUTEyy+/HGecccbhLh0AAABoZ3S+ALQu76lw5AoqPBo3blysX78+tm/fHsccc0ycfvrpUVZWFj/60Y/i5JNPbvBx69evT8eDBg1q8L7i4uIYMGBArFu3rt5jIiJ27twZW7ZsabLGl69/uU5TDj5HQ7Zt23ZI9QAAAAAAAA5FQYVHy5YtS8cff/xxfPzxx/HKK6/Ez3/+85gzZ0788Ic/zPq4d999NyIiunfvHr169Wr0Ofr37x/r1q2LDz/8MPbt2xddunSJiAOhTm1tbURE9OvXr8kaX37u5qr7WAAAAAAAgLZWEOHRaaedFmPGjInhw4encOWtt96KZ555Jp5++unYu3dvXH/99VFUVBQTJ07MePxnn30WERE9evRo8rm6d++ejnfu3JnCo4M1mlPnyzUAAAAAAAAKRd6HR6NHj45rr702ioqK6p0fOnRo/Mu//EssWbIkxowZE59//nn8+Mc/jssuuyxjP6K9e/dGRETnzp2bfL6DYVFExJ49ezJqNKdOQzWao6lOpW3btsWwYcMOqSYAAAAAAEBz5X14dOyxxzZ6/ZJLLomKioq47bbbYvfu3bFgwYL46U9/Wu+erl27RkTE/v37m3y+ffv2peOSkpKMGs2p01CN5mhqJB4AAAAA5LvSisqMc1XTy3KwEgAOR6dcL6AlTJgwIXUm1d0X6aCePXtGRPNGyO3atSsd1x1Pd7BGc+o0VAMAAAAAACDf5X3nUXOceOKJccIJJ8SHH34YW7duzbjer1+/eOWVV2LXrl2xY8eO6NWrV4O1Do6N6927d73xc3U7grZs2dLoeuqOnju4RxMAAABAR5Gt6yTiQOeJjhQAyH/tovMoIqK2trbBa2eeeWY63rBhQ4P31dTUxKZNmyIiYvDgwfWu9ejRIwVBjdX48vUv1wEAAAAAAMhn7SI8+uCDD+Ljjz+OiIi+fftmXD/vvPPScbaxdgetWbMmjZwbMWJEg3Wqqqrib3/7W4N16j5HtjoAAAAAAAD5ql2ER/PmzUudRyNHjsy4fsEFF8Sxxx4bERGPPvpog11KCxcuTMejR4/OuH755Zdnvbeu3bt3x1NPPRURBzqeBg4c2JyXAAAAAAAAkBfyOjzavHlzrF27ttF7lixZEv/v//2/iIjo2rVrXHfddRn3dO7cOW688caIiFi/fn3Mnj07455Vq1bFggULIuJAADV06NCMe0aPHh0DBgyIiIi77747jbira+rUqbF9+/Z0DAAAAAAAUEiKW7P4yy+/HNXV1enrjz76KB1XV1dndO+MGzeu3tebN2+OCy+8MIYPHx6XXnppnH322XHiiSdGbW1tvPXWW/H000/H008/nTqJZs+eHSeffHLWtUydOjWefPLJePPNN2PatGlRXV0dY8eOjZKSkli6dGncddddUVNTEyUlJTFnzpysNY4++ui4//7749JLL41PP/00RowYEbfddlsMGzYstm/fHg8//HA888wzEXFgxN3VV199iN8xAAAAAACA3GrV8Gj+/Pnx6KOPZr22cuXKWLlyZb1zXw6PDlq1alWsWrWqwefp1q1b3HvvvTFx4sQG7+nZs2c8//zzUV5eHhs3box58+bFvHnz6t1zzDHHxOOPPx5nn312g3XKy8vjwQcfjBtuuCHef//9mDx5csY9w4YNi8WLF8dRRx3VYB0AAAAAAIB81Krh0ZH6xje+EY899lisWrUq1qxZE9u2bYuPPvooampq4itf+Ur83d/9XXz729+OH/zgB3HiiSc2We/000+PtWvXxi9+8Yv41a9+FdXV1bF///7o379/lJeXx0033RRf+9rXmqwzYcKEGD58eNx///3xxz/+Md57773o3r17DB48OL7//e/HD37wgyguzutvLQAAAAAAQFatmnAsXLgwYzTdoejZs2d8//vfj+9///sttqbu3bvHtGnTYtq0aUdU56yzzsroXAIAAAAAACh0nXK9AAAAAAAAAPKH8AgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgKQ41wsAAAAAAA5daUVlxrmq6WU5WAnkhp93aD3CIwAAAAAA8pKACHLD2DoAAAAAAAAS4REAAAAAAACJ8AgAAAAAAIDEnkcAAABAXiitqMw4Z68LAIC2JzwCAAAAaGeyBXERwjgAoHmMrQMAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgKQ41wsAAAAAIPdKKyozzlVNL8vBSgCAXBMeAQAAAACQU8JqyC/G1gEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACT2PAIAAACAdqa0ojLjnD1lAGgunUcAAAAAAAAkOo8AAACAFqfrAQCgcOk8AgAAAAAAIBEeAQAAAAAAkAiPAAAAAAAASIRHAAAAAAAAJMIjAAAAAAAAkuJcLwAAAAAAgPavanpZrpcANJPOIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgMSeRwAAAAAAtBh7G0Hh03kEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQ2PMIAAAAAA5DaUVlxjl7vQDQHug8AgAAAAAAINF5BAAAAADAIdNpB+2X8AgAAAAgjCADyMb7IHRMxtYBAAAAAACQCI8AAAAAAABIjK0DAAAAAOgAGhtBZzwdUJfwCAAAAKAJ9kMCCon3J+BIGVsHAAAAAABAovMIAAAAoIVl61SK0A0AABQGnUcAAAAAAAAkOo8AAACAvKaLByCT90CgNQmPAAAAAA5TtmDLB7oAQKEztg4AAAAAAIBEeAQAAAAAAEAiPAIAAAAAACCx5xEAAABQsOw5BADQ8nQeAQAAAAAAkOg8AgAAAADIU7opgVwQHgEAAAAdilF3QD7yPgTkE+ERAAAAAEAbEBABhUJ4BAAAAADQgoREQKHrlOsFAAAAAAAAkD+ERwAAAAAAACTG1gEAAAAREVFaUZlxzuglAICOR3gEAAAAtDuCMACAwyc8AgAAgFYgvKAl+XkCANqSPY8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACApzvUCAAAAAAAKTdX0slwvAaDVCI8AAAAAABogJAI6ImPrAAAAAAAASHQeAQAAAAAdng4jgP+j8wgAAAAAAIBE5xEAAAAA0CHoLgJoHp1HAAAAAAAAJMIjAAAAAAAAEmPrAAAAoB0qrajMOHe445qy1TqSegAA5DfhEQAAAHQwLRksAeQj72kAR8bYOgAAAAAAABLhEQAAAAAAAInwCAAAAAAAgMSeRwAAAMBhs38SAED7o/MIAAAAAACAROcRAAAAAFBwdDkCtB6dRwAAAAAAACTCIwAAAAAAABJj6wAAAACAvGU8HUDb03kEAAAAAABAIjwCAAAAAAAgMbYOAAAAClhpRWXGOSOeAAA4EjqPAAAAAAAASHQeAQAAAAA5p2sSIH8IjwAAAKCNGTUHAEA+M7YOAAAAAACAROcRAAAAANCiGuqm1GUJUBh0HgEAAAAAAJDoPAIAAADalD2fAADym84jAAAAAAAAEuERAAAAAAAAibF1AAAAFDQj0OjI/PwDAK1B5xEAAAAAAACJziMAAABogu4OAAA6EuERAAAAAHDIhOgA7ZexdQAAAAAAACTCIwAAAAAAABJj6wAAAACABhlPB9Dx6DwCAAAAAAAg0XkEAAAAAB2c7iIA6tJ5BAAAAAAAQCI8AgAAAAAAIBEeAQAAAAAAkNjzCAAAAPJEaUVlxjn7kAAA0NZ0HgEAAAAAAJDoPAIAAACADkI3IwDNITwCAADII8aWkU22n4sIPxsAALQOY+sAAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAABJca4XAAAAAAeVVlRmnKuaXpaDlQAAQMel8wgAAAAAAIBEeAQAAAAAAEBibB0AAAAAtDNGfgJwJHQeAQAAAAAAkAiPAAAAAAAASIRHAAAAAAAAJMIjAAAAAAAAEuERAAAAAAAAifAIAAAAAACARHgEAAAAAABAUpzrBQAAAEC+KK2ozDhXNb0sBysBAIDcER4BAAAAQAESbgPQWoytAwAAAAAAINF5BAAAAAB5TIcRAG1NeAQAAAAAOSYgAiCfGFsHAAAAAABAIjwCAAAAAAAgMbYOAAAAANqI8XQAFAKdRwAAAAAAACQ6jwAAAOAIlFZUZpzTWQAAQCETHgEAAABACxMiA1DIhEcAAAAcEZ03AADQvtjzCAAAAAAAgETnEQAAQB26aFpftu9xhO8zUHi8bwHQXuk8AgAAAAAAINF5BAAAQKLzCiCT90EAOhrhEQAAAAAdnoAIAP6PsXUAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAICkONcLAAAAgLZWWlGZca5qelkOVgIAAPlH5xEAAAAAAACJ8AgAAAAAAIDE2DoAAIBmMOYMAADoKHQeAQAAAAAAkAiPAAAAAAAASIytAwAAoEnG9gEAQMchPAIAAACg3Wko4BZ8A0DTjK0DAAAAAAAg0XkEAAAAQEHSRQQArUN4BAAAAEBeExIBQNsSHgEAAACQcwIiAMgf9jwCAAAAAAAgER4BAAAAAACQGFsHAAB0OKUVlRnnjEsCAAA4QOcRAAAAAAAAic4jAACAVqLDCQAAKETCIwAAgCOUryFRQ+vKdv7gNYDW5r0GAPKfsXUAAAAAAAAkOo8AAAAAaFG6iwCgsOk8AgAAAAAAINF5BAAAAMBh0WEEAO1Tq3YeffDBB7FkyZK4/fbb46KLLooTTjghioqKoqioKMaNG3fI9V544YUYM2ZM9OvXL7p06RL9+vWLMWPGxAsvvNDsGrt3745Zs2bFsGHD4rjjjosePXrE4MGD45Zbbol33nmn2XXeeOONuP766+P000+PkpKS6N27d5x//vnx0EMPRU1NzSG/NgAAAAAAgHzQqp1Hffr0aZE6tbW1cf3118e8efPqnd+6dWssXrw4Fi9eHBMnTowHH3wwioqKGqyzadOmuPjii6Oqqqre+Q0bNsSGDRti/vz58cQTT0R5eXmj61mwYEFMmjQp9u3bl87t3bs3VqxYEStWrIiFCxfGkiVL4vjjjz+MVwsAAAAAAJA7bbbnUf/+/eO73/3uYT32tttuS8HROeecE4sWLYpXX301Fi1aFOecc05ERMybNy9+9rOfNVhj586dcckll6TgaMKECfHHP/4x/vSnP8Wdd94ZPXr0iE8++SSuvPLKWLduXYN1fve738XEiRNj37590adPn7j//vvjlVdeid/+9rcxZsyYiIhYvXp1jBkzJr744ovDer0AAED7VlpRmfEHAAAgX7Rq59Htt98eQ4cOjaFDh0afPn1i8+bNceqppx5Sjerq6pg5c2ZERAwZMiSWL18eJSUlERExdOjQuOyyy2LkyJGxZs2amDFjRlx33XUxYMCAjDqzZ8+ODRs2RETEzJkzY+rUqena8OHD48ILL4zzzz8/du/eHVOmTIkXX3wxo0ZNTU3ccMMN8cUXX8QxxxwTK1eurPdc3/ve92LSpEnxy1/+MpYvXx6PPfZYXHPNNYf0egEAAAAAAHKpVTuPpk+fHpdccskRja+799570x5Cc+fOTcHRQd26dYu5c+dGxIFwZ86cORk1Pv/887jvvvsiImLw4MFx8803Z9wzfPjwGD9+fERELF26NF577bWMexYvXhzV1dUREfGTn/wka0g1a9as+MpXvpKOAQAAWptOJgAAoCW12di6w1FbWxu//vWvIyJi0KBBce6552a979xzz43S0tKIiHjuueeitra23vWXXnopduzYERER1157bXTqlP1ljxs3Lh0/++yzGdefe+65rPfW1a1bt7jqqqsiIuL111+PjRs3Zr0PAAAAoFBUTS/L+AMAtF95HR69/fbbsXXr1oiIGDlyZKP3Hry+ZcuW2Lx5c71rK1asyLgvmyFDhkT37t0jIuLll1/OuH6wTmlpaZx00klNrqWhOgAAAAAAAPmqVfc8OlLr169Px4MGDWr03rrX169fX29vpebWKS4ujgEDBsS6devqPSYiYufOnbFly5bDWsuhOPgcDdm2bdsh1QMAANqHbKPo/M9/oCV5TwEADsrr8Ojdd99Nx/369Wv03v79+2d9XN2vu3fvHr169Wqyzrp16+LDDz+Mffv2RZcuXSLiQKhzcBzekaylKXUfCwAAAAAA0NbyOjz67LPP0nGPHj0avffguLmIA11C2eo0VSNbnYPhUUutBQAAACCXdBgBAE3J6/Bo79696bhz586N3nsw5ImI2LNnT9Y6TdVorE5LraUpTXUqbdu2LYYNG3ZINQEAAAAAAJorr8Ojrl27puP9+/c3eu++ffvScUlJSdY6TdVorE5LraUpTY3EAwAAAAAAaE15HR717NkzHTc1/m3Xrl3p+Mtj5Q7Wac4IuYbqtNRaAACAllVaUZn1vLFMAAAAhyevw6O6XThbtmxp9N6649769++fUeeVV16JXbt2xY4dO6JXr15N1undu3e98XMttRYAAADaRrZgUagIAABN65TrBTTmzDPPTMcbNmxo9N661wcPHnxYdWpqamLTpk1Za/To0SMFQUeyFgAAAAAAgHyW1+HRqaeeGn379o2IiGXLljV67/LlyyMi4uSTT45TTjml3rXzzjsvHTdWZ82aNWnk3IgRIzKuH6xTVVUVf/vb3xqsU/c5stUBAAAAAADIV3kdHhUVFcWoUaMi4kA3z+rVq7Pet3r16tTtM2rUqCgqKqp3/YILLohjjz02IiIeffTRqK2tzVpn4cKF6Xj06NEZ1y+//PKs99a1e/fueOqppyLiQMfTwIEDs94HAAC0vtKKyow/AAAANC6vw6OIiClTpkRx8YGtmSZPnhx79uypd33Pnj0xefLkiIgoLi6OKVOmZNTo3Llz3HjjjRERsX79+pg9e3bGPatWrYoFCxZERMTIkSNj6NChGfeMHj06BgwYEBERd999dxpxV9fUqVNj+/bt6RgAAAAAAKCQFLdm8Zdffjmqq6vT1x999FE6rq6uzujeGTduXEaNgQMHxi233BL33HNPrFmzJkaMGBG33nprDBgwIDZt2hQzZsyItWvXRsSBsOaMM87IupapU6fGk08+GW+++WZMmzYtqqurY+zYsVFSUhJLly6Nu+66K2pqaqKkpCTmzJmTtcbRRx8d999/f1x66aXx6aefxogRI+K2226LYcOGxfbt2+Phhx+OZ555JiIOjLi7+uqrD+G7BQAAAAAAkHutGh7Nnz8/Hn300azXVq5cGStXrqx3Llt4FBFx5513xgcffBCPPPJIrF27NsaOHZtxz/jx4+OOO+5ocC09e/aM559/PsrLy2Pjxo0xb968mDdvXr17jjnmmHj88cfj7LPPbrBOeXl5PPjgg3HDDTfE+++/n7qe6ho2bFgsXrw4jjrqqAbrAAAAAAAA5KO8H1sXEdGpU6dYsGBBPP/88zFq1Kjo27dvdO7cOfr27RujRo2K3/zmNzF//vzo1Knxl3P66afH2rVrY8aMGTFkyJDo1atXdOvWLUpLS+PHP/5xrFu3Li655JIm1zNhwoR47bXXYsKECXHaaadF165d4/jjj4/zzjsvHnjggVi5cmWccMIJLfXyAQAAAAAA2kyrdh4tXLgwYzTdkSgvL4/y8vIjqtG9e/eYNm1aTJs27YjqnHXWWRmdSwAAAAAAAIWuIDqPAAAAAAAAaBvCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgER4BAAAAAAAQCI8AgAAAAAAIBEeAQAAAAAAkAiPAAAAAAAASIpzvQAAAAAAWlbV9LJcLwEAKGA6jwAAAAAAAEiERwAAAAAAACTG1gEAAAAUKOPpAIDWIDwCAAAAyHNCIgCgLRlbBwAAAAAAQKLzCAAAACAP6C4CAPKF8AgAAACgDQmJAIB8JzwCAAAAOEwNBUECIgCgkAmPAABottKKyoxzPhwDAACA9qVTrhcAAAAAAABA/tB5BAAAQN7T+QgAAG1HeAQAQE74IDh/+bsBOqrG3uu8DwIAHYnwCAAAOiABEQAAAA2x5xEAAAAAAACJziMAACCv6IoCAADILeERAAAA0KEIpAEAGic8AgAAANodAREAwOGz5xEAAAAAAACJziMAAI6YPWoAyBX/3gAAtDzhEQAAAJDXBEQAAG1LeAQA0M7pCgKgUPj3CQAgP9jzCAAAAAAAgER4BAAAAAAAQGJsHQAAcESyjUaMMH4KAACgUOk8AgAAAAAAINF5BABAXtHFkv170N5ef0d4jUDD/L4DAOQ3nUcAAAAAAAAkOo8AAACAFqe7CACgcAmPAADgCBnBBgAAQHtibB0AAAAAAACJ8AgAAAAAAIDE2DoAAABahZGOAABQmHQeAQAAAAAAkAiPAAAAAAAASIytAwCgQzJOCwAAALLTeQQAAAAAAECi8wgAAAA4bLo2AQDaH51HAAAAAAAAJMIjAAAAAAAAEmPrAAAAgEYZTQcA0LHoPAIAAAAAACARHgEAAAAAAJAYWwcAAABEhPF0AAAcIDwCAACapbSiMuOcD5qhMPndBQCgMcIjAABalcABAAAACos9jwAAAAAAAEh0HgEAAEA7pMsTAIDDpfMIAAAAAACAROcRAADkQFvtBWXPKQAAAA6VziMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEBSnOsFAAAAzVNaUZlxrmp6WQ5WAuQT7wMAALQ0nUcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAICkONcLAACA9qy0ojLjnM3tAQAAyGc6jwAAAAAAAEh0HgEAAEAba6gD8VDPAwBAa9B5BAAAAAAAQCI8AgAAAAAAIBEeAQAAAAAAkNjzCAAAmqm0ojLjnH1IAAAAaG+ERwAAANAKhMsAABQqY+sAAAAAAABIdB4BAAAFwdhAAACAtiE8AgCgYAgPAAAAoPUZWwcAAAAAAEAiPAIAAAAAACARHgEAAAAAAJDY8wgAoIOyfxAAAACQjc4jAAAAAAAAEuERAAAAAAAAifAIAAAAAACARHgEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAICkONcLAAAAgEJWNb0s10sAAIAWpfMIAAAAAACARHgEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAACS4lwvAAAA8klpRWXW81XTy9p4JQAAAJAbwiMAAABoggAZAICOxNg6AAAAAAAAEp1HAAAA8P/TYQQAADqPAAAAAAAAqEPnEQAAAB2ODiMAAGiYziMAAAAAAAAS4REAAAAAAACJsXUAABS80orKjHNGUuUHfzfkkp81AAA4PDqPAAAAAAAASIRHAAAAAAAAJMIjAAAAAAAAEnseAUA7YV8RAAAAAFqCziMAAAAAAAASnUcAAFDgdB4CAADQkoRHAABf4oN4AAAAoCMztg4AAAAAAIBEeAQAAAAAAEBibB0AAAAFzWhRAABoWTqPAAAAAAAASIRHAAAAAAAAJMIjAAAAAAAAEuERAAAAAAAAifAIAAAAAACARHgEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAACS4lwvAACA+korKjPOVU0vy8FKAAAAgI5I5xEAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEBizyMAAADynr3fAACg7eg8AgAAAAAAIBEeAQAAAAAAkAiPAAAAAAAASIRHAAAAAAAAJMIjAAAAAAAAEuERAAAAAAAASXGuFwAAAEDHUjW97LCuAQAAbUPnEQAAAAAAAInwCAAAAAAAgMTYOgAA2rXSisqMc8ZiAQAAQMN0HgEAAAAAAJDoPAIAAKBV6PIDAIDCJDwCAMgR49SA9sJ7FwAAtC/G1gEAAAAAAJAIjwAAAAAAAEiMrQMAWlW20WwRRhwBFBrv2wAA0HEIjwCgA7PnDgAAAABfZmwdAAAAAAAAifAIAAAAAACAxNg6AACADqaxEaXGlwIAADqPAAAAAAAASHQeAQAAtFO6iAAAgMMhPAIAMpRWVGac8wHkAb43AAAAQHsnPAIAAChwQmwAAKAlCY8AAKgnW3dVhA+nAQAAoKMQHgEAABQAAS4AANBWOuV6AQAAAAAAAOQPnUcAAK0s2xg4HQRAQ7w/AAAAuabzCAAAAAAAgETnEQAAQBvTXQQAAOQz4REAQAswmg4AAABoL4RHAADtgPAK8pPfQwAAoBAJjwAACoiQCAAAAGhtwiMAAIBmaCyoFeICAADtifAIAOiwdPEA2XgfAAAAOjrhEQBQUAQ+AAAAAK1LeAQAAHQ4QmcAAICGCY8AgHZBRxIAAABAyxAeAQDtWrZQKUKwBB2F33UAAIBD1ynXCwAAAAAAACB/6DwCAA6J8XAAAAAA7ZvwCADIOwIqAAAAgNwRHgEAOSMkAgAAAMg/9jwCAAAAAAAg0XkEAAAUNB2LAAAALUt4BAC0CCPoAAAAANoHY+sAAAAAAABIhEcAAAAAAAAkBREeFRUVNevPBRdc0GStF154IcaMGRP9+vWLLl26RL9+/WLMmDHxwgsvNHs9u3fvjlmzZsWwYcPiuOOOix49esTgwYPjlltuiXfeeecIXikAAAAAAEBudZg9j2pra+P666+PefPm1Tu/devWWLx4cSxevDgmTpwYDz74YBQVFTVYZ9OmTXHxxRdHVVVVvfMbNmyIDRs2xPz58+OJJ56I8vLyVnkdAAAAAAAAramgwqMf/ehH8W//9m8NXu/evXuD12677bYUHJ1zzjkxbdq0GDBgQGzatClmzpwZa9eujXnz5kXv3r3jjjvuyFpj586dcckll6TgaMKECTF27NgoKSmJpUuXxt133x2ffPJJXHnllbFq1ar4+te/fgSvFgBaRmlFZca5qullOVgJAAAAAIWgoMKjE088Mc4666xDflx1dXXMnDkzIiKGDBkSy5cvj5KSkoiIGDp0aFx22WUxcuTIWLNmTcyYMSOuu+66GDBgQEad2bNnx4YNGyIiYubMmTF16tR0bfjw4XHhhRfG+eefH7t3744pU6bEiy++eDgvEwAAAAAAIGcKYs+jI3XvvfdGTU1NRETMnTs3BUcHdevWLebOnRsRETU1NTFnzpyMGp9//nncd999ERExePDguPnmmzPuGT58eIwfPz4iIpYuXRqvvfZaS74MAAAAAACAVtfuw6Pa2tr49a9/HRERgwYNinPPPTfrfeeee26UlpZGRMRzzz0XtbW19a6/9NJLsWPHjoiIuPbaa6NTp+zfunHjxqXjZ5999ghXDwAAAAAA0LbafXj09ttvx9atWyMiYuTIkY3ee/D6li1bYvPmzfWurVixIuO+bIYMGZL2Xnr55ZcPZ8kAAAAAAAA5U1B7Hv3qV7+KRYsWxTvvvBPFxcVx0kknxTe/+c0YN25cXHjhhVkfs379+nQ8aNCgRuvXvb5+/fo49dRTD7lOcXFxDBgwINatW1fvMc21ZcuWRq9v27btkGsCAAAAAAA0V0GFR3/961/rfV1dXR3V1dXxn//5n3H55ZfHwoUL49hjj613z7vvvpuO+/Xr12j9/v37Z31c3a+7d+8evXr1arLOunXr4sMPP4x9+/ZFly5dGr2/oTUAAAAAAAC0tYIIj7p16xaXXXZZfPvb345BgwZFjx494sMPP4xly5bFgw8+GB9//HE899xzMWrUqPjDH/4QRx99dHrsZ599lo579OjR6PMcHDcXEbFz58561w7WaapGtjqHEh4BAAAAAADkUkGER1u3bs3a7fOd73wnJk+eHBdddFGsXbs2li1bFg888EDceOON6Z69e/em486dOzf6PHVDnj179tS7drBOUzWaqtOUL3c8fdm2bdti2LBhh1QTAAAAAACguQoiPGpsTFyfPn3i6aefjsGDB8f+/ftj7ty59cKjrl27puP9+/c3+jz79u1LxyUlJfWuHazTVI2m6jSlqdF6AAAAAAAAralTrhfQEk477bT4zne+ExEH9kF677330rWePXum4y+PovuyXbt2peMvj6c7WKepGk3VAQAAAAAAyGftIjyKiDjzzDPT8datW9Nx3U6eLVu2NFqj7si4/v3717t2sM6uXbtix44dzarTu3dv+x0BAAAAAAAFpd2ER7W1tVnP1w2VNmzY0GiNutcHDx58WHVqampi06ZNWWsAAAAAAADku3YTHv31r39Nx3379k3Hp556avp62bJljdZYvnx5REScfPLJccopp9S7dt5556XjxuqsWbMmja0bMWJE8xYPAAAAAACQJ9pFePTWW2/FH/7wh4g4sP/RySefnK4VFRXFqFGjIuJAx9Dq1auz1li9enXqKBo1alQUFRXVu37BBRfEscceGxERjz76aIOdTgsXLkzHo0ePPrwXBAAAAAAAkCN5Hx7993//d9TU1DR4/f33349//ud/js8//zwiIiZNmpRxz5QpU6K4uDgiIiZPnhx79uypd33Pnj0xefLkiIgoLi6OKVOmZNTo3Llz3HjjjRERsX79+pg9e3bGPatWrYoFCxZERMTIkSNj6NChzXiFAAAAAAAA+aM41wtoyuTJk+Pzzz+PK664IoYPHx6nnHJKlJSUxEcffRQvvfRSPPjgg/Hxxx9HxIHRctnCo4EDB8Ytt9wS99xzT6xZsyZGjBgRt956awwYMCA2bdoUM2bMiLVr10ZExNSpU+OMM87IupapU6fGk08+GW+++WZMmzYtqqurY+zYsVFSUhJLly6Nu+66K2pqaqKkpCTmzJnTat8TAAAAAACA1pL34VFExHvvvRdz586NuXPnNnjPFVdcEfPnz48uXbpkvX7nnXfGBx98EI888kisXbs2xo4dm3HP+PHj44477mjwOXr27BnPP/98lJeXx8aNG2PevHkxb968evccc8wx8fjjj8fZZ5/dvBcHAAAAAACQR/I+PHr00Udj2bJlsWrVqnjrrbfio48+ik8//TR69OgR/fv3j29+85tx7bXXxvDhwxut06lTp1iwYEFcccUVMW/evPif//mf+Oijj+KEE06IoUOHxg9/+MO46KKLmlzP6aefHmvXro1f/OIX8atf/Sqqq6tj//790b9//ygvL4+bbropvva1r7XUywcAAAAAAGhTeR8ejRw5MkaOHNli9crLy6O8vPyIanTv3j2mTZsW06ZNa6FVAQAAAAAA5IdOuV4AAAAAAAAA+SPvO48AAAAiIqqml+V6CQAAAB2CziMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACTFuV4AdBSlFZUZ56qml+VgJQAAAAAA0DCdRwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAIk9jwAAgLxiX0gAAIDc0nkEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQ2PMIAABoc/Y1AgAAyF86jwAAAAAAAEh0HgEFp7SiMuOc/70MAPnJv9EAAACFR+cRAAAAAAAAifAIAAAAAACARHgEAAAAAABAYs8jAADgiNjXCAAAoH3ReQQAAAAAAEAiPAIAAAAAACAxto4Oo7SiMuOcESsAAAAAAFCf8AgAAGgW//EGAACgYxAeAbQgHW4AAAAAQKETHgEAAPX4jw8AAAAdm/AIAPKQLjYAAAAAckV4BAAAHZBAGgAAgIYIjwCglekiAgAAAKCQCI8AAKAdE1YDAABwqDrlegEAAAAAAADkD51HAIfICDIA8o1/hwAAAGhJwiMAACgQQiIAAADagvAIgFanWwsAAAAACofwCKCDE+wAtK6G3lMbe6/1PgwAAEAudcr1AgAAAAAAAMgfwiMAAAAAAAAS4REAAAAAAACJPY8gj9mLBgAAAACAtiY8AoAWIvAFAAAAoD0QHgEdQq4/1M/18wPQurynAwAA0J7Y8wgAAAAAAIBE5xEAADSTDiMAAAA6AuERAADtWkOBz6GeBwAAgI5CeATQAPsUARQO788AAADQcux5BAAAAAAAQKLzCACAvNJYF5EOIwAAAGh9wiMAsmpobJ9xfkA2hxP4eO8AAACA/CQ8AgCgHp0/AAAA0LEJjyDHdHEAkCv+vQEAAACyER4B5CnBItBSvHcAAAAAh0J4BABQQOwfBAAAALQ24RG0oGydIhE+0IOW5PeMQnSogY+fZwAAACCXhEd0eEaDQX7yuwkAAAAAuSE8AigwQhXILd1CAAAAQHsnPALIISPYWpZgjWwa+xkQBAEAAABkEh4BAO2CwAcAAACgZQiPAGj3dCS1L/7uAAAAAFqX8AhoUT6kh9bn9wwAAACA1iQ8gg6uvX0I3d5eT0eQr39n+bqu9saeQwAAAAD5R3gEHLKW/FA9W60jqUduCVwAAAAAoPAJjwAghzpC4NbeXg8AAABAeyc8AhrUET7UBj/nAAAAAFCf8AjIWz7UBwAAAABoe8IjOAxCDQqNn1laUkM/O36mAAAAANoH4REUIEEAAAAAAACtpVOuFwAAAAAAAED+0HkE7UxDXUm6lQAAAAAAaA6dRwAAAAAAACQ6jwDaER1mtBQ/NwAAAAAdl84jAAAAAAAAEp1HANCB6TACAAAA4MuER0CbME4NAAAAAKAwCI8AoJ0T1AIAAABwKOx5BAAAAAAAQKLzCOjQso3Ti9CpAQAAAAB0XDqPAAAAAAAASHQeAUA7oWMOAAAAgJag8wgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACCx5xE0orSiMuOcPUUAAAAAAGjPhEcAcAiyhcoRgmUAAAAA2g9j6wAAAAAAAEiERwAAAAAAACTCIwAAAAAAABJ7HtGu2IsEAAAAAACOjM4jAAAAAAAAEuERAAAAAAAAifAIAAAAAACARHgEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgER4BAAAAAAAQCI8AgAAAAAAIBEeAQAAAAAAkAiPAAAAAAAASIRHAAAAAAAAJMIjAAAAAAAAEuERAAAAAAAAifAIAAAAAACARHgEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgER4BAAAAAAAQCI8AgAAAAAAIBEeAQAAAAAAkAiPAAAAAAAASIRHAAAAAAAAJMIjAAAAAAAAEuERAAAAAAAAifAIAAAAAACARHgEAAAAAABAIjwCAAAAAAAgER4BAAAAAACQCI8AAAAAAABIhEcAAAAAAAAkwiMAAAAAAAAS4REAAAAAAACJ8AgAAAAAAIBEeAQAAAAAAEAiPAIAAAAAACARHgEAAAAAAJAIjwAAAAAAAEiERwAAAAAAACTCIwAAAAAAABLhEQAAAAAAAInwCAAAAAAAgER4BAAA8P+1dz8vUb17HMA/iqnpBC2KEAoiJslFq0gKizAubdy0yU0RRLsICoSgFsH9A4ps2Q+CVi6DmhatigKhoUUrDdpkAy66IP3QsRryLuI+3C+pOf4aZ87rtXo45znP542c3Zs5AgAAkCiPAAAAAAAASJRHAAAAAAAAJMojAAAAAAAAEuURAAAAAAAAifIIAAAAAACARHkEAAAAAABAojwCAAAAAAAgUR4BAAAAAACQKI8AAAAAAABIlEcAAAAAAAAkyiMAAAAAAAAS5REAAAAAAACJ8ggAAAAAAIBEeQQAAAAAAECiPAIAAAAAACBRHgEAAAAAAJAojwAAAAAAAEiURwAAAAAAACTKIwAAAAAAABLlEQAAAAAAAInyCAAAAAAAgKSl1gEAgOq8+/e/ah0BAAAAgAbml0cAAAAAAAAkfnkEADW00K+I/LoIAAAAgFpRHq3AxMRE3L59OwqFQkxMTERbW1vk8/kYHByMCxcuREdHR60jAjScxUqV5RQx1T6z2vMBAAAAYKNRHi1ToVCI06dPx+fPn9O1mZmZKBaLUSwW4969e/H06dPYs2dPDVMCa2EjFxH1WJ4oXAAAAABgY1EeLcPbt29jcHAwZmZmIpfLxdWrV6O/vz/K5XKMjIzE3bt34927dzEwMBDFYjFyuVytI5Mh9VYE1ON8AAAAAIBGpjxahsuXL8fMzEy0tLTEs2fP4vDhw+ne8ePHY+/evXHlypUYHx+PmzdvxvXr12uYlkak1AAAAAAAYK001zpAvSkWi/H8+fOIiDh//vw/iqP/GRoaip6enoiIuHXrVvz8+XM9IwIAAAAAACyb8qhKjx49Sutz587Nu6e5uTnOnj0bERFTU1OpbAIAAAAAANjolEdVevnyZUREdHZ2xoEDBxbcd+zYsbR+9erVmucCAAAAAABYDf7nUZXGxsYiIiKfz0dLy8J/vn379v3xzFKUSqVF73/8+DGtJycnl3xuVlS+/Gfe66VSad57i11f6Lxqz1qL+QAAAAAAEPHPrqBSqazKmU1zc3Nzq3JSBszOzsbmzZsjImJgYCCePHmy6P5cLhfT09Nx6NChGB0dXdKMpqamFecEAAAAAACy5/Xr13Hw4MEVn+OzdVX4+vVrWudyub/u7+zsjIiIb9++rVkmAAAAAACA1eSzdVWYnZ1N69bW1r/ub2tri4iIcrm85Bn//1m6hTKMj4/Hjh07Yvv27Yt+Oi+rJicno7e3NyJ+t6xdXV2LXl+vZ7I+vx4zZ31+PWbO+vx6zGy+d8b8xs+c9fn1mNl874z5jZ856/PrMbP53hnzGz9z1ucv9xl+q1Qq8enTp4iI2L9//6qcqXmoQnt7e1r/+PHjr/u/f/8eEZE+dbcUO3fu/OuefD6/5POyrqura96/6ULX1+uZrM+vx8xZn1+PmbM+vx4zm++dMb/xM2d9fj1mNt87Y37jZ876/HrMbL53xvzGz5z1+ct9Jut27969quf5bF0VtmzZktZL+RTd9PR0RCztE3cAAAAAAAAbgfKoCu3t7bFt27aIiCiVSovunZqaSuXRrl271jwbAAAAAADAalAeVamnpyciIt6/fx+VSmXBfePj4388AwAAAAAAsNEpj6p05MiRiPj9Sbo3b94suO/Fixdp3dfXt+a5AAAAAAAAVoPyqEonT55M6wcPHsy759evX/Hw4cOIiNi6dWv09/evRzQAAAAAAIAVUx5Vqbe3N44ePRoREffv34/R0dE/9ty4cSPGxsYiIuLSpUuxadOmdc0IAAAAAACwXC21DlCPhoeHo6+vL8rlcpw4cSKuXbsW/f39US6XY2RkJO7cuRMREd3d3TE0NFTjtAAAAAAAAEvXNDc3N1frEPXo8ePHcebMmfjy5cu897u7u6NQKEQ+n1/nZAAAAAAAAMunPFqBDx8+xPDwcBQKhSiVStHa2hr5fD5OnToVFy9ejI6OjlpHBAAAAAAAqIryCAAAAAAAgKS51gEAAAAAAADYOJRHAAAAAAAAJMojAAAAAAAAEuURAAAAAAAAifIIAAAAAACARHkEAAAAAABAojwCAAAAAAAgUR4BAAAAAACQKI8AAAAAAABIlEcAAAAAAAAkyiMAAAAAAAAS5REAAAAAAACJ8ggAAAAAAIBEeQQAAAAAAECiPAIAAAAAACBRHgEAAAAAAJAojwAAAAAAAEiURwAAAAAAACTKIwAAAAAAABLlEQAAAAAAAInyCAAAAAAAgER5BAAAAAAAQKI8AgAAAAAAIFEeAQAAAAAAkPwXa5YRWDFbGFMAAAAASUVORK5CYII=", | |
"text/plain": [ | |
"<Figure size 1000x618.034 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 504, | |
"width": 839 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.bar(\n", | |
" x=after_df.name,\n", | |
" height=after_df.duration.astype(int).astype(float) * 1e-9,\n", | |
" bottom=(after_df.started.astype(int).astype(float) - after_df.started.astype(int).astype(float).min()) * 1e-9,\n", | |
")\n", | |
"plt.grid(False)\n", | |
"plt.tick_params(labelbottom=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 303, | |
"id": "87743c2c-a179-4b29-b14c-e44f5cc57d2b", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABo8AAAPwCAYAAADgSudZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB7CAAAewgFu0HU+AABjDUlEQVR4nOzde5DW5Zkn/C/YQVvwlIgahVEHYksmk9IKEHgxojPkYHuErI5TlkpKQbMeZxWSlCYMNfEQNKvimihKCjdG1iOmlmxMCkVBgzEk7DI60KExbgRJPARNFAE78v7By/3SPn3i0DzdzedTRdWP3+9+rufujjyk+st13b02bdq0KQAAAAAAAJCkd7U3AAAAAAAAQNchPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAoqbaG2DbrF+/Pv/+7/+eJOnfv39qavxPCAAAAAAAu6umpqa8/vrrSZK///u/z1577bXDNSUP3cy///u/Z/jw4dXeBgAAAAAA0MU8//zzGTZs2A7XMbYOAAAAAACAQudRN9O/f/9yvXDhwnz84x+v4m4AAAAAAIBqWrNmTT73uc8laZ4h7AjhUTez9RlHH//4xzNgwIAq7gYAAAAAAOgqts4QdoSxdQAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAABFTbU3AAAAAAAA9Hx1U+ZV3GuYOqYKO6E9Oo8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFB0Wnj05z//Of/jf/yPXHXVVRk9enQGDx6c/fbbL3369MlBBx2UE044IdOmTcubb77ZoXqPP/54xo0blwEDBmTPPffMgAEDMm7cuDz++OMd3tO6dety0003Zfjw4fnoRz+afv36ZciQIbn66qvz+9//vsN1XnzxxVx88cUZPHhwamtr079//xx//PG566670tTU1OE6AAAAAAAAXU2vTZs2beqMwvPmzcvnP//5dtcdeOCBue+++/LFL36xxeebNm3KxRdfnBkzZrRaY+LEibnzzjvTq1evVtesXLkyJ598choaGlp8vt9+++X+++9PfX19m/udOXNmLrnkkmzYsKHF5yNGjMjcuXPzsY99rM0622vVqlUZOHBgkqSxsTEDBgzolPcBAAAAAICdqW7KvIp7DVPHVGEnPcuqVasyePDgJMkrr7yyU3KDTh1bN3DgwJx33nm57bbb8uijj2bRokV59tln88ADD+TMM8/MHnvskTfeeCOnnXZali5d2mKNa6+9tgRHxx57bGbPnp3nn38+s2fPzrHHHpskmTFjRr75zW+2uo933nknp5xySgmOJkyYkCeeeCK/+MUvct1116Vfv355++23c+aZZ7a6jyT52c9+lokTJ2bDhg05+OCDM3369Pzyl7/MT3/604wbNy5J8txzz2XcuHH54IMPtut7BgAAAAAAUE2d1nn017/+NXvssUebax577LGMHTs2STJu3Lg88sgjzZ43NjZmyJAhaWpqytChQ7NgwYLU1taW5+vWrcvo0aOzePHi1NTUZPny5Rk0aFDF+/zrv/5rpk6dmiSZNm1aJk2a1Oz5okWLcvzxx6epqSknnnhinnzyyYoaTU1NGTJkSBobG7PvvvvmN7/5TcV7XXLJJfne976XJLn33ntz3nnntfn1bw+dRwAAAAAAdEc6jzpHt+o8ai84SpIzzjgjRx99dJJkwYIFFc9vueWWcobQ7bff3iw4SpK99947t99+e5LN4c6tt95aUeP999/PbbfdliQZMmRIrrrqqoo1I0eOzAUXXJAkmT9/fn79619XrJkzZ04aGxuTJN/4xjdaDKluuummHHDAAeUaAAAAAACgu+nUsXUd0bdv3yTJ+vXrm93ftGlTfvzjHydJjj766IwYMaLF148YMSJ1dXVJNncyfbiR6qmnnspbb72VJDn//PPTu3fLX/L48ePL9aOPPlrx/LHHHmtx7db23nvvnHXWWUmSF154IStWrGhxHQAAAAAAQFdV1fBo2bJl+d//+38nSelA2uJ3v/tdVq9enSQZPXp0m3W2PF+1alVefvnlZs8WLlxYsa4lQ4cOLUHWM888U/F8S526uroccsgh7e6ltToAAAAAAABdWc2ufsN169Zl9erV+Z//839m2rRp+etf/5okueKKK5qtW7ZsWbn+cLD0YVs/X7ZsWY488shtrlNTU5NBgwZl6dKlzV6TJO+8805WrVq1XXvZVlvepzVr1qzZ5poAAAAAAAAdtUvCo1mzZuUrX/lKq8+vvvrqnHPOOc3uvfLKK+W6vcOdBg4c2OLrtv593759s//++7dbZ+nSpXn99dezYcOG7Lnnnkk2BzpbxuHtyF46YuvXAwAAAADAtqibMq/iXsPUMVXYCd3ZLu882toxxxyTO++8M5/97Gcrnv3lL38p1/369WuzzpZxc8nmLqGW6rRXo6U6W8KjnbUXAAAAAADoKEEQ1bJLwqMzzjgjQ4cOTZK89957WblyZR588MHMmTMn55xzTm699daccsopzV6zfv36ct2nT582628JebbUb6lOezXaqrOz9tIR7XUrrVmzJsOHD9/mugAAAAAAsLMItnq2XRIe7b///s1Gxg0bNixnn312fvjDH+b888/P6aefnpkzZ2b8+PFlzV577VWuN27c2Gb9DRs2lOva2tpmz7bUaa9GW3V21l46or2xeAAAAAAAAJ2pdzXf/Nxzz82ZZ56ZDz74IJdeemnWrl1bnu2zzz7lur3xb++++265/vBYuS11OjJCrrU6O2svAAAAAAAAXV1Vw6MkOf3005NsDl1++tOflvtbd+CsWrWqzRpbj3obOHBgs2db6rz77rt56623OlSnf//+zcbP7ay9AAAAAAAAdHVVD4/69+9frv/v//2/5fqTn/xkuV6+fHmbNbZ+PmTIkGbPOlqnqakpK1eubLFGv379ShC0I3sBAAAAAADo6nbJmUdtWb16dbneeszbkUcemUMPPTSvvvpqnn766TZrLFiwIEly2GGH5Ygjjmj27LjjjivXTz/9dEaMGNFijcWLF5eRc6NGjap4ftxxx2X27NlpaGjIH/7whxxyyCEt1tl6ry3VAQAAAACAnqpuyryKew1Tx2zXa7anFjtH1TuPHnrooXL993//9+W6V69eZaTd8uXL89xzz7X4+ueee650+5x++unp1atXs+cnnHBC9ttvvyTJvffem02bNrVYZ9asWeV67NixFc/POOOMFtdubd26dXnwwQeTbO54Ouqoo1pcBwAAAAAA0FV1Wng0a9asrF+/vs01t9xyS/7X//pfSZIjjjiiWZdQklx55ZWpqdncHHXZZZflvffea/b8vffey2WXXZYkqampyZVXXlnxHn369Mnll1+eJFm2bFluvvnmijWLFi3KzJkzkySjR4/OsGHDKtaMHTs2gwYNSpLccMMNZcTd1iZNmpS1a9eWawAAAAAAgO6m08Kjf/3Xf81hhx2WiRMn5r//9/+eZ599Nv/n//yfPPPMM/n+97+f4447Lv/lv/yXJJsDnrvvvrsERVscddRRufrqq5NsHis3atSoPPDAA1m8eHEeeOCBjBo1KosXL06yOaz5xCc+0eJeJk2aVLqAJk+enIsuuijz58/Pc889lxtuuCFf+MIX0tTUlNra2tx6660t1vjIRz6S6dOnp3fv3vnzn/+cUaNG5b/9t/+W559/Pj/72c/yn/7Tf8r3vve9JJtH3J177rk7/D0EAAAAAADY1Tr1zKM//elPufvuu3P33Xe3umbAgAH5wQ9+kDFjWp5TeN111+W1117LD37wgyxZsiRnn312xZoLLrgg3/72t1t9j3322Sc/+clPUl9fnxUrVmTGjBmZMWNGszX77rtvfvSjH+WYY45ptU59fX3uvPPOXHrppfnjH/9Yup62Nnz48MyZMyd77LFHq3UAAAAAAAC6qk4Lj5544onMmzcv8+fPz7Jly/LHP/4xb775Zvbaa68cfPDBOeaYY3LKKafkrLPOyt57791qnd69e2fmzJn58pe/nBkzZuRXv/pV3njjjRx44IEZNmxYLrroopx00knt7mfw4MFZsmRJ7rjjjjz00ENpbGzMxo0bM3DgwNTX1+eKK67I4Ycf3m6dCRMmZOTIkZk+fXqeeOKJvPrqq+nbt2+GDBmSc845JxdeeGFFBxUAAAAAAEB30Wkpx6BBgzJo0KBcdNFFO6VefX196uvrd6hG3759M3ny5EyePHmH6nzqU5+q6FwCAAAAAADoCTrtzCMAAAAAAAC6H+ERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAUVPtDQAAAAAAQE9RN2Vexb2GqWOqsBPYfjqPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAoqbaGwAAAAAAALqeuinzKu41TB1ThZ2wq+k8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAUVPtDQAAAAAAQE9XN2Vei/cbpo7ZLd6f7kXnEQAAAAAAAIXOIwAAAAAAtllLnSy6WKBn0HkEAAAAAABAITwCAAAAAACgMLYOAAAAAAC6GWMD6Uw6jwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgKKm2hsAAAAAAGD3VjdlXsW9hqljqrATINF5BAAAAAAAwFaERwAAAAAAABTG1gEAAAAAwG7M2EA+TOcRAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEBRU+0NAAAAAABQXXVT5lXca5g6pgo7AboCnUcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFDUVHsDAAAAAADQ3dRNmVdxr2HqmCrsBHY+nUcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKCoqfYGAAAAAADo+eqmzKu41zB1TBV2ArRH5xEAAAAAAACF8AgAAAAAAIDC2DoAAAAAgC7KqLfq8v1ndyU8AgAAAACg2xHsQOcxtg4AAAAAAIBCeAQAAAAAAEBhbB0AAAAAALu1ao/Aq/b7w4fpPAIAAAAAAKAQHgEAAAAAAFAYWwcAAAAAQI/X0mi4xHg4aInOIwAAAAAAAAqdRwAAAAAAPUhLHTa6a4BtITwCAAAAAKBFgijYPRlbBwAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUDjzCAAAAACAncY5SdD96TwCAAAAAACgEB4BAAAAAABQGFsHAAAAALCNWhrNlhjPBvQMOo8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFDUVHsDAAAAAADQkrop8yruNUwdU4WdwO5F5xEAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUNRUewMAAAAAALuDuinzKu41TB1ThZ30bL7PsON0HgEAAAAAAFDoPAIAAAAAuh3dJQCdR+cRAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgqKn2BgAAAAAAdqa6KfMq7jVMHVOFnQB0TzqPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACmceAQAAAAC0wvlJwO5I5xEAAAAAAACFziMAAAAAgN2ALiqgo3QeAQAAAAAAUAiPAAAAAAAAKIytAwAAAADoZloaQZcYQwfsHDqPAAAAAAAAKIRHAAAAAAAAFMbWAQAAAADbrKWxaUamAfQMOo8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAACKTg2PfvOb3+T666/PSSedlIEDB2bPPfdMv379ctRRR2X8+PFZuHBhuzVmzZqVXr16dejXrFmz2q23bt263HTTTRk+fHg++tGPpl+/fhkyZEiuvvrq/P73v+/w1/biiy/m4osvzuDBg1NbW5v+/fvn+OOPz1133ZWmpqYO1wEAAAAAAOhKajqr8OjRo7NgwYKK+xs3bsyKFSuyYsWK3HvvvTn33HNzzz33pE+fPp21lWLlypU5+eST09DQ0Oz+8uXLs3z58txzzz25//77U19f32admTNn5pJLLsmGDRvKvfXr12fhwoVZuHBhZs2alblz5+ZjH/tYp3wdAAAAAAAAnaXTwqPVq1cnSQ499NCceeaZ+dznPpe/+Zu/yV//+tcsWrQo3/3ud7N69er88Ic/TFNTU+6///52a/7sZz/LoYce2urzAQMGtPrsnXfeySmnnFKCowkTJuTss89ObW1t5s+fnxtuuCFvv/12zjzzzCxatCif/vSnW93DxIkT88EHH+Tggw/ONddck89+9rP505/+lLvvvjuPPvponnvuuYwbNy7z589P794mAwIAAAAAAN1Hp4VHRx99dK6//vp8+ctfzh577NHs2YgRI3Luuedm1KhR+e1vf5vZs2fnq1/9aj73uc+1WfOoo47KEUccsV37ufnmm7N8+fIkybRp0zJp0qTybOTIkTnxxBNz/PHHZ926dbnyyivz5JNPVtRoamrKpZdemg8++CD77rtvnn322QwaNKg8/9KXvpRLLrkk3/ve97JgwYLcd999Oe+887ZrvwAAAADArlM3ZV7FvYapY6qwE4Dq67S2mLlz5+ass86qCI62OPDAA/Pd7363/P7hhx/urK3k/fffz2233ZYkGTJkSK666qqKNSNHjswFF1yQJJk/f35+/etfV6yZM2dOGhsbkyTf+MY3mgVHW9x000054IADyjUAAAAAAEB3UtWZaieccEK5XrlyZae9z1NPPZW33norSXL++ee3Okpu/Pjx5frRRx+teP7YY4+1uHZre++9d84666wkyQsvvJAVK1Zs154BAAAAAACqodPG1nXExo0by3Vnng20cOHCcj169OhW1w0dOjR9+/bNu+++m2eeeabVOnV1dTnkkENarTN69OjcddddSZJnnnkmn/jEJ7Z36wAAAACw0+zuo9l2968foKOqGh49/fTT5froo49ud/348eOzbNmyrF27Nvvuu28GDx6cMWPG5Ktf/WoOO+ywVl+3bNmyDr1PTU1NBg0alKVLlzZ7TZK88847WbVqVYf2uvXzD9dpz5b3aM2aNWu2qR4AAAAAAMC2qFp49MEHH+TGG28sv98y6q0tW4dNb775Zt5888388pe/zHe/+93ceuutueiii1p83SuvvJIk6du3b/bff/8232PgwIFZunRpXn/99WzYsCF77rlnks2hzqZNm5IkAwYMaLfGh9+7o7Z+LQAAAAAAwK5WtfDolltuyfPPP58kGTt2bIYOHdrq2r/927/NuHHjMnLkyBKuvPTSS3nkkUfy8MMPZ/369bn44ovTq1evTJw4seL1f/nLX5Ik/fr1a3dfffv2LdfvvPNOCY+21OhInQ/XAAAAAAAA6C6qEh49/fTT+frXv54kOeigg/L973+/1bVjx47N+eefn169ejW7P2zYsPzTP/1T5s6dm3HjxuX999/Pv/zLv+S0006rOI9o/fr1SZI+ffq0u7ctYVGSvPfeexU1OlKntRod0V6n0po1azJ8+PBtqgkAAAAAANBRuzw8evHFFzN27Ng0NTVlzz33zIMPPpiDDz641fX77bdfm/VOOeWUTJkyJddee23WrVuXmTNn5pprrmm2Zq+99kqSbNy4sd39bdiwoVzX1tZW1OhIndZqdER7I/EAAAAAgJ6nbsq8insNU8dUYScASe9d+Wa/+93v8oUvfCFr167NHnvskdmzZ2f06NE7XHfChAmlM2nrc5G22GeffZJ0bITcu+++W663Hk+3pUZH6rRWAwAAAAAAoKvbZeHRq6++mjFjxuTVV19Nr1698oMf/CBjx47dKbUPOuigHHjggUmS1atXVzzf0s3z7rvv5q233mqz1paxcf379282fm7rjqBVq1Z1qEaSckYTAAAAAABAd7BLxta98cYb+fznP5+XXnopSXL77bfnvPPO26nvsWnTplafffKTn8wjjzySJFm+fHlGjBjR4rqmpqasXLkySTJkyJBmz/r165eBAwfmlVdeyfLly9vcy9bPP1wHAAAAgOoxGmzb+Z4B7H46vfPo7bffzhe/+MX8x3/8R5LkxhtvzCWXXLJT3+O1117Lm2++mSQ59NBDK54fd9xx5bqlsXZbLF68uIycGzVqVKt1Ghoa8oc//KHVOlu/R0t1AAAAAAAAuqpODY/WrVuXk08+Ob/5zW+SJNdcc02+9rWv7fT3mTFjRuk8aukMpRNOOCH77bdfkuTee+9ttUtp1qxZ5bqlkXpnnHFGi2u3tm7dujz44INJNnc8HXXUUR35EgAAAAAAALqETguPNm7cmLFjx+bZZ59NklxxxRX59re/vU01Xn755SxZsqTNNXPnzs2//du/JUn22muvfOUrX6lY06dPn1x++eVJkmXLluXmm2+uWLNo0aLMnDkzyeYAatiwYRVrxo4dm0GDBiVJbrjhhjLibmuTJk3K2rVryzUAAAAAbFE3ZV7FLwDoajrtzKN//ud/zs9//vMkyT/8wz/kggsuyAsvvNDq+j59+lR06bz88ss58cQTM3LkyJx66qk55phjctBBB2XTpk156aWX8vDDD+fhhx8unUQ333xzDjvssBbrT5o0KQ888EB++9vfZvLkyWlsbMzZZ5+d2trazJ8/P9dff32amppSW1ubW2+9tcUaH/nIRzJ9+vSceuqp+fOf/5xRo0bl2muvzfDhw7N27drcfffd5Wyl4447Lueee+62ftsAAAAAAACqqtPCo0cffbRcP/nkk/n0pz/d5vrDDz88L7/8covPFi1alEWLFrX62r333ju33HJLJk6c2OqaffbZJz/5yU9SX1+fFStWZMaMGZkxY0azNfvuu29+9KMf5Zhjjmm1Tn19fe68885ceuml+eMf/5jLLrusYs3w4cMzZ86c7LHHHq3WAQAAAAB6ppY6yhqmjqnCTgC2T6eFRzvDZz7zmdx3331ZtGhRFi9enDVr1uSNN95IU1NTDjjggPzd3/1d/vEf/zEXXnhhDjrooHbrDR48OEuWLMkdd9yRhx56KI2Njdm4cWMGDhyY+vr6XHHFFTn88MPbrTNhwoSMHDky06dPzxNPPJFXX301ffv2zZAhQ3LOOefkwgsvTE1Nl/7WAgAAAAAAtKjTEo4to+R2xD777JNzzjkn55xzzk7Y0WZ9+/bN5MmTM3ny5B2q86lPfaqicwkAAAAAAKC7613tDQAAAAAAANB1CI8AAAAAAAAohEcAAAAAAAAUnXbmEQAAAADQPdRNmdfi/YapY3bxTgDoCnQeAQAAAAAAUAiPAAAAAAAAKIytAwAAAICdrKUxcEbAAdBd6DwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAABFTbU3AAAAAAC0rm7KvIp7DVPHVGEnALuWz7rqER4BAAAAAF2W8Axg1xMeAQAAAAAAVSMQ7nqERwAAAAAAQKcTEnUfvau9AQAAAAAAALoOnUcAAAAA0A05CwiAzqLzCAAAAAAAgELnEQAAAAA9zrZ25ejiAdg2rX1G+uzsGYRHAAAAAMBOJYwD6N6MrQMAAAAAAKAQHgEAAAAAAFAYWwcAAAAA7BLG2QF0DzqPAAAAAAAAKHQeAQAAAABVpysJoOvQeQQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgKKm2hsAAAAAAAC6noapY6q9BapE5xEAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFDUVHsDAAAAALC7q5syr8X7DVPH7OKdALsjnzV8mM4jAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAUVPtDQAAAABAd1Q3ZV7FPYfOA12Vzye2hc4jAAAAAAAACuERAAAAAAAAhbF1AAAAAADQQxhPx86g8wgAAAAAAIBC5xEAAADAbqRuyryKe/6VOgCwNZ1HAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhTOPAAAAAKANzokCYHej8wgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABQ11d4AAAAAAACwbRqmjqn2FujBdB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAICiptobAAAAAKBnqZsyr8X7DVPH7OKdAHRvPjepFp1HAAAAAAAAFDqPAAAAAACginQY0dXoPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiceQQAAABA1dVNmVdxzxkgAFAdwiMAAAAA6GGEcQDsCGPrAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACmceAQAAAABAJ3PuGN2JziMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIDCmUcAAAAA7DJ1U+ZV3HMOCNCT+EyjJ9B5BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFDXV3gAAAABAd1U3ZV7FvYapY6qwEwB2NZ/39GQ6jwAAAAAAACh0HgEAAAAAQAt0F7G7Eh4BAAAAALBbExJBc8IjAAAAALo0Z0sBwK7lzCMAAAAAAAAKnUcAAAAAbBcdQQDQM+k8AgAAAAAAoBAeAQAAAAAAUBhbBwAAANAFGAEHAHQVwiMAAAAAAHo8gTx0nLF1AAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAoqbaGwAAAAAAgG3VMHXMNt0HOk54BAAAANCOuinzKu754SQA0FMJjwAAAAAA6JIE9VAdzjwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAonHkEAAAAQJvqpsyruNcVziHpqvsCtp0/u9C1CI8AAAAAEMQAAIWxdQAAAAAAABQ6jwAAAAB6mJa6iBKdRABAxwiPAAAAAADYaVoLqgXY0H0YWwcAAAAAAECh8wgAAAAAgG2mkwh6Lp1HAAAAAAAAFMIjAAAAAAAACmPrAAAAAJLUTZlXca+rjGTqynsDAHoenUcAAAAAAAAUOo8AAAAAuikdSQBAZ9B5BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUHRqePSb3/wm119/fU466aQMHDgwe+65Z/r165ejjjoq48ePz8KFC7ep3uOPP55x48ZlwIAB2XPPPTNgwICMGzcujz/+eIdrrFu3LjfddFOGDx+ej370o+nXr1+GDBmSq6++Or///e87XOfFF1/MxRdfnMGDB6e2tjb9+/fP8ccfn7vuuitNTU3b9HUBAAAAAAB0FTWdVXj06NFZsGBBxf2NGzdmxYoVWbFiRe69996ce+65ueeee9KnT59Wa23atCkXX3xxZsyY0ez+6tWrM2fOnMyZMycTJ07MnXfemV69erVaZ+XKlTn55JPT0NDQ7P7y5cuzfPny3HPPPbn//vtTX1/f5tc2c+bMXHLJJdmwYUO5t379+ixcuDALFy7MrFmzMnfu3HzsYx9rsw4AAAAAAEBX02mdR6tXr06SHHroobniiivy8MMP5/nnn8+iRYvyX//rf81hhx2WJPnhD3+Y8ePHt1nr2muvLcHRsccem9mzZ+f555/P7Nmzc+yxxyZJZsyYkW9+85ut1njnnXdyyimnlOBowoQJeeKJJ/KLX/wi1113Xfr165e33347Z555ZpYuXdpqnZ/97GeZOHFiNmzYkIMPPjjTp0/PL3/5y/z0pz/NuHHjkiTPPfdcxo0blw8++KBj3ywAAAAAAIAuotM6j44++uhcf/31+fKXv5w99tij2bMRI0bk3HPPzahRo/Lb3/42s2fPzle/+tV87nOfq6jT2NiYadOmJUmGDh2aBQsWpLa2NkkybNiwnHbaaRk9enQWL16c73znO/nKV76SQYMGVdS5+eabs3z58iTJtGnTMmnSpPJs5MiROfHEE3P88cdn3bp1ufLKK/Pkk09W1Ghqasqll16aDz74IPvuu2+effbZZu/1pS99KZdcckm+973vZcGCBbnvvvty3nnnbcd3DwAAAAAAoDo6rfNo7ty5OeussyqCoy0OPPDAfPe73y2/f/jhh1tcd8stt5QzhG6//fYSHG2x99575/bbb0+yOdy59dZbK2q8//77ue2225IkQ4YMyVVXXVWxZuTIkbnggguSJPPnz8+vf/3rijVz5sxJY2NjkuQb3/hGiyHVTTfdlAMOOKBcAwAAAAAAdCedFh51xAknnFCuV65cWfF806ZN+fGPf5xkcyfTiBEjWqwzYsSI1NXVJUkee+yxbNq0qdnzp556Km+99VaS5Pzzz0/v3i1/2VuPz3v00Ucrnj/22GMtrt3a3nvvnbPOOitJ8sILL2TFihUtrgMAAAAAAOiKqhoebdy4sVy3FOj87ne/K2cnjR49us1aW56vWrUqL7/8crNnCxcurFjXkqFDh6Zv375Jkmeeeabi+ZY6dXV1OeSQQ9rdS2t1AAAAAAAAuqpOO/OoI55++ulyffTRR1c8X7ZsWZvPt7b182XLluXII4/c5jo1NTUZNGhQli5d2uw1SfLOO+9k1apV27WXbbHlPVqzZs2abaoHAAAAAACwLaoWHn3wwQe58cYby++3jHrb2iuvvFKuBwwY0Ga9gQMHtvi6rX/ft2/f7L///u3WWbp0aV5//fVs2LAhe+65Z5LNoc6WcXg7spf2bP1aAAAAAIBqapg6ptpbAKqgauHRLbfckueffz5JMnbs2AwdOrRizV/+8pdy3a9fvzbrbRk3l2zuEmqpTns1WqqzJTzaWXsBAAAAAOhqhETA1qoSHj399NP5+te/niQ56KCD8v3vf7/FdevXry/Xffr0abPmlpAnSd57770W67RXo606O2sv7WmvU2nNmjUZPnz4NtUEAAAAAADoqF0eHr344osZO3Zsmpqasueee+bBBx/MwQcf3OLavfbaq1xv3LixzbobNmwo17W1tS3Waa9GW3V21l7a095IPAAAAAAAgM7Ue1e+2e9+97t84QtfyNq1a7PHHntk9uzZGT16dKvr99lnn3Ld3vi3d999t1x/eKzcljodGSHXWp2dtRcAAAAAAICubJeFR6+++mrGjBmTV199Nb169coPfvCDjB07ts3XbN2Fs2rVqjbXbj3ubeDAgS3Weffdd/PWW291qE7//v2bjZ/bWXsBAAAAAADoynbJ2Lo33ngjn//85/PSSy8lSW6//facd9557b7uk5/8ZLlevnx5m2u3fj5kyJCKOo888khZN2LEiBZrNDU1ZeXKlS3W6NevXwYOHJhXXnllh/YCAAAAdL66KfMq7u3Kw+Bbev9dvQcAgO3V6Z1Hb7/9dr74xS/mP/7jP5IkN954Yy655JIOvfbII4/MoYcemiR5+umn21y7YMGCJMlhhx2WI444otmz4447rly3VWfx4sVl5NyoUaMqnm+p09DQkD/84Q+t1tn6PVqqAwAAAAAA0FV1ani0bt26nHzyyfnNb36TJLnmmmvyta99rcOv79WrV04//fQkm7t5nnvuuRbXPffcc6Xb5/TTT0+vXr2aPT/hhBOy3377JUnuvffebNq0qcU6s2bNKtctjdQ744wzWly7tXXr1uXBBx9Msrnj6aijjmpxHQAAAADArtQwdUzFL4CWdFp4tHHjxowdOzbPPvtskuSKK67It7/97W2uc+WVV6amZvN0vcsuuyzvvfdes+fvvfdeLrvssiRJTU1Nrrzyyooaffr0yeWXX54kWbZsWW6++eaKNYsWLcrMmTOTJKNHj86wYcMq1owdOzaDBg1Kktxwww1lxN3WJk2alLVr15ZrAAAAAACA7qTTzjz653/+5/z85z9PkvzDP/xDLrjggrzwwgutru/Tp0+LXTpHHXVUrr766tx4441ZvHhxRo0ala997WsZNGhQVq5cme985ztZsmRJks1hzSc+8YkW60+aNCkPPPBAfvvb32by5MlpbGzM2Wefndra2syfPz/XX399mpqaUltbm1tvvbXFGh/5yEcyffr0nHrqqfnzn/+cUaNG5dprr83w4cOzdu3a3H333eVspeOOOy7nnnvutnzLAAAAAAAAqq7TwqNHH320XD/55JP59Kc/3eb6ww8/PC+//HKLz6677rq89tpr+cEPfpAlS5bk7LPPrlhzwQUXtNnZtM8+++QnP/lJ6uvrs2LFisyYMSMzZsxotmbffffNj370oxxzzDGt1qmvr8+dd96ZSy+9NH/84x9L19PWhg8fnjlz5mSPPfZotQ4AAAAAAEBX1Gnh0c7Uu3fvzJw5M1/+8pczY8aM/OpXv8obb7yRAw88MMOGDctFF12Uk046qd06gwcPzpIlS3LHHXfkoYceSmNjYzZu3JiBAwemvr4+V1xxRQ4//PB260yYMCEjR47M9OnT88QTT+TVV19N3759M2TIkJxzzjm58MILy6g9AAAAAIBdyVlGwI7qtIRj06ZNO71mfX196uvrd6hG3759M3ny5EyePHmH6nzqU5+q6FwCAAAAdr66KfNavO+HowAAnaN3tTcAAAAAAABA1yE8AgAAAAAAoBAeAQAAAAAAUHTamUcAAAAAVGrpDCfnNwHbyucG0Jl0HgEAAAAAAFAIjwAAAAAAACiMrQMAAIAurqUxZ4mRRQAAdA6dRwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgKKm2hsAAAAAAKBlDVPHVHsLwG5I5xEAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKCoqfYGAAAAAAB2dw1Tx1R7CwCFziMAAAAAAAAKnUcAAADALlU3ZV7FPf/iHgCg69B5BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUDjzCAAAANitOHMJAKBtOo8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAABFTbU3AAAAAACwO2iYOqbaWwDoEJ1HAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgqKn2BgAAAACSpG7KvIp7DVPHVGEnAO1r6/PJZxfQ3ek8AgAAAAAAoBAeAQAAAAAAUBhbBwAAAADQCiPogN2R8AgAANjtOFcFAPgw/18A4P9nbB0AAAAAAACFziMAAACg29JJCGwLnw8AHSM8AgAAAAB6FCERwI4xtg4AAAAAAIBC5xEAAACQxAg4AAA2Ex4BAAAAO50gCthZWvvs8JkC0HmERwAAAHQK4QEAAHRPwiMAAADoBMIzAAC6q97V3gAAAAAAAABdh84jAAAAdogOGwAA6FmERwAAAMB2Ex4CAPQ8xtYBAAAAAABQCI8AAAAAAAAojK0DAAAAAKrOyEuArkN4BAAAAADsVK0FQQIigO7B2DoAAAAAAAAK4REAAAAAAACF8AgAAAAAAIDCmUcAAADQjdVNmVdxz5kiAADsCOERAAAA0KaWAqpESAUA0FMJjwAAAKCL0EUEAEBX4MwjAAAAAAAACuERAAAAAAAAhbF1AAAAAMA2M1YToOfSeQQAAAAAAEAhPAIAAAAAAKAwtg4AAAB2sbop8yruGf8EAEBXofMIAAAAAACAQngEAAAAAABAYWwdAAAAAOzm2hqdaawmwO5H5xEAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEDhzCMAAIDdTN2UeS3ed6YFAACQCI8AAACgXS0FbsI2oCtr7TPKZxcAHWFsHQAAAAAAAIXwCAAAAAAAgMLYOgAAANgBRtoB1eKzBoDOovMIAAAAAACAQngEAAAAAABAYWwdAAAA7GaM2oPuxZ9PAHY1nUcAAAAAAAAUOo8AAADY7ei8AQCA1gmPAAAAAKDKBNgAdCXCIwAAANqlUwdg5/DZCUB34MwjAAAAAAAACuERAAAAAAAAhbF1AAAAALAd2hpBZzwdAN2Z8AgAAKCTOCeIavLfHwAA28vYOgAAAAAAAArhEQAAAAAAAIWxdQAAAPD/MeoNdl/OLwKA/5/wCAAAAIDdhiAIANonPAIAAOihdNEAAADbw5lHAAAAAAAAFDqPAAAA6JF0XgEAwPbReQQAAAAAAECh8wgAAKAL0S0DAABUm/AIAACAXaqlgCwRkgEAQFdhbB0AAAAAAACF8AgAAAAAAIBCeAQAAAAAAEDhzCMAAAAAehznqAHA9tN5BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAAippqbwAAAAAAtkfD1DHV3gIA9EjCIwAAgB1UN2VexT0/0AQAALorY+sAAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAABFTbU3AAAAADuibsq8insNU8dUYScAANAz6DwCAAAAAACg0HkEAAAAQNW11TGomxAAdi2dRwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgKKm2hsAAACA9tRNmVdxr2HqmCrsBNhR/uwCQNen8wgAAAAAAIBC5xEAAABdhg4jAACoPuERAAAAANultXBX6AsA3ZuxdQAAAAAAABSdGh699tprmTt3br71rW/lpJNOyoEHHphevXqlV69eGT9+fIdqzJo1q7ymvV+zZs1qt966dety0003Zfjw4fnoRz+afv36ZciQIbn66qvz+9//vsNf24svvpiLL744gwcPTm1tbfr375/jjz8+d911V5qamjpcBwAAoCupmzKv4hcAALB76dSxdQcffHBnlt9mK1euzMknn5yGhoZm95cvX57ly5fnnnvuyf3335/6+vo268ycOTOXXHJJNmzYUO6tX78+CxcuzMKFCzNr1qzMnTs3H/vYxzrl6wAAANiac4IAAICdaZedeTRw4MAMGTIkP//5z7e7xs9+9rMceuihrT4fMGBAq8/eeeednHLKKSU4mjBhQs4+++zU1tZm/vz5ueGGG/L222/nzDPPzKJFi/LpT3+61T1MnDgxH3zwQQ4++OBcc801+exnP5s//elPufvuu/Poo4/mueeey7hx4zJ//vz07m0yIAAAAAAA0H10anj0rW99K8OGDcuwYcNy8MEH5+WXX86RRx653fWOOuqoHHHEEdv12ptvvjnLly9PkkybNi2TJk0qz0aOHJkTTzwxxx9/fNatW5crr7wyTz75ZEWNpqamXHrppfnggw+y77775tlnn82gQYPK8y996Uu55JJL8r3vfS8LFizIfffdl/POO2+79gsAALA13UUAAMCu0qltMVOnTs0pp5xS9fF177//fm677bYkyZAhQ3LVVVdVrBk5cmQuuOCCJMn8+fPz61//umLNnDlz0tjYmCT5xje+0Sw42uKmm27KAQccUK4BAAAAAAC6k91iptpTTz2Vt956K0ly/vnntzpKbvz48eX60UcfrXj+2GOPtbh2a3vvvXfOOuusJMkLL7yQFStWbNeeAQAAAAAAqmG3CI8WLlxYrkePHt3quqFDh6Zv375JkmeeeabVOnV1dTnkkENarbP1e7RUBwAAAAAAoKvq1DOPdrbx48dn2bJlWbt2bfbdd98MHjw4Y8aMyVe/+tUcdthhrb5u2bJl5froo49udV1NTU0GDRqUpUuXNntNkrzzzjtZtWpVuzU+/PzDddqz5T1as2bNmm2qBwAAALCjnLEGALuXbhUePf300+X6zTffzJtvvplf/vKX+e53v5tbb701F110UYuve+WVV5Ikffv2zf7779/mewwcODBLly7N66+/ng0bNmTPPfdMsjnU2bRpU5JkwIAB7db48Ht31NavBQAAAAAA2NW6RXj0t3/7txk3blxGjhxZwpWXXnopjzzySB5++OGsX78+F198cXr16pWJEydWvP4vf/lLkqRfv37tvteWsXXJ5m6jLeHRlhodqfPhGgAAAAAAAN1Flw+Pxo4dm/PPPz+9evVqdn/YsGH5p3/6p8ydOzfjxo3L+++/n3/5l3/JaaedVnEe0fr165Mkffr0aff9toRFSfLee+9V1OhIndZqdER7nUpr1qzJ8OHDt6kmAAAAAABAR/Wu9gbas99++1UER1s75ZRTMmXKlCTJunXrMnPmzIo1e+21V5Jk48aN7b7fhg0bynVtbW1FjY7Uaa1GRwwYMKDNXx//+Me3qR4AAAAAAMC26PKdRx0xYcKEfPOb38ymTZvy9NNP55prrmn2fJ999knSsRFy7777brneejzdlhodqdNaDQAAAICuqmHqmGpvAQDoInpEeHTQQQflwAMPzOuvv57Vq1dXPB8wYEB++ctf5t13381bb72V/fffv9VaW8bG9e/fv9n4uQEDBpTrVatWtbmfrUfPbTmjCQAA6Ji6KfMq7vmBJgAAwK7T5cfWddSmTZtaffbJT36yXC9fvrzVdU1NTVm5cmWSZMiQIc2e9evXrwRBbdX48PMP1wEAAAAAAOjKekR49Nprr+XNN99Mkhx66KEVz4877rhy/fTTT7daZ/HixWXk3KhRo1qt09DQkD/84Q+t1tn6PVqqAwAAAAAA0FX1iLF1M2bMKJ1Ho0ePrnh+wgknZL/99svbb7+de++9N5MnT06vXr0q1s2aNatcjx07tuL5GWeckdmzZ5e1X//61yvWrFu3Lg8++GCSzR1PRx111HZ9TQAAQHUYmwf0BG19bvlMAwDa06U7j15++eUsWbKkzTVz587Nv/3bvyVJ9tprr3zlK1+pWNOnT59cfvnlSZJly5bl5ptvrlizaNGizJw5M8nmAGrYsGEVa8aOHZtBgwYlSW644YYy4m5rkyZNytq1a8s1AAAAAABAd9KpnUfPPPNMGhsby+/feOONct3Y2Nis0ydJxo8f3+z3L7/8ck488cSMHDkyp556ao455pgcdNBB2bRpU1566aU8/PDDefjhh0vX0c0335zDDjusxb1MmjQpDzzwQH77299m8uTJaWxszNlnn53a2trMnz8/119/fZqamlJbW5tbb721xRof+chHMn369Jx66qn585//nFGjRuXaa6/N8OHDs3bt2tx999155JFHkmwecXfuuedu43cMAAAAAACgujo1PLrnnnty7733tvjs2WefzbPPPtvs3ofDoy0WLVqURYsWtfo+e++9d2655ZZMnDix1TX77LNPfvKTn6S+vj4rVqzIjBkzMmPGjGZr9t133/zoRz/KMccc02qd+vr63Hnnnbn00kvzxz/+MZdddlnFmuHDh2fOnDnZY489Wq0DAAAAAADQFXXpM48+85nP5L777suiRYuyePHirFmzJm+88UaamppywAEH5O/+7u/yj//4j7nwwgtz0EEHtVtv8ODBWbJkSe6444489NBDaWxszMaNGzNw4MDU19fniiuuyOGHH95unQkTJmTkyJGZPn16nnjiibz66qvp27dvhgwZknPOOScXXnhhamq69LcWAAAAAACgRZ2acMyaNatiNN222GeffXLOOefknHPO2Wl76tu3byZPnpzJkyfvUJ1PfepTFZ1LAAAAAAAA3V3vam8AAAAAAACArsNsNQAAoFurmzKvxfsNU8fs4p10XEt77sr7Bbounx0AQGfQeQQAAAAAAEAhPAIAAAAAAKAwtg4AAKADjJoDAAB2FzqPAAAAAAAAKHQeAQAAAHRxOh0BgF1J5xEAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKCoqfYGAAAAAEgapo6p9hYAAJIIjwAAgB6sbsq8int+OAsAANA2Y+sAAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAKZx4BAADdgvOLAAAAdg2dRwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFDXV3gAAAADA7qRh6phqbwEAoE3CIwAAAICdTEAEAHRnxtYBAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUzjwCAIBuom7KvIp7ztQAAABgZ9N5BAAAAAAAQCE8AgAAAAAAoDC2DgBgN2UEGgAAANASnUcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABQ11d4AAAAAQHfVMHVMtbcAALDT6TwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAABFTbU3AADA7qluyryKew1Tx1RhJwDQPn9HAQC7E51HAAAAAAAAFDqPAAAAAKK7CABgC51HAAAAAAAAFMIjAAAAAAAACmPrAADoNuqmzKu4Z8QQAAAA7FzCIwAAAGC34h8eAAC0TXgEAACdSLcUQHX4rAUA2H7CIwAAAKDbEhIBAOx8vau9AQAAAAAAALoO4REAAAAAAACFsXUAAHSY83sAqAZ/1wAA7Fo6jwAAAAAAACh0HgEAQDenIwzoKXx2AQB0DTqPAAAAAAAAKIRHAAAAAAAAFMbWAQAAHWI8HgAAwO5BeAQAQJfSUkCR9LyQQhADAABAV2VsHQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQOHMIwAAAGCXcsYbAEDXpvMIAAAAAACAQngEAAAAAABAITwCAAAAAACgcOYRAECV1E2ZV3HPGRAA9BT+TgMA6L6ERwAAAMB2ExIBAPQ8xtYBAAAAAABQCI8AAAAAAAAojK0DAAAA2mQ0HQDA7kV4BAAAACQREgEAsJnwCACAHVY3ZV7FPT+A3H6+nwAAAFST8AgAAAB2MwJpAADaIjwCAACa0fkEAACwexMeAQAAQA8k9AUAYHv1rvYGAAAAAAAA6Dp0HgEAAEA3psMIAICdTXgEAADskJbOSEr8QBu2R2t/bvx5AgBgVzK2DgAAAAAAgELnEQAAdFBLHTbdtRugJ30tAAAA7FzCIwAAANjFhLUAAHRlwiMAANjK9pzfo4sHAACAnkR4BABAjybYAQAAgG3Tu9obAAAAAAAAoOsQHgEAAAAAAFAYWwcAwG7JODsAAABomc4jAAAAAAAACp1HAAAA0Al0MwIA0F0JjwAAAGAHCIkAAOhpjK0DAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUNdXeAAAAnatuyryKew53BwAAAFojPAIAADqN8JKewn+3AADsToytAwAAAAAAoBAeAQAAAAAAUBhbBwAAAP8f4+kAAEB4BAAAwG5ISAQAAK0THgEAANAjCYgAAGD7OPMIAAAAAACAQngEAAAAAABAYWwdAACwy9VNmVdxz4gxAACArkF4BABApxISAAAAQPciPAIAgB5MeAcAAMC2Eh4BANBMS2FDInAAAACA3UXvam8AAAAAAACArkPnEQAAAN2azkgAANi5dB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAACKmmpvAACAHVc3ZV7FPQfIAwAAANtD5xEAAAAAAACF8AgAAAAAAICiU8Oj1157LXPnzs23vvWtnHTSSTnwwAPTq1ev9OrVK+PHj9/meo8//njGjRuXAQMGZM8998yAAQMybty4PP744x2usW7dutx0000ZPnx4PvrRj6Zfv34ZMmRIrr766vz+97/vcJ0XX3wxF198cQYPHpza2tr0798/xx9/fO666640NTVt89cGAAAAAADQFXTqmUcHH3zwTqmzadOmXHzxxZkxY0az+6tXr86cOXMyZ86cTJw4MXfeeWd69erVap2VK1fm5JNPTkNDQ7P7y5cvz/Lly3PPPffk/vvvT319fZv7mTlzZi655JJs2LCh3Fu/fn0WLlyYhQsXZtasWZk7d24+9rGPbcdXCwAAAAAAUD27bGzdwIED84UvfGG7XnvttdeW4OjYY4/N7Nmz8/zzz2f27Nk59thjkyQzZszIN7/5zVZrvPPOOznllFNKcDRhwoQ88cQT+cUvfpHrrrsu/fr1y9tvv50zzzwzS5cubbXOz372s0ycODEbNmzIwQcfnOnTp+eXv/xlfvrTn2bcuHFJkueeey7jxo3LBx98sF1fLwAAAAAAQLV0aufRt771rQwbNizDhg3LwQcfnJdffjlHHnnkNtVobGzMtGnTkiRDhw7NggULUltbmyQZNmxYTjvttIwePTqLFy/Od77znXzlK1/JoEGDKurcfPPNWb58eZJk2rRpmTRpUnk2cuTInHjiiTn++OOzbt26XHnllXnyyScrajQ1NeXSSy/NBx98kH333TfPPvtss/f60pe+lEsuuSTf+973smDBgtx3330577zztunrBQAAoFLD1DHV3gIAAOw2OrXzaOrUqTnllFN2aHzdLbfcUs4Quv3220twtMXee++d22+/PcnmcOfWW2+tqPH+++/ntttuS5IMGTIkV111VcWakSNH5oILLkiSzJ8/P7/+9a8r1syZMyeNjY1Jkm984xsthlQ33XRTDjjggHINAAAAAADQneyysXXbY9OmTfnxj3+cJDn66KMzYsSIFteNGDEidXV1SZLHHnssmzZtavb8qaeeyltvvZUkOf/889O7d8tf9vjx48v1o48+WvH8sccea3Ht1vbee++cddZZSZIXXnghK1asaHEdAAAAAABAV9Slw6Pf/e53Wb16dZJk9OjRba7d8nzVqlV5+eWXmz1buHBhxbqWDB06NH379k2SPPPMMxXPt9Spq6vLIYcc0u5eWqsDAAAAAADQVXXqmUc7atmyZeX66KOPbnPt1s+XLVvW7GyljtapqanJoEGDsnTp0mavSZJ33nknq1at2q69bIst79GaNWvWbFM9AIDdQd2UeRX3nI8CAAAA26dLh0evvPJKuR4wYECbawcOHNji67b+fd++fbP//vu3W2fp0qV5/fXXs2HDhuy5555JNoc6W8bh7che2rP1awEAAAAAAHa1Lj227i9/+Uu57tevX5trt4ybSzZ3CbVUp70abdXZWXsBAAAAAADoyrp059H69evLdZ8+fdpcu6VDKEnee++9Fuu0V6OtOjtrL+1pr1NpzZo1GT58+DbVBAAAAAAA6KguHR7ttdde5Xrjxo1trt2wYUO5rq2tbbFOezXaqrOz9tKe9kbiAQAAAAAAdKYuPbZun332KdftjX979913y/WHx8ptqdOREXKt1dlZewEAAAAAAOjKunR4tHUXzqpVq9pcu/W4t4EDB7ZY5913381bb73VoTr9+/dvNn5uZ+0FAAAAAACgK+vS4dEnP/nJcr18+fI21279fMiQIdtVp6mpKStXrmyxRr9+/UoQtCN7AQAAAAAA6Mq6dHh05JFH5tBDD02SPP30022uXbBgQZLksMMOyxFHHNHs2XHHHVeu26qzePHiMnJu1KhRFc+31GloaMgf/vCHVuts/R4t1QEAAAAAAOiqunR41KtXr5x++ulJNnfzPPfccy2ue+6550q3z+mnn55evXo1e37CCSdkv/32S5Lce++92bRpU4t1Zs2aVa7Hjh1b8fyMM85oce3W1q1blwcffDDJ5o6no446qsV1AAAAAAAAXVGXDo+S5Morr0xNTU2S5LLLLst7773X7Pl7772Xyy67LElSU1OTK6+8sqJGnz59cvnllydJli1blptvvrlizaJFizJz5swkyejRozNs2LCKNWPHjs2gQYOSJDfccEMZcbe1SZMmZe3ateUaAACAjmuYOqbiFwAAsGvVdGbxZ555Jo2NjeX3b7zxRrlubGys6N4ZP358RY2jjjoqV199dW688cYsXrw4o0aNyte+9rUMGjQoK1euzHe+850sWbIkyeaw5hOf+ESLe5k0aVIeeOCB/Pa3v83kyZPT2NiYs88+O7W1tZk/f36uv/76NDU1pba2NrfeemuLNT7ykY9k+vTpOfXUU/PnP/85o0aNyrXXXpvhw4dn7dq1ufvuu/PII48k2Tzi7txzz92G7xYAAEDP0lrwIxACAICurVPDo3vuuSf33ntvi8+effbZPPvss83utRQeJcl1112X1157LT/4wQ+yZMmSnH322RVrLrjggnz7299udS/77LNPfvKTn6S+vj4rVqzIjBkzMmPGjGZr9t133/zoRz/KMccc02qd+vr63Hnnnbn00kvzxz/+sXQ9bW348OGZM2dO9thjj1brAAAAAAAAdEWdGh7tLL17987MmTPz5S9/OTNmzMivfvWrvPHGGznwwAMzbNiwXHTRRTnppJParTN48OAsWbIkd9xxRx566KE0NjZm48aNGThwYOrr63PFFVfk8MMPb7fOhAkTMnLkyEyfPj1PPPFEXn311fTt2zdDhgzJOeeckwsvvLCM2gOA7qhuyryKe/6VOAAAAMDuoVMTjlmzZlWMptsR9fX1qa+v36Eaffv2zeTJkzN58uQdqvOpT32qonMJAAAAAACgu9MeAwDQjegKAwAAADqb8AgA6FQthR2JwAOgJ/GZDgAAPYvwCAAAgHYJiAAAYPfRu9obAAAAAAAAoOsQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABQ11d4AAMC2qJsyr+KeQ9wBAAAAdh7hEQCwUwh1AHoGn90AAIDwCAAAYDcjIAIAANoiPAIAAOihhEQAAMD2EB4BAAB0A20FQUIiAABgZxIeAQBdjvOTAAAAAKqnd7U3AAAAAAAAQNeh8wgAYCfQLQXsLD47AACAatN5BAAAAAAAQKHzCACommp361T7/QEAAAC6IuERAOzGhCcA1eGzFgAA6MqERwBAj9ZSQJb4wS0AAABAa4RHAAAAO6i1QFpQDQAAdEe9q70BAAAAAAAAug6dRwAAAB2giwgAANhdCI8AAAC2IiQCAAB2d8IjAOjh6qbMq7jnB6MAAAAAtMaZRwAAAAAAABQ6jwAAOtm2dn/pFgMAAACqSXgEAPAhbYU3gh0AAACgpzO2DgAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoHDmEQAAsNtxVhkAAEDrdB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAABFTbU3AACwM9RNmVdxr2HqmCrsBOhKfA4AAABsO51HAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAoqbaGwAAupe6KfMq7jmQHqgmn0EAAAA7l84jAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgqKn2BgCAnaNuyryKew1Tx1RhJwAAAAB0ZzqPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAArhEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKIRHAAAAAAAAFMIjAAAAAAAACuERAAAAAAAAhfAIAAAAAACAQngEAAAAAABAITwCAAAAAACgEB4BAAAAAABQCI8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAIBCeAQAAAAAAEAhPAIAAAAAAKAQHgEAAAAAAFAIjwAAAAAAACiERwAAAAAAABTCIwAAAAAAAIqaam8AAACgIxqmjqn2FgAAAHYLOo8AAAAAAAAohEcAAAAAAAAUwiMAAAAAAAAK4REAAAAAAACF8AgAAAAAAICiptobgF2lbsq8insNU8dUYScAAAAAANB16TwCAAAAAACg0HkEAAB0KbrDAQAAqkvnEQAAAAAAAIXwCAAAAAAAgEJ4BAAAAAAAQCE8AgAAAAAAoBAeAQAAAAAAUAiPAAAAAAAAKGqqvQHYmeqmzGvxfsPUMbt4JwAAAAAA0D0JjwAAgF3OP+4BAADouoRHAABApxESAQAAdD/CIwAAoJnWAp9tvQ8AAED31LvaGwAAAAAAAKDr0HkE26FuyryKe/7FLQAAAAAAPYHOIwAAAAAAAAqdR7ATtdSRlOhKAgC6Hv//BAAAgNYIj4Bux9hAAAAAAIDOIzyCKhOEQOfz5wzYnfm8AwAAYFsJjwAAoJsTEAEAALAz9a72BgAAAAAAAOg6hEcAAAAAAAAUwiMAAAAAAAAKZx5BF1Y3ZV7FPWcaAAAAAADQmYRHAADQTfhHJAAAAOwKwiMAAOhihEQAAABUk/AI2mBsHADQWfx/CgAAALoq4REAAHQiIREAAADdjfAI2C3oIgOgM/k7BQAAgJ6kW4RHvXr16tC60aNH56mnnmpzzeOPP54ZM2bk+eefz+uvv57+/ftn+PDhmThxYr70pS916H3WrVuXO+64Iw899FAaGxuzcePGDBw4MCeffHIuv/zy/M3f/E2H6gAA0PlaC3a29X57zwAAAKCn6Bbh0c6wadOmXHzxxZkxY0az+6tXr86cOXMyZ86cTJw4MXfeeWebYdXKlStz8sknp6Ghodn95cuXZ/ny5bnnnnty//33p76+vlO+DtjZdOQA0BP4uwsAAAB2nm4VHn31q1/Nf/7P/7nV53379m312bXXXluCo2OPPTaTJ0/OoEGDsnLlykybNi1LlizJjBkz0r9//3z7299uscY777yTU045pQRHEyZMyNlnn53a2trMnz8/N9xwQ95+++2ceeaZWbRoUT796U/vwFcLAAAAAACw63Wr8Oiggw7Kpz71qW1+XWNjY6ZNm5YkGTp0aBYsWJDa2tokybBhw3Laaadl9OjRWbx4cb7zne/kK1/5SgYNGlRR5+abb87y5cuTJNOmTcukSZPKs5EjR+bEE0/M8ccfn3Xr1uXKK6/Mk08+uT1fJgA9jA4/2Hn82QEAAIDO163Co+11yy23pKmpKUly++23l+Boi7333ju33357Ro4cmaamptx66625/fbbm615//33c9tttyVJhgwZkquuuqrifUaOHJkLLrggd911V+bPn59f//rX+cxnPtNJXxWwM7T0Q/3EDycBqslnMAAAAFRXjw+PNm3alB//+MdJkqOPPjojRoxocd2IESNSV1eXhoaGPPbYY5k+fXqzs4+eeuqpvPXWW0mS888/P717926xzvjx43PXXXclSR599FHhEfRAukh2bzs7cPTfE7sz/60DAABA19Tjw6Pf/e53Wb16dZJk9OjRba4dPXp0GhoasmrVqrz88ss58sgjy7OFCxc2W9eaoUOHpm/fvnn33XfzzDPP7ODuATpfVw0vuuq+gJa19efTn10AAADoXrpVePTQQw9l9uzZ+f3vf5+ampoccsgh+X/+n/8n48ePz4knntjia5YtW1aujz766P+3vbsLzbLuAzj+U+bL3EwJRUxHptPHCUEQjkzDrMdAhTSsEIoiPOigfAFfwg56eKCiwEKRSEzzBQKjDgRbB/lAroJZM0YeOKsplMtRKpa6TefI50D843K79+Lcdt/35wPB5X1d9///u/XWg75c1zKuf+P52traNvGoq+sUFBTElClT4siRI23e01X19fUZzzc0NHR7TTLzP6iBbOPfLfqT7xoAAADkvqyKR0ePHm3z67q6uqirq4s9e/bEkiVLYteuXTFq1Kg215w8eTIdT5w4MeP6JSUl7b7vxl8XFRXF6NGjO13nyJEjcfr06bh8+XIMGzYs4/UdzQBA/hKI6Asdfad81wAAACC/ZUU8GjFiRDz++OPx6KOPxvTp06O4uDhOnz4dlZWVsXXr1jh79mzs27cvFi9eHAcOHIghQ4ak9164cCEdFxcXZ9ynqKgoHV+8eLHNuevrdLZGe+t0Jx4BAAAAAAD0p6yIR7/99lu7d/vMnz8/VqxYEQsWLIiampqorKyM999/P1auXJmuuXTpUjoeOnRoxn1ujDzNzc1tzl1fp7M1OlunM/+84+mfGhoaory8vFtrQk/1950P/b0/AAAAAEA+yop4lOkxcePGjYtPP/00ysrKoqWlJbZs2dImHg0fPjwdt7S0ZNzn8uXL6biwsLDNuevrdLZGZ+t0prNH6wH0FfEOskumv5/+7gIAAADdkRXxqDOTJ0+O+fPnR0VFRdTV1cWpU6firrvuioiIkSNHpuv++Si6f2psbEzH/3w83fV1Olujs3UgF2SKCoIDQNf15GcO+TcVAAAAuN1yIh5FRMyYMSMqKioi4tpj7q7Hoxvv5Kmvr8+4xo2PjCspKWlzbuLEifHtt99GY2Nj/Pnnnxnvhrq+ztixY/28I/qceEM+8/1noPI9BAAAALLJ4P4eoLdcvXq13ddnzJiRjo8dO5ZxjRvPl5WV9Wid1tbWOH78eLtrAAAAAAAADHQ5E4+OHj2ajq/fdRQRcc8996RfV1ZWZlzjq6++ioiICRMmxKRJk9qcmzNnTjrOtM7hw4fTY+tmz57dteEBAAAAAAAGiJyIRydOnIgDBw5ExLWffzRhwoR0btCgQbF48eKIuHbH0KFDh9pd49ChQ+mOosWLF8egQYPanH/44Ydj1KhRERGxe/fuDu902rVrVzp+4oknevaByEn/+s//bvoPAAAAAAAGmgEfj/bv3x+tra0dnv/999/jySefjCtXrkRExEsvvXTTNatXr46Cgms/3mnFihXR3Nzc5nxzc3OsWLEiIiIKCgpi9erVN60xdOjQWLlyZURE1NbWxsaNG2+6pqqqKnbs2BEREXPnzo2ZM2d24RNC3xCvAAAAAADoioL+HqAzK1asiCtXrsTSpUtj1qxZMWnSpCgsLIwzZ87EwYMHY+vWrXH27NmIuPZoufbi0bRp02Lt2rXx1ltvxeHDh2P27NnxyiuvxJQpU+L48ePx9ttvR01NTURErFu3LqZOndruLOvWrYuPP/44fvrpp1i/fn3U1dXFsmXLorCwML788st48803o7W1NQoLC2PTpk237fcEAAAAAADgdhnw8Sgi4tSpU7Fly5bYsmVLh9csXbo0tm/fHsOGDWv3/BtvvBF//PFHfPjhh1FTUxPLli276Zrly5fH66+/3uEeI0eOjIqKili4cGH8/PPPsW3btti2bVuba+6444746KOP4r777uvahwPoA+3dafbjf/+dN/v3lXz5nAAAAADktgEfj3bv3h2VlZVRVVUVJ06ciDNnzsT58+ejuLg4SkpK4sEHH4znn38+Zs2alXGdwYMHx44dO2Lp0qWxbdu2qK6ujjNnzsSYMWNi5syZ8eKLL8aCBQs6nae0tDRqamrivffei08++STq6uqipaUlSkpKYuHChbFq1aq4++67e+vjAww4AgkAAAAA5LYBH4/mzp0bc+fO7bX1Fi5cGAsXLrylNYqKimL9+vWxfv36XpoKAAAAAABgYBjw8QgAIBu4Aw8AAADIFYP7ewAAAAAAAAAGDnceAQA5LdMdQR2d68l7AAAAAHKFeAQA5ARRBwAAAKB3eGwdAAAAAAAAiTuPAIBu6e6j3jw2DgAAACC7iEcA9Kt//ed/N70mDvQ/fwYAAAAA+Us8AuhF+R5Ccunz59JnySQXPxMAAAAAt0Y8AoAcJxABAAAA0B3iEZBT8uVuEWiP7zoAAAAAvUE8giwkkOSO9v4sI/x59iV/nwAAAACgLfEIoA/0JFB09J5MawkhAAAAAMCtEo+APiFq0FvcrQUAAAAAt5d4BNABwQsAAAAAyEfiEdCv3EUCAAAAADCwDO7vAQAAAAAAABg4xCMAAAAAAAAS8QgAAAAAAIBEPAIAAAAAACARjwAAAAAAAEjEIwAAAAAAABLxCAAAAAAAgEQ8AgAAAAAAIBGPAAAAAAAASMQjAAAAAAAAEvEIAAAAAACARDwCAAAAAAAgEY8AAAAAAABIxCMAAAAAAAAS8QgAAAAAAIBEPAIAAAAAACARjwAAAAAAAEjEIwAAAAAAABLxCAAAAAAAgEQ8AgAAAAAAIBGPAAAAAAAASMQjAAAAAAAAEvEIAAAAAACARDwCAAAAAAAgEY8AAAAAAABIxCMAAAAAAAAS8QgAAAAAAIBEPAIAAAAAACARjwAAAAAAAEjEIwAAAAAAABLxCAAAAAAAgEQ8AgAAAAAAIBGPAAAAAAAASMQjAAAAAAAAEvEIAAAAAACARDwCAAAAAAAgEY8AAAAAAABIxCMAAAAAAAAS8QgAAAAAAIBEPAIAAAAAACARjwAAAAAAAEjEIwAAAAAAABLxCAAAAAAAgEQ8AgAAAAAAIBGPAAAAAAAASMQjAAAAAAAAEvEIAAAAAACARDwCAAAAAAAgEY8AAAAAAABIxCMAAAAAAAAS8QgAAAAAAIBEPAIAAAAAACARjwAAAAAAAEjEIwAAAAAAABLxCAAAAAAAgEQ8AgAAAAAAIBGPAAAAAAAASMQjAAAAAAAAEvEIAAAAAACARDwCAAAAAAAgEY8AAAAAAABIxCMAAAAAAAAS8QgAAAAAAIBEPAIAAAAAACARjwAAAAAAAEjEIwAAAAAAABLxCAAAAAAAgEQ8AgAAAAAAIBGPAAAAAAAASMQjAAAAAAAAEvEIAAAAAACARDwCAAAAAAAgEY8AAAAAAABIxCMAAAAAAAAS8QgAAAAAAIBEPAIAAAAAACARjwAAAAAAAEjEIwAAAAAAABLxCAAAAAAAgEQ8AgAAAAAAIBGPAAAAAAAASMQjAAAAAAAAEvEIAAAAAACARDwCAAAAAAAgEY8AAAAAAABIxCMAAAAAAAAS8QgAAAAAAIBEPAIAAAAAACARjwAAAAAAAEjEIwAAAAAAABLxCAAAAAAAgEQ8AgAAAAAAIBGPAAAAAAAASMQjAAAAAAAAEvEIAAAAAACARDwCAAAAAAAgEY8AAAAAAABIxCMAAAAAAAAS8QgAAAAAAIBEPAIAAAAAACARjwAAAAAAAEjEIwAAAAAAABLxCAAAAAAAgEQ8AgAAAAAAIBGPAAAAAAAASMQjAAAAAAAAEvEIAAAAAACARDwCAAAAAAAgEY8AAAAAAABIxCMAAAAAAAAS8QgAAAAAAIBEPLoFv/76a6xduzbKysqiqKgo7rzzzigvL4+NGzdGU1NTf48HAAAAAADQbQX9PUC2qqioiGeeeSb++uuv9FpTU1NUV1dHdXV1bN++PT7//POYPHlyP04JAAAAAADQPeJRD/zwww/x9NNPR1NTUxQXF8eGDRti3rx50dzcHHv37o0PPvggfvzxx1i0aFFUV1dHcXFxf48MQJb58b//7tE5AAAAALhV4lEPrF69OpqamqKgoCC++OKLmDVrVjr3yCOPxNSpU2P9+vVx7NixePfdd+O1117rx2kBeqajQNGTqNGb78mX/QEAAACgv4hH3VRdXR0HDx6MiIjly5e3CUfXrVmzJnbu3Bm1tbWxadOm2LBhQwwZMqSPJ4X+MVD/R7z9xQsAAAAAoGvEo27at29fOn7hhRfavWbw4MHx3HPPxYYNG+LcuXNx8ODBmD9/fh9NSD4YyPECAAAAAIDsNri/B8g2X3/9dUREFBUVxf3339/hdXPnzk3H33zzzW2fCwAAAAAAoDe486ibamtrIyKitLQ0Cgo6/u2bPn36Te/pivr6+oznT548mY4bGhq6vG6+aD1/pt3X6+vr2z2X6fWO1uvuWrdjfwAAAAAAiGjbClpbW3tlzUFXr1692isr5YFLly5FYWFhREQsWrQoPvvss4zXFxcXR2NjYzzwwANRVVXVpT0GDRp0y3MCAAAAAAD557vvvouZM2fe8joeW9cNFy5cSMfFxcWdXl9UVBQRERcvXrxtMwEAAAAAAPQmj63rhkuXLqXjoUOHdnr9sGHDIiKiubm5y3vc+Fi6jmY4duxYjBs3LsaOHZvx0Xn5qqGhIcrLyyPiWmUdP358xtf76j35vn82zpzv+2fjzPm+fzbObH/fGfvn/sz5vn82zmx/3xn75/7M+b5/Ns5sf98Z++f+zPm+f0/fwzWtra1x+vTpiIi49957e2VN5aEbhg8fno5bWlo6vf7y5csREelRd10xceLETq8pLS3t8nr5bvz48e3+nnb0el+9J9/3z8aZ833/bJw53/fPxpnt7ztj/9yfOd/3z8aZ7e87Y//cnznf98/Gme3vO2P/3J853/fv6Xvy3aRJk3p1PY+t64aRI0em4648iq6xsTEiuvaIOwAAAAAAgIFAPOqG4cOHx5gxYyIior6+PuO1586dS/GopKTkts8GAAAAAADQG8SjbiorK4uIiLq6umhtbe3wumPHjt30HgAAAAAAgIFOPOqmOXPmRMS1R9J9//33HV5XWVmZjmfPnn3b5wIAAAAAAOgN4lE3LVmyJB3v3Lmz3Wv+/vvv2LNnT0REjB49OubNm9cXowEAAAAAANwy8aibysvL46GHHoqIiB07dkRVVdVN17zzzjtRW1sbERGrVq2KIUOG9OmMAAAAAAAAPVXQ3wNko82bN8fs2bOjubk5HnvssXj11Vdj3rx50dzcHHv37o1t27ZFRMS0adNizZo1/TwtAAAAAABA1w26evXq1f4eIhvt378/nn322Th//ny756dNmxYVFRVRWlrax5MBAAAAAAD0nHh0C3755ZfYvHlzVFRURH19fQwdOjRKS0vjqaeeipdffjlGjBjR3yMCAAAAAAB0i3gEAAAAAABAMri/BwAAAAAAAGDgEI8AAAAAAABIxCMAAAAAAAAS8QgAAAAAAIBEPAIAAAAAACARjwAAAAAAAEjEIwAAAAAAABLxCAAAAAAAgEQ8AgAAAAAAIBGPAAAAAAAASMQjAAAAAAAAEvEIAAAAAACARDwCAAAAAAAgEY8AAAAAAABIxCMAAAAAAAAS8QgAAAAAAIBEPAIAAAAAACARjwAAAAAAAEjEIwAAAAAAABLxCAAAAAAAgEQ8AgAAAAAAIBGPAAAAAAAASMQjAAAAAAAAEvEIAAAAAACA5P8ohb/TgQfaBAAAAABJRU5ErkJggg==", | |
"text/plain": [ | |
"<Figure size 1000x618.034 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"image/png": { | |
"height": 504, | |
"width": 839 | |
} | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.bar(\n", | |
" x=before_df.name,\n", | |
" height=before_df.duration.astype(int).astype(float) * 1e-9,\n", | |
" bottom=(before_df.started.astype(int).astype(float) - before_df.started.astype(int).astype(float).min()) * 1e-9,\n", | |
")\n", | |
"plt.grid(False)\n", | |
"plt.tick_params(labelbottom=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "1c8a8862-c0f4-4acb-9373-08721c4e887e", | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.11.10" | |
}, | |
"widgets": { | |
"application/vnd.jupyter.widget-state+json": { | |
"state": {}, | |
"version_major": 2, | |
"version_minor": 0 | |
} | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment