Last active
August 13, 2024 09:29
-
-
Save psychemedia/baca1d22fbb5673aad54a1b91dda07f1 to your computer and use it in GitHub Desktop.
Example of using duckdb with various magic-duckdb and jupysql in Jupyter notebook (works in Jupyterlite)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"kernelspec": { | |
"name": "python", | |
"display_name": "Python (Pyodide)", | |
"language": "python" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "python", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8" | |
} | |
}, | |
"nbformat_minor": 4, | |
"nbformat": 4, | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"source": "import duckdb", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"execution_count": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "duckdb.sql(\"select 42\")", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [ | |
{ | |
"execution_count": 2, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "┌───────┐\n│ 42 │\n│ int32 │\n├───────┤\n│ 42 │\n└───────┘" | |
}, | |
"metadata": {} | |
} | |
], | |
"execution_count": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%pip install --quiet magic-duckdb\n%load_ext magic_duckdb", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"execution_count": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%%dql\nSELECT 42;", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [ | |
{ | |
"execution_count": 2, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": " 42\n0 42", | |
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>42</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>42</td>\n </tr>\n </tbody>\n</table>\n</div>" | |
}, | |
"metadata": {} | |
} | |
], | |
"execution_count": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%pip install jupysql\n%env PLOOMBER_STATS_ENABLED=\"false\"\n%env PLOOMBER_VERSION_CHECK_DISABLED=\"false\"\n%load_ext sql\n\n#https://jupysql.ploomber.io/en/latest/integrations/duckdb-native.html", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"text": "env: PLOOMBER_STATS_ENABLED=\"false\"\nenv: PLOOMBER_VERSION_CHECK_DISABLED=\"false\"\n", | |
"output_type": "stream" | |
} | |
], | |
"execution_count": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "import pandas as pd\nimport duckdb\n\nconn = duckdb.connect()\ndf = pd.DataFrame({\"x\": range(10)})", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"execution_count": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%sql conn", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"execution_count": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%%sql\nSELECT *\nFROM df\nWHERE x > 4", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "Running query in 'DuckDBPyConnection'", | |
"text/html": "<span style=\"None\">Running query in 'DuckDBPyConnection'</span>" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"execution_count": 6, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "+---+\n| x |\n+---+\n| 5 |\n| 6 |\n| 7 |\n| 8 |\n| 9 |\n+---+", | |
"text/html": "<table>\n <thead>\n <tr>\n <th>x</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <td>5</td>\n </tr>\n <tr>\n <td>6</td>\n </tr>\n <tr>\n <td>7</td>\n </tr>\n <tr>\n <td>8</td>\n </tr>\n <tr>\n <td>9</td>\n </tr>\n </tbody>\n</table>" | |
}, | |
"metadata": {} | |
} | |
], | |
"execution_count": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "df.to_csv(\"test.csv\")", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"execution_count": 8 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%%sql\nCREATE TABLE readcsvtest AS SELECT * FROM test.csv", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "Running query in 'DuckDBPyConnection'", | |
"text/html": "<span style=\"None\">Running query in 'DuckDBPyConnection'</span>" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"execution_count": 9, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "+-------+\n| Count |\n+-------+\n| 10 |\n+-------+", | |
"text/html": "<table>\n <thead>\n <tr>\n <th>Count</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <td>10</td>\n </tr>\n </tbody>\n</table>" | |
}, | |
"metadata": {} | |
} | |
], | |
"execution_count": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%%sql\nSELECT *\nFROM readcsvtest\nLIMIT 3", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "Running query in 'DuckDBPyConnection'", | |
"text/html": "<span style=\"None\">Running query in 'DuckDBPyConnection'</span>" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"execution_count": 10, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "+---------+---+\n| column0 | x |\n+---------+---+\n| 0 | 0 |\n| 1 | 1 |\n| 2 | 2 |\n+---------+---+", | |
"text/html": "<table>\n <thead>\n <tr>\n <th>column0</th>\n <th>x</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <td>1</td>\n <td>1</td>\n </tr>\n <tr>\n <td>2</td>\n <td>2</td>\n </tr>\n </tbody>\n</table>" | |
}, | |
"metadata": {} | |
} | |
], | |
"execution_count": 10 | |
}, | |
{ | |
"cell_type": "code", | |
"source": " ", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"execution_count": null | |
} | |
] | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"kernelspec": { | |
"name": "python", | |
"display_name": "Python (Pyodide)", | |
"language": "python" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "python", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8" | |
} | |
}, | |
"nbformat_minor": 4, | |
"nbformat": 4, | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"source": "import duckdb", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"execution_count": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "duckdb.sql(\"select 42\")", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [ | |
{ | |
"execution_count": 2, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "┌───────┐\n│ 42 │\n│ int32 │\n├───────┤\n│ 42 │\n└───────┘" | |
}, | |
"metadata": {} | |
} | |
], | |
"execution_count": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%pip install --quiet magic-duckdb\n%load_ext magic_duckdb", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"execution_count": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%%dql\nSELECT 42;", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [ | |
{ | |
"execution_count": 2, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": " 42\n0 42", | |
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>42</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>42</td>\n </tr>\n </tbody>\n</table>\n</div>" | |
}, | |
"metadata": {} | |
} | |
], | |
"execution_count": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%pip install jupysql\n%env PLOOMBER_STATS_ENABLED=\"false\"\n%env PLOOMBER_VERSION_CHECK_DISABLED=\"false\"\n%load_ext sql\n\n#https://jupysql.ploomber.io/en/latest/integrations/duckdb-native.html", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"text": "env: PLOOMBER_STATS_ENABLED=\"false\"\nenv: PLOOMBER_VERSION_CHECK_DISABLED=\"false\"\n", | |
"output_type": "stream" | |
} | |
], | |
"execution_count": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "import pandas as pd\nimport duckdb\n\nconn = duckdb.connect()\ndf = pd.DataFrame({\"x\": range(10)})", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"execution_count": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%sql conn", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"execution_count": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%%sql\nSELECT *\nFROM df\nWHERE x > 4", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "Running query in 'DuckDBPyConnection'", | |
"text/html": "<span style=\"None\">Running query in 'DuckDBPyConnection'</span>" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"execution_count": 6, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "+---+\n| x |\n+---+\n| 5 |\n| 6 |\n| 7 |\n| 8 |\n| 9 |\n+---+", | |
"text/html": "<table>\n <thead>\n <tr>\n <th>x</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <td>5</td>\n </tr>\n <tr>\n <td>6</td>\n </tr>\n <tr>\n <td>7</td>\n </tr>\n <tr>\n <td>8</td>\n </tr>\n <tr>\n <td>9</td>\n </tr>\n </tbody>\n</table>" | |
}, | |
"metadata": {} | |
} | |
], | |
"execution_count": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "df.to_csv(\"test.csv\")", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"execution_count": 8 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%%sql\nCREATE TABLE readcsvtest AS SELECT * FROM test.csv", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "Running query in 'DuckDBPyConnection'", | |
"text/html": "<span style=\"None\">Running query in 'DuckDBPyConnection'</span>" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"execution_count": 9, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "+-------+\n| Count |\n+-------+\n| 10 |\n+-------+", | |
"text/html": "<table>\n <thead>\n <tr>\n <th>Count</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <td>10</td>\n </tr>\n </tbody>\n</table>" | |
}, | |
"metadata": {} | |
} | |
], | |
"execution_count": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"source": "%%sql\nSELECT *\nFROM readcsvtest\nLIMIT 3", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": "Running query in 'DuckDBPyConnection'", | |
"text/html": "<span style=\"None\">Running query in 'DuckDBPyConnection'</span>" | |
}, | |
"metadata": {} | |
}, | |
{ | |
"execution_count": 10, | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": "+---------+---+\n| column0 | x |\n+---------+---+\n| 0 | 0 |\n| 1 | 1 |\n| 2 | 2 |\n+---------+---+", | |
"text/html": "<table>\n <thead>\n <tr>\n <th>column0</th>\n <th>x</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <td>1</td>\n <td>1</td>\n </tr>\n <tr>\n <td>2</td>\n <td>2</td>\n </tr>\n </tbody>\n</table>" | |
}, | |
"metadata": {} | |
} | |
], | |
"execution_count": 10 | |
}, | |
{ | |
"cell_type": "code", | |
"source": " ", | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"execution_count": null | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment