Skip to content

Instantly share code, notes, and snippets.

@rafalagunas
Last active August 17, 2020 18:43
Show Gist options
  • Save rafalagunas/070cafb9180fdd778fc0c3921c624a51 to your computer and use it in GitHub Desktop.
Save rafalagunas/070cafb9180fdd778fc0c3921c624a51 to your computer and use it in GitHub Desktop.
Regresion_Lineal.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"kernelspec": {
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "3.6.3"
},
"colab": {
"name": "Regresion_Lineal.ipynb",
"provenance": [],
"include_colab_link": true
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/rafastaria/070cafb9180fdd778fc0c3921c624a51/regresion_lineal.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"metadata": {
"id": "p91Lx7FM39i6",
"colab_type": "code",
"colab": {}
},
"source": [
"#lectura de datos\n",
"dat <- read.csv(\"grillos.csv\")\n",
"\n"
],
"execution_count": 17,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "xG5_TGZ14d9u",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 204
},
"outputId": "796597ba-7b14-42c5-c2de-aa7292cfd55d"
},
"source": [
"head(dat)"
],
"execution_count": 19,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" chirridos temp\n",
"1 20.0 88.6\n",
"2 16.0 71.6\n",
"3 19.8 93.3\n",
"4 18.4 84.3\n",
"5 17.1 80.6\n",
"6 15.5 75.2"
],
"text/latex": "A data.frame: 6 × 2\n\\begin{tabular}{r|ll}\n & chirridos & temp\\\\\n & <dbl> & <dbl>\\\\\n\\hline\n\t1 & 20.0 & 88.6\\\\\n\t2 & 16.0 & 71.6\\\\\n\t3 & 19.8 & 93.3\\\\\n\t4 & 18.4 & 84.3\\\\\n\t5 & 17.1 & 80.6\\\\\n\t6 & 15.5 & 75.2\\\\\n\\end{tabular}\n",
"text/markdown": "\nA data.frame: 6 × 2\n\n| <!--/--> | chirridos &lt;dbl&gt; | temp &lt;dbl&gt; |\n|---|---|---|\n| 1 | 20.0 | 88.6 |\n| 2 | 16.0 | 71.6 |\n| 3 | 19.8 | 93.3 |\n| 4 | 18.4 | 84.3 |\n| 5 | 17.1 | 80.6 |\n| 6 | 15.5 | 75.2 |\n\n",
"text/html": [
"<table>\n",
"<caption>A data.frame: 6 × 2</caption>\n",
"<thead>\n",
"\t<tr><th></th><th scope=col>chirridos</th><th scope=col>temp</th></tr>\n",
"\t<tr><th></th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><th scope=row>1</th><td>20.0</td><td>88.6</td></tr>\n",
"\t<tr><th scope=row>2</th><td>16.0</td><td>71.6</td></tr>\n",
"\t<tr><th scope=row>3</th><td>19.8</td><td>93.3</td></tr>\n",
"\t<tr><th scope=row>4</th><td>18.4</td><td>84.3</td></tr>\n",
"\t<tr><th scope=row>5</th><td>17.1</td><td>80.6</td></tr>\n",
"\t<tr><th scope=row>6</th><td>15.5</td><td>75.2</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "JnLTGSD65cgp",
"colab_type": "code",
"colab": {}
},
"source": [
"mean(dat$chirridos)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "NOwZEvM15hR6",
"colab_type": "code",
"colab": {}
},
"source": [
"min(dat$chirridos)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "OH5uO1aW5j5P",
"colab_type": "code",
"colab": {}
},
"source": [
"max(dat$chirridos)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "xsGdjNo75pbR",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
},
"outputId": "7bfb8dd4-ffaa-459b-aea5-57225f080a54"
},
"source": [
"summary(dat$chirridos)"
],
"execution_count": 24,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" Min. 1st Qu. Median Mean 3rd Qu. Max. \n",
" 14.40 15.45 16.20 16.65 17.15 20.00 "
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "IYBvpG4g6WDs",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
},
"outputId": "c1ce9c0c-015c-4b71-b5b6-d3ce269ff095"
},
"source": [
"summary(dat$temp)"
],
"execution_count": 25,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" Min. 1st Qu. Median Mean 3rd Qu. Max. \n",
" 69.40 75.75 80.60 80.04 83.40 93.30 "
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "eKxegmNZ6ra-",
"colab_type": "code",
"colab": {}
},
"source": [
"hist(dat$chirridos,xlab=\"Chirridos\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "-dN1ux_h67Fl",
"colab_type": "code",
"colab": {}
},
"source": [
"hist(dat$temp)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "R_cDqmM37F_C",
"colab_type": "code",
"colab": {}
},
"source": [
"boxplot(dat$chirridos)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Zf4ibW0R7Lv6",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 437
},
"outputId": "5c265a94-c185-4467-d18e-59fb2690d6b9"
},
"source": [
"boxplot(dat$temp)"
],
"execution_count": 34,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAACOlBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsNDQ0ODg4PDw8QEBARERESEhITExMVFRUWFhYXFxcY\nGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIkJCQlJSUpKSkqKiotLS0uLi4vLy8w\nMDAxMTEyMjIzMzM1NTU2NjY3Nzc4ODg5OTk7Ozs9PT0+Pj5AQEBBQUFDQ0NGRkZISEhJSUlL\nS0tNTU1PT09QUFBRUVFUVFRWVlZXV1dYWFhZWVlbW1teXl5fX19gYGBhYWFiYmJjY2NlZWVn\nZ2dra2tsbGxubm5vb29wcHBxcXFzc3N1dXV2dnZ3d3d5eXl6enp8fHx+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWHh4eIiIiKioqLi4uOjo6Pj4+RkZGSkpKUlJSVlZWWlpaYmJiampqbm5ud\nnZ2fn5+goKChoaGioqKjo6OkpKSlpaWoqKipqamqqqqrq6usrKytra2urq6wsLCzs7O0tLS1\ntbW3t7e4uLi7u7u9vb2+vr6/v7/AwMDBwcHDw8PExMTFxcXGxsbIyMjJycnKysrLy8vMzMzN\nzc3Pz8/Q0NDR0dHS0tLT09PU1NTW1tbX19fY2Nja2trb29vc3Nzd3d3e3t7f39/g4ODi4uLj\n4+Pk5OTm5ubq6urr6+vt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6\n+vr7+/v8/Pz9/f3+/v7///+QJgNGAAAACXBIWXMAABJ0AAASdAHeZh94AAAYYUlEQVR4nO3c\n67deVXXA4R2SGCVAAwqFAhGhFgUVRUAtUkEqkVRtWlsEYwEpgopYb1ShildAq6KEiyIoF0WD\nRivXaOD935oEB3EUurMgc67DO9fzfDjukbNMMsn8DZJ9FpkWwAGbVvonABUICQIICQIICQII\nCQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQII\nCQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQII\nCQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQII\nCQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQII\nCQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQIICQII\nCQIICQJ0COmu22Gp3PXCtzw/pG0TLJltL3jN80P6/rQz/ceAQDun77/g/4+Q4P8QEgQQEgQQ\nEgQQEgQQEgQQEgQQEgQQEgQQEgQQEgQQEgQQEgQQEgQQEgQQEgQQEgQQEgQQEgQQEgQQ0nLZ\nftOBuf76A/wOtq/0P4GXKCEtl8s2HJh16w7wO7hspf8JvEQJaSybNq30z6AoIY1FSEmENBYh\nJRHSWISUREhj2bp1pX8GRQkJAggJAggJAghpLNvdTMghpLFs3rzSP4OihDQWr7+TCGksQkoi\npLEIKYmQxiKkJEIai5sNSYQEAYQEAYQEAYQ0FjcbkghpLG42JBHSWLz+TiKksQgpiZDGIqQk\nQhqLkJIIaSxuNiQREgQQEgQQEgQQ0ljcbEgipLG42ZBESGPx+juJkMYipCRCGouQkghpLEJK\nIqSxuNmQREgQQEgQQEgQQEhjcbMhiZDG4mZDEiGNxevvJEIai5CSCGksQkoipLEIKYmQxuJm\nQxIhQQAhQQAhQQAhjcXNhiRCGoubDUmENBavv5MIaSxCSiKksQgpiZDGIqQkQhqLmw1JhAQB\nhAQBhAQBhDQWNxuSCGksbjYkEdJYvP5OIqSxCCmJkMYipCRCGouQkghpLG42JBESBBASBOgd\n0tMP3HTjjTc/tJ9TQmLJ9A1pxwdfNe113KWPz50TUhY3G5J0DWn7q6cTN2298spLzj96OnnH\nzEEhZXGzIUnXkDavveFPT7uuWbVl5qCQsnj9naRrSEdduO/5vGNnDgopi5CSdA1p7Uf3PX/k\nZTMHhZRFSEm6hnT8ufue37lx5qCQsggpSdeQtqz62JPPPD364emimYNCyuJmQ5KuIf32lOmQ\nszZ94P0XnHHwdPojMweFxJLp+3WknVe9bvWeLyOtPe3Tu+bOCYkl0/2K0BM/u+OO+543k18+\n8Kz/EhLLpXtIf/zlvQ/+7vk+cf/05x47kB+D/5ebDUk6/9buk6e9bE8mR1/wg+d+8lf7/o10\n+TT3JyhePDcbknQN6X/eOL3ib05b+5q/f/2q6V/mDl4rpCRefyfpGtI/T/+0+3d19x7/8cUv\nzpk+O3NQSFmElKRrSH/1t3v/5z8PfXSx69RTZg4KKYuQkvS9InTp3v+5d/reYvFvr5g5KKQs\nQkrSNaS/fOaK0Jen/14s/vGImYNCyuJmQ5KuIV2w6j+eXix+fPz6Rxe3/cXbZw4KiSXTNaSf\nHz4d/da/XjV9crFr7frbZg4KiSXT9+tID5x3yLTm9Ft2P/3r3XPnhMSS6X6z4dGnGg4JKYub\nDUlemn8dl5CyuNmQREhj8fo7iZDGIqQkQhqLkJIIaSxCSiKksbjZkERIEEBIEEBIEEBIY3Gz\nIYmQxuJmQxIhjcXr7yRCGouQkghpLEJKIqSxCCmJkMbiZkMSIUEAIUEAIUEAIY3FzYYkQhqL\nmw1JhDQWr7+TCGksQkoipLEIKYmQxiKkJEIai5sNSYQEAYQEAYQEAYQ0FjcbkghpLG42JBHS\nWLz+TiKksQgpiZDGIqQkQhqLkJIIaSxuNiQREgQQEgQQEgQQ0ljcbEgipLG42ZBESGPx+juJ\nkMYipCRCGouQkghpLEJKIqSxuNmQREgQQEgQQEgQQEhjcbMhiZDG4mZDEiGNxevvJEIai5CS\nCGksQkoipLEIKYmQxuJmQxIhQQAhQQAhQQAhjcXNhiRCGoubDUmENBavv5MIaSxCSiKksQgp\niZDGIqQkQhqLmw1JhAQBhAQBhAQBhDQWNxuSCGksbjYkEdJYvP5OIqSxCCmJkMYipCRCGouQ\nkghpLG42JBESBBASBBASBBDSWNxsSCKksbjZkERIY/H6O4mQxiKkJEIai5CSCGksQkoipLG4\n2ZBESBBASBBASBBASGNxsyGJkMbiZkMSIY3F6+8kQhqLkJIIaSxCSiKksQgpiZDG4mZDEiFB\nACFBgJUIaedttzw4f0JILJmuIV12y56P126YpunUO+cOCimLmw1JuoY0XbT7w9endX/3vrdM\nh90/c1BIWdxsSNI/pBMPu2f3x6+seu/MQSFl8fo7SfeQHp4u3vt8zjEzB4WURUhJuof00HTd\n3udL1s4cFFIWISXpHtKuw67Y+3zh4TMHhZRFSEn6hnT+tvt+/aHXPLb78d71Z88cFFIWNxuS\n9A3pGV9eLL64/qDbZg4KiSXTNaTPXr11ywXnnHHzYnHNMV+bOygklswKXRF65Knnftvdtz/r\nYiGxXFYkpD/85PYnn/ON96+a/szvD/TH4Hm52ZCkb0g3n7HxHT9YfOvoaTr0mud88pEdz7rK\nv5GSuNmQpGtIt66ZDj1o/a2HHvueczdM35w56M9IWbz+TtI1pLOP+tHi4TOPO/nxxWLHxrfP\nHBRSFiEl6RrSEZft/rBt+tye58t9QXYlCClJ15DWfGH3h+3TN/Y8f2bNzEEhZRFSkq4hHbnn\ny+rfmT6+5/niI2cOCimLmw1Juob07sNv2fnj15503K8Wi3s2vGvmoJBYMl1DuveQaZoOv+f4\ng89885rVP5w5KCSWTN+vI919/ps2/XRx9xtXTSd8de6ckFgyK3NF6JGH5z8vpCxuNiTx13GN\nxc2GJEIai9ffSYQ0FiElEdJYhJRESGMRUhIhjcXNhiRCggBCggBCggBCGoubDUmENBY3G5II\naSxefycR0liElERIYxFSEiGNRUhJhDQWNxuSCAkCCAkCCAkCCGksbjYkEdJY3GxIIqSxeP2d\nREhjEVISIY1FSEmENBYhJRHSWNxsSCIkCCCkvq49dXDXrvSvQBIh9bXp1H8f2qlV/4wmpL5G\n/8N+2fmF1FfZRWpUdn4h9VV2kRqVnV9IfZVdpEZl5xdSX2UXqVHZ+YXUV9lFalR2fiH1VXaR\nGpWdX0h9lV2kRmXnF1JfZRepUdn5hdRX2UVqVHZ+IfVVdpEalZ1fSH2VXaRGZecXUl9lF6lR\n2fmF1FfZRWpUdn4h9VV2kRqVnV9IfZVdpEZl5xdSX2UXqVHZ+YXUV9lFalR2fiH1VXaRGpWd\nX0h9lV2kRmXnF1JfZRepUdn5hdRX2UVqVHZ+IfVVdpEalZ1fSH2VXaRGZecXUl9lF6lR2fmF\n1FfZRWpUdn4h9VV2kRqVnV9IfZVdpEZl5xdSX2UXqVHZ+YXUV9lFalR2fiH1VXaRGpWdX0h9\nlV2kRmXnF1JfZRepUdn5hdRX2UVqVHZ+IfVVdpEalZ1fSH2VXaRGZecXUl9lF6lR2fmF1FfZ\nRWpUdn4h9VV2kRqVnV9IfZVdpEZl5xdSX2UXqVHZ+YXUV9lFalR2fiH1VXaRGpWdX0h9lV2k\nRmXnF1JfZRepUdn5hdRX2UVqVHZ+IfVVdpEalZ1fSH2VXaRGZecXUl9lF6lR2fmF1FfZRWpU\ndn4h9VV2kRqVnV9IfZVdpEZl5xdSX2UXqVHZ+YXUV9lFalR2fiH1VXaRGpWdX0h9lV2kRmXn\nF1JfZRepUdn5hdRX2UVqVHZ+IfVVdpEalZ1fSH2VXaRGZecXUl9lF6lR2fmF1FfZRWpUdn4h\n9VV2kRqVnV9IfZVdpEZl5xdSX5sOOWFohwhpHyG9eJumwQlpHyG9eEJa6V+BJELqy2/tVvpX\nIImQ+ir7h+1GZefvHdLTD9x04403P7SfU0Kqquz8fUPa8cFXPfM75eMufXzunJCqKjt/15C2\nv3o6cdPWK6+85Pyjp5N3zBwUUlVl5+8a0ua1N/zpadc1q7bMHBRSVWXn7xrSURfuez7v2JmD\nQqqq7PxdQ1r70X3PH3nZzEEhVVV2/q4hHX/uvud3bpw5KKSqys7fNaQtqz725DNPj354umjm\noJCqKjt/15B+e8p0yFmbPvD+C844eDp9LhUhVVV2/r5fR9p51etW7/ky0trTPr1r7pyQqio7\nf/crQk/87I477tv5PJ94+ns3PWuLkIoqO/+K3LX7w09uf/I53/jA2j+/JPz7A/0xXqLKLlKj\nsvP3DenmMza+4weLbx09TYdeM3fOb+2qKjt/15BuXTMdetD6Ww899j3nbpi+OXNQSFWVnb9r\nSGcf9aPFw2ced/Lji8WOjW+fOSikqsrO3zWkIy7b/WHb9Lk9z5cfPnNQSFWVnb9rSGu+sPvD\n9ukbe54/s2bmoJCqKjt/15CO3Lr7w3emj+95vvjImYNCqqrs/F1Devfht+z88WtPOu5Xi8U9\nG941c1BIVZWdv2tI9x4yTdPh9xx/8JlvXrP6hzMHhVRV2fn7fh3p7vPftOmni7vfuGo64atz\n54RUVdn5V+ZvEXrk4fnPC6mqsvP767j6KrtIjcrOL6S+yi5So7LzC6mvsovUqOz8Quqr7CI1\nKju/kPoqu0iNys4vpL7KLlKjsvMLqa+yi9So7PxC6qvsIjUqO7+Q+iq7SI3Kzi+kvsouUqOy\n8wupr7KL1Kjs/ELqq+wiNSo7v5D6KrtIjcrOL6S+yi5So7LzC6mvsovUqOz8Quqr7CI1Kju/\nkPoqu0iNys4vpL7KLlKjsvMLqa+yi9So7PxC6qvsIjUqO7+Q+iq7SI3Kzi+kvsouUqOy8wup\nr7KL1Kjs/ELqq+wiNSo7v5D6KrtIjcrOL6S+yi5So7LzC6mvsovUqOz8Quqr7CI1Kju/kPoq\nu0iNys4vpL7KLlKjsvMLqa+yi9So7PxC6qvsIjUqO7+Q+iq7SI3Kzi+kvsouUqOy8wupr7KL\n1Kjs/ELqq+wiNSo7v5D6KrtIjcrOL6S+yi5So7LzC6mvsovUqOz8Quqr7CI1Kju/kPoqu0iN\nys4vpL7KLlKjsvMLqa+yi9So7PxC6qvsIjUqO7+Q+iq7SI3Kzi+kvsouUqOy8wupr7KL1Kjs\n/ELqq+wiNSo7v5D6KrtIjcrOL6S+yi5So7LzC6mvsovUqOz8Quqr7CI1Kju/kPoqu0iNys4v\npL7KLlKjsvMLqa+yi9So7PxC6qvsIjUqO7+Q+iq7SI3Kzi+kvsouUqOy8wupr7KL1Kjs/ELq\nq+wiNSo7v5D6KrtIjcrOL6S+yi5So7LzC6mvsovUqOz8Quqr7CI1Kju/kPoqu0iNys4vpL7K\nLlKjsvMLqa+yi9So7PxC6qvsIjUqO7+Q+iq7SI3Kzi+kvsouUqOy8wupr7KL1Kjs/ELqq+wi\nNSo7v5D6KrtIjcrOL6S+yi5So7LzC6mvsovUqOz8Quqr7CI1Kju/kPoqu0iNys4vpL7KLlKj\nsvMLqa+yi9So7PxC6qvsIjUqO7+Q+iq7SI3Kzi+kvsouUqOy8wupr7KL1Kjs/ELqq+wiNSo7\nv5D6KrtIjcrOL6S+yi5So7LzC6mvsovUqOz8Quqr7CI1Kju/kPoqu0iNys4vpL7KLlKjsvML\nqa9Nb7tpRV1//cr++G8T0j5CevG2blhZ69at8E9g60r/CiQR0ljK/tZqpQlpLJs3r/TPoCgh\njWX79pX+GRQlJAggJAggJAiwEiHtvO2WB+dPCCnL1qqvn1da15Auu2XPx2s3TNN06p1zB4WU\nxevvJF1Dmi7a/eHr07q/e99bpsPunzkopCxCStI/pBMPu2f3x6+seu/MQSFlEVKS7iE9PF28\n9/mcY2YOCimLkJJ0D+mh6bq9z5esnTkopCxuNiTpHtKuw67Y+3zh4TMHhZTFzYYkfUM6f9t9\nv/7Qax7b/Xjv+rNnDgqJJdM3pGd8ebH44vqDbps5KCSWTNeQPnv11i0XnHPGzYvFNcd8be6g\nkFgyK3RF6JGnnvNNT92y77+j3CKkJG42JOka0s9/M/PJB1+57z+jPFhISbz+TtL3z0gvv3xn\n00G/tcsipCR9Q9q4+qRvtxwUUhYhJen8daRtr5/O+u7+Dwopi5CS9P6C7K6rXzm99fO/289B\nIWVxsyFJ/0urj15xxLT6DZsv/8TMQSFlcbMhSf+QFovHrjt7/TTNfS9CYsmsREh7ftg7v/Sp\nmYNCYsmsUEj7ISSWTNeQ1l3SeFBIWdxsSOJvERqL199JhDQWISUR0liElERIYxFSEiGNxc2G\nJEIai5sNSYQEAYQEAYQEAYQ0FjcbkghpLF5/JxHSWISUREhjEVISIY1FSEmENBY3G5IIaSxu\nNiQREgQQEgQQEgQQ0ljcbEgipLF4/Z1ESGMRUhIhjUVISYQ0FiElEdJY3GxIIqSxuNmQREgQ\nQEgQQEgQQEhjcbMhiZDG4vV3EiGNRUhJhDQWISUR0liElERIY3GzIYmQxuJmQxIhQQAhQQAh\nQQAhjcXNhiRCGovX30mENBYhJRHSWISUREhjEVISIY3FzYYkQhqLmw1JhAQBhAQBhAQBhDQW\nNxuSCGksXn8nEdJYhJRESGMRUhIhjUVISYQ0FjcbkghpLG42JBESBBASBBASBBDSWNxsSCKk\nsXj9nURIYxFSEiGNRUhJhDQWISUR0ljcbEgipLG42ZBESBBASBBASBBASGNxsyGJkMbi9XcS\nIY1FSEmENBYhJRHSWISUREhjcbMhiZDG4mZDEiFBACFBACFBACGNxc2GJEIai9ffSYQ0FiEl\nEdJYhJRESGMRUhIhjcXNhiRCGoubDUmEBAGEBAGEBAGENBY3G5IIaSxefycR0liElERIYxFS\nEiGNRUhJhDQWNxuSCGksbjYkERIEEBIEEBIE6B3S0w/cdOONNz+0n1NCyuJmQ5K+Ie344Kum\nvY679PG5c0LK4vV3kq4hbX/1dOKmrVdeecn5R08n75g5KKQsQkrSNaTNa2/409Oua1ZtmTko\npCxCStI1pKMu3Pd83rEzB4WURUhJuoa09qP7nj/yspmDQsriZkOSriEdf+6+53dunDkopCxu\nNiTpGtKWVR978pmnRz88XTRzUEgsma4h/faU6ZCzNn3g/ReccfB0+lwqQmLJ9P060s6rXrd6\nz5eR1p726V1z54TEkul+ReiJn91xx307n+cTf7zxhmf9g5CSuNmQpGtIP//NzCd/ceIJzzpy\neuLF/hjM8vo7SdeQppdf/nz/Lnqu709t53ihhJSkb0gbV5/07ZaDQsoipCR9Q7po2+uns767\n/4NCyiKkJJ1DWuy6+pXTWz//u/0cFFIWNxuS9A5psXj0iiOm1W/YfPknZg4KKYubDUn6h7RY\nPHbd2eunae57ERJLZiVC2vPD3vmlT80cFBJLZoVC2g8hsWS6hrTuksaDQsriZkOSl+bfIiSk\nLF5/JxHSWISUREhjEVISIY1FSEmEtFwu23Bg1q07wO/gspX+J/ASJaTlsv2mA3P99Qf4HbgZ\n8fyEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGEBAGE\nBAGEBAGEBAGEBAFemiFtm2DJbHvBa54f0uKu22Gp3PXCt7xDSFCfkCCAkCCAkCCAkCCAkCCA\nkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCA\nkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCA\nkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCA\nkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCA\nkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCA\nkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCAkCCA\nkCCAkCCAkCCAkCCAkCCAkCCAkCDA/wJog01Nj3a0VwAAAABJRU5ErkJggg==",
"text/plain": [
"plot without title"
]
},
"metadata": {
"tags": [],
"image/png": {
"width": 420,
"height": 420
}
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "E7lEUhrF74FV",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 437
},
"outputId": "dfd5170c-ba17-4659-f21c-5b6ee7e80576"
},
"source": [
"#Gráfica de dispersión\n",
"#Scatter plot\n",
"#dat$temp = característica y dat$chirridos es la etiqueta\n",
"\n",
"plot(dat$temp,dat$chirridos, xlab =\"Temp\", ylab=\"Chirridos\")"
],
"execution_count": 39,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUW\nFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJyco\nKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6\nOjo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tM\nTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1e\nXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29w\ncHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGC\ngoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OU\nlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWm\npqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4\nuLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc\n3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u\n7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////i\nsF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3dCXyU9Z3H8X9uINz3IQER76pc\nCq4oFHHx4qoKoq5QomVFK1SxqahFLIpHFWnVYlnrbV1LVdZ11bUgyiG3gghURFDcgNz3EUKe\nnSNXIX2YZL7z/J9n8nm/Xs7zJ/kz+TGdTxmemUyMAyBuxvYAQDIgJECAkAABQgIECAkQICRA\ngJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQ\nAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAAB\nQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUIC\nBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQI\nCRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQ\nICRAgJAAAUICBAgJECAkQICQAAFCAgQ8COnzxUCgfF75e3niQ1pkgIBZVOm7eeJDmmsOJfxr\nAEKHzNxK/x5CAo5CSIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgIDXIRWt/fDNN2d8d5xd\nhISA8Tak7Xc2jb7AL+eB/W77CAkB42lI+Seak4eNe/TRe4e0NOdsd9lISAgYT0PKzXijeFX4\ndMool42EhIDxNKTmw8vWg1u7bCQkBIynIWU8WLa+P9NlIyEhYDwNqc2gsnX/ti4bCQkVWzdu\nYO/RH9ueogKehjQq5bGD0dXeX5s8l42EhAq9UrPT7WMvS/v3I7YHOYanIe3oZOpcPOy2W4f2\nrGUu3OOykZBQkcXpT4YPn9Z/2PYkx/D2eaRDT3RICz+NlNHtj4Vu+wgJFblmYPQ4peFhu4Mc\ny/OXCB34asmSNRVlcuSjD0s9SUioQPOXo8fNpgpvfpVY1l5rt33dUR/4pkmDUrXMXsXXQJLJ\nfjd6LEz5xO4gx/I2pGWXt+n+dPRBXZ7btUwxbv+CQnV16uTocZVZZ3WOCnga0pwsUyvD9Ii8\nOIiQUGl5px+IHP/9HMuDHMvTkK7IeKvo4BMZ54YftxESKm1rm15rHGfnmIyPbE9yDE9Dan1D\n+HJG5uWFhISqWHeRadE+rfX7tuc4lrcvEfp15PCSuZ2QUDVf/vmP8/x4StfTkE7oFz3ebR4l\nJCQVT0O6PeX3BeFj0VAz+ueEhCTiaUhbc0zvyKLodmMICUnE2+eRtowcXbz660mEhCTiz3cR\nIiQEDCEBAoQECBASIEBIgAAhATHbMWfOjoo/Q0hAjDb0S0lLS+m3oaLPERIQm/zW3WcfPDi7\ne87GCj5JSEBscjtH3gPrQOfcCj5JSEBMCusWv+H2G3UreOceQgJistGsii5WmU3HfpaQgJjs\nNEuii8Vm57GfJSQgNqcUv3X9hFMq+CQhAbF5uu6i8GFR3Wcq+CQhAbEpys0a/uyzw7Nyiyr4\nJCEBsXr7qlNOuertCj9FSIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBA\nSIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiA\nACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAh\nAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEC\nhAQIEBIgQEiAACEBAp6HdHjDqm92Hm8TISFgvA3p0FPdMk1Iy6HzXfcREgLG05B2nWdqnt0t\no/31HVPMXW4bCQkB42lIvzCjQ4/qVrWZ7KwfYJ532UhICBhPQzrhisjhlbp7ncLOnVw2EhIC\nxtOQMh6IHFaZOY4zvqbLRkJCwHgaUotBkcM087Hj3N7IZSMhIWA8DWloytQix1neJnuvs7D+\npS4bCQkB42lI6xqalhedkWKecgozshe6bCQkBIy3zyOtHVzHpF84M7T65Rdu+wgJAeP5Kxv2\nHvknn1jfokGpWmZ3PF8D8Jq119ptXXPUBw6/9Uapm/kbCcFiLaQ8t2vhoR0ChpAAAUICBDwN\nqXM5zQkJScTTkFJTs0qlERKSiKch5dUpO1XHQzskE09DKujYpaBkTUhIJt6ebFhZc0zJkpCQ\nTDw+a7drW8lq1kSXbYSEgOFdhAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAg\nJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQICRA\ngJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQ\nAAFCAgQICVVV9HKfVq36vFpkew5fICRUUeHg7NtfffXn2UMKbU/iB4SEKnq84Yrw4YsGT9qe\nxA8ICVV04mPR4yMn2Z3DHwgJVbPNfB5dLDE77U7iC4SEqtloVkUXX5of7E7iC4SEqims/3p0\n8WqDI3Yn8QVCQhWNOHtf+LD3RyNtT+IHhIQq2nxSl/e3b3+vc/sttifxA0JCVf1wXbox6dfz\nL6QwQkLVHfzss4O2Z/AJQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAAB\nQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABKyEVrFjs/r6ChISA8Tak\nGT3bXjbfeb+lMXWfdttHSAgYT0Oal27qpmbPq9v6xkENzHsuGwkJAeNpSH2bL3M2/zjnnP2O\ns73tpS4bCQkB42lIjX4TulhkXgivJzR02UhICBhPQ0p/KXSRb94Nr59Ld9lISAgYT0NqNi50\nMctMDq/HNnPZSEgIGE9DurbhzEPLzzo953vHWdngapeNhISA8TSkVXWMMQ1Xtqn14/PT0xa4\nbCQkBIy3zyN9MaTrsNXOF+elmHZvu+0jJASMnZcI7dlcwcfuyyvVh5AQLNZea7d1zVEf2HRF\n71Knm92KrwF4xVpIeW7XwkM7BAwhAQKEBAh4GlLncpoTEpKIpyGlpmaVSiMkJBFPQ8qrU3aq\njod2SCaehlTQsUtByZqQkEy8PdmwsuaYkiUhIZl4fNZu17aS1ayJLtsICQHDuwgBAoQECBAS\nIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBA\nSIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEC8YdUGPrv4Pyl\nRaKBIggJARNvSIUjr3acde2M6a686xMSAibekCaaOxzn8pRbRqa6/UzYyiIkBEy8If3oJ47z\nfUqu4wzvoBuKkBA08YZUe4rjPGf+5jhP19cNRUgImnhDqhMKaUj2Icd5Kls3FCEhaOJ+aHed\ns6n2wNDi5lNlMxESAifekB4y57c0sxznxcy7dEMREoIm3pAODKtZ73ehY4uztstmIiQEjuqV\nDZ8ejn+WMoSEgBGEtGXeh/N3iMYpRkgImLhDmt3VhKRc/IVsJIeQEDjxhrQgK6177m0/7ZpS\nd7VuKEJC0MQbUt8TVkWOS5sOEU0URkgImHhDavRQ8eL+ZpJ5oggJARNvSOkvFS9eyJDME0VI\nCJh4Q2p5d/Hil60k80QREgIm3pCG1X47/C19RW9m3ySbiZAQOPGGtK6pad6rb6/mpsUG3VCE\nhKCJ+3mk74bWM8Y0vClfNpJDSAgcwSsbivLXbBRNU4KQEDC8ixAgEE9IXf9BR+FUhISAiSek\ntLCM8CvtQv/Vay2cipAQMPE+tNt+4a2fH3B2z7m2107dUISEoIk3pOGDihdX5ErmiSIkBEy8\nITV5rnjxWBPJPFGEhICJN6Ssh4sXv8qSzBNFSAiYeEPq2Gph5Lig6TmiicIICQETb0jvpJn2\nl/S9pL1JeUM3FCEhaOL/VvNLaxhjMnu+LxvJISQEjuCVDUe+/2qD9D2ECAmBE09IG7eH/isj\nnIqQEDDxhGT6hP4rI5yKkKwp+sH2BMEUT0iDJ4b+KyOcipAsmdO7tql76SLbYwQQr/5GmVfT\nb3x3xX8Nyphue5DgiTek6St0s5QhJCs21n48cvx1I/E751YD8YZU4+F/ui0OhGTFpHZHIseC\nZn+yPEnwxBtS78uO6IYpRUhW3HR98eLKO63OEUTxhrRpyKWvLV4ToRuKkOy4mZCqLN6QOP2d\nRJ7koV2VxRvS4H8bnltMNxQh2cHJhqrj9DfKcPq7yjj9jXJ4QraqOP2drKZf1+Hcm+YdZ1P+\n2N6nXfnY3nIf4SVCVcPp7+RUeEPWDZMe6Z/2gOuuOQ3PGvuHO044+VuPpkpinP5OThMbfR4+\nvJPxXy6bdjS5pTB02N2ra5E3UyUxTn8npcJmT0UXIy9y2TU551DkuCH948SPlOQ8Pf29bluM\nX4GQ4vS1WR9dvFvD5S+bISX/m3V+NOETJTtPT3+bGhMOxbSRkOK03BT/f9YnKS7fvNx/dPGi\n57hED5T0PP0OWdM27fSPYvkKhBSnHWmzo4spbu8kPbpP9Hik+QsJnyjZefodsiZvUUdz8ezj\nbySkeF16ReRs6r7T73DZNDdtQeQ4NXuzFzMlNU+/Q9bkOYWTmpiLXjze+4QTUrxW1r9qZdHh\n+eef5PrP0txGr+xxtjyS+Xuvxkpe3v4bKS90sXdiI5N2bu6E37lsJKS4Le9qamel9Ps/102H\nx9VOaWiaP+/JRMnN+5BCjzde7pvt/lCQkATW/8+Hm467ae/CN5cVxHBlnz588wMf8GzTPxdv\nSEWv9O18ZlQMvzGv9Mt+9vozLhsJyV/2XZV63vUXZV2g/hGnSSTekMYbk1YvKobfmHf8PRGE\n5C/XtlseutzQ9dxC25P4Vrwhtc5ZGvtf+Fn3xriRkHxlWcrSyHFT7WmWJ/GveEPK0D0n/t3a\nUhMIyU9+e1bx4icjrM7hZ/GGlPNIFb/w1qNf5Pp1SrnnpAjJT+4ufuLWue0qq3P4WbwhPdQl\nlnM+Fcg75qxdPn8j+dQTJSeSBtxidQ4/iyek8PdOfD2s+1srqvJtFMeGVA7/RvKVL1PmR44b\nar1teRL/iuslQv+ocldCSAEy7IRwSV916J6I7+JMDvGElPuPjv8bO5fTnJCC4+DQlDP7dUr7\n1622B/EvT1/ZkJqaVSqNkIJk+dOjH6/8PaUaiTOkH4rfXeOpmN4ILa9O2T+keGiHZBJfSB/X\n7x05LjOt1sbwGws6lp3jIyQkk7hCym+c/lBkUfS71JMPxPA7V9YcU7IkJCSTuEIab6aWLCeZ\nKbH81l2l3x4za6LLNkJCwMQVUqeTSk+HHj6hm2iiMEJCwMQVUuPryj54dR3JPFGEhICJK6TM\nn5d9cESmZJ4oQkLAxBVSi/5lH/xxK8k8UYSEgIkrpH61S5/qXpOufGEwISFg4grpL2Zg8dsP\n7jrPvCObiZAQOHGFVNTbdH5zt+Ns/o82ZqByKkJCwMT3yoYdlxmTUr+OMWbwfuVUhISAifdF\nq/8zpF12nVN/+oluojBCQsDwM2QBAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQ\nICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAk\nQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECA\nkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAnutj45rP+v\n5tiewvcICa7+1ujEoaN7peYW2h7E5wgJbtbXvuNw6LCw8b22J/E5QoKbn3crihxfq7nX8iQ+\nR0hwc/bj0eOB9Jl2B/E7QoKbnBeLFw3etDqH7xES3HS7P3rcljrf7iB+R0hw82Db6L+NJrTg\ntJ0rQoKb3e17rA3dSyal/9n2JD5HSHD17UUp7Tpn13/B9hx+R0g4jqXPPf7eLttD+B4hAQKE\nBAgQEiBASICAjZAKl8/9zn0HISFgvA1p7q2hi5ebGWPO+dhtHyEhYDwN6aPM2kXOX0zta0Ze\nkpq12GUjISFgPA2pZ9M1jnNim/zQcn7Nvi4bCQkB42lIdcc4zk4zObK+ub7LRkJCwHgaUvZ9\njnMw5a+R9fgaLhsTEdK+xSsK5FfqZ/sXf1G9/sBWeRrSBSfvc5x/GRNeHjznHJeN+pDW90s1\nJmvETvHV+te3/cN/4J9Vnz+wZZ6G9I7p9MHhJS1e3Fcwv5d51mWjPKR1zXt+tGvLW6d1rC7f\nML2+RY+Zu7a8fXoHHiN7w9vT31OzTc0z2pi0NJNyR5HLPnlIA3tEHuVszRmnvV7fuurCyB94\nW5v7bE9STXj8hOymx/q0qZPVqPPtS1y3qUPalTEjuph0svR6fWt3xofRxeST7A5SbfjnJUL5\n3TuXyjG7pde9zGyLLj5Kqx7f6PmF2RJdfJx62O4k1YW1kLauOeoD+x5/uNRA8d9Iq01+dPFe\nltsjyuTxlfk+uvggs3r8ga2zFlKe27WoH9oV1C9+M5w7z5der28VNHw+urirq9U5qo/qEZKT\nd8L68GFuzde01+tbd7daFz7Mq/mK5UGqi2oS0oFLGtz1ny/+LPM27dX618E+9ceE/sBZI3lk\n5w1PQ+pcTnNPQ3IKp1zctM2V08XX6mOFz17crM0Vb9seo9rwNKTU1KxSad6GBCSUpyHl1Sk7\nVeftQzsgsTwNqaBjl9KXURISkom3JxtW1hxTsiQkJBOPz9rt2laymjXRZRshIWD88xKh8ggJ\nAUNIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBA\nSIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiA\nACEBAoSks9/2ALCHkETe71U/pe1N/2d7DFhCSBqPpo94a95z5zb50vYgsIOQJJam/SV8ONy/\nc5HtUWAFIUmM7B09fpe60O4gsISQJC58oHjR7jmrc8AWQpK44MHixclTrc4BWwhJ4qZ+0eMP\naXPsDgJLCEliTuqMyHHYaYWWJ4EdhKQxpsa4Bevevbz2AtuDwA5CEnnxjFRTq+9K22PAkmCF\n9OnIHj1GfprwL181+9YfsT0CrAlUSPekXT5+/OVp9yT86wOVFKSQXqnxQfjwfo1XEj4AUDlB\nCumssdHj2LMTPgBQOQEKabcpPiU23+xO+ARApQQopHyzOrpYbfITPgFQKQEK6XCt6dHF9FqH\nEz4BUCkBCsm5tkfkZQOFPa5N+ABA5QQppLWNB3ztOGsGNP4m4QMAlROkkJwvzzONGpmufBcq\nfCdQITnO6mnTVif8qwOVFrCQAH8iJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFC\nAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgRshHRo4czjvOkwISFg\nPA3pNzPDl1MaGGM6f+a2kZAQMJ6GZPJCF/9tsgaOuMDU+9plIyEhYLwP6eR6K0OXf035qctG\nQkLAeB7SZhP9SbADWrlsJCQEjOchfWdejqzvzXDZSEgIGM9DKqw3MbIe3tBlIyHFaPGIbmcP\nfqPI9hjwOKQhi9Zsubv9vtByVXZfl42EFJsn0i+bOHlYrYEFtgeBtyFFTXOcV7NTF7psJKSY\nzEx7PXxY1Xys7UngaUjPTxo3auiAnjMc5+lW77htJKSYXPlv0eNLdQ/aHQS2XiK058ixk7zw\nbKnrCSkWTV6PHreZpXYHgb3X2m1dc9QHvjutXalmZr/iayS7Wu9GjwVmjt1BYC+kPLdrmWsO\nKb5Gsjvzsejxc/O93UFASEF2f9udkePgCywPAkIKst1ndppd4Pz9huwltieBpyF1Lqc5IcVv\n8zWpmXVMx0W254C3IaWmZpVKIySFLTP+e63tGeB4HFJenbJTdTy0QzLxNKSCjl1KX8xCSEgm\n3p5sWFlzTMmSkJBMPD5rt2tbyWrWRJdthISA8ee7CBESAoaQAAFCAgQICRAgJECAkAABQgIE\nCAkQICRAgJAAAUICBAgJECAkQICQAAFCAgSCGtKWTQkfAohdIEPa/6vmxjS+fVfC5wBiFMSQ\n9nVrM3XFqhdP+dGOhA8CxCaIId3X+ofwYedptyV8ECA2QQyp9VPR42v1Dyd8EiAmAQxpjyl+\nZ9G15tuETwLEJIAh7TMLoouv+CEM8IsAhuS0L/5pJs81KUz4JEBMghjSo00ib3edn/OrhA8C\nxCaIIRVc1mjC32Y+2qL7voQPAsQmiCE5hU92yMz40UO8jAi+EciQQg4XHGcD4KWghgT4CiEB\nAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKE\nBAgQkif2fzzlja9sD4EEIiQvvN40/bTG5kp+plPyIiQPTEt/cJ/jLO9y1n7bkyBRCCnxCluN\nixx3tHjC6hxIIEJKvE9Tt0UXd19kdxAkDiEl3l8aFy/+1M7qHEggQkq8D7KKfyDaYx3sDoLE\nIaTE25n5VnTxL/yszqRFSB74RcsVocsjY2uttT0JEoWQPHDo6swB9408o967tgdBwhCSJ967\ntdc1D+bbngKJQ0iAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEB\nAoQECBASIEBIgIA/Q1pkgIBZVOm7eeJDcj5fHKNBnV72gfMusT1B2MmDbE8Q1miE7QnCUp+J\n9R6k8nnl7+UehBSzX/S3PUHYNbfaniDs/IdsTxCW86LtCcJSZ9ieIAaEdDRCKkNIMSOkoxFS\nGUKKGSEdjZDKEFLMCOlohFSGkGJGSEcjpDKEFDNCOhohlSGkmBHS0QipDCHFjJCORkhlCClm\nhHQ0QipDSDHzU0h519ieIOz6X9ieIKzHb21PENb+z7YnCKsx2/YEMfBTSLu22J4gbOtO2xOE\n5e+3PUHYt4dtTxD2TZHtCWLgp5CAwCIkQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAA\nAUICBAgJECAkQICQAAFCAgR8EFJWyY8AWOc4O0a1yWiRm293iueLV7+xMMaqG5qnNx6wILy0\nd1uUm8LmbbF+eMuMnDt2h5cWb4sY+SCke/Mi2tbY5hzqZK56cHjGidutTjHJDImsZ3o/xYo6\nDX/90m+ap89wbN4W5aaweFt80zjlmgcuNd0KrN4WsfJBSFGL0yY4zhPmkdDyP82dVqcYV4Uf\njyNynQnfY5eZnlZvi3JTWLwtrjVTQ5ejzNM+uF8cn19CKux4+iHH6VDnYPgX7Zta+i796BSj\nzBo7X95xupqC8KFuW6u3RbkpLN4WdVuG/+Q7anazf7+IgV9CmmQ+cpwDaRdHfjHMrLU4hTPU\nbCncYOeNWIaaL0KXW1Ivs3pblE1h8bbYay6KHM/OLLR+v4iBT0La2yR8U31lhkV+Nc58aHEK\nZ4C5p4Exp7xqYYKVDc6ZvXHpxbXmW70tyqaweFscST8jcuxmNti+X8TCJyE9bD4JXS4x0Tdn\nfMy8aXEKp6dpN/Glu+uaKRZGWH2GMSZnnuXbonQKm7fFhSnLw6NkmFW27xex8EdI+xtH/hpf\nYm6L/PJR85bFKZwZ0/aGLr/Mauj9j2NfeWLrx9957sx6H1q9LcqmsHlbzDRt31r9eruTzDeW\n7xcx8UdIr5jIe+OuMUMjv7zX/M3iFCUGmoWej9Ct1vehy32tWhXYvC3Kpij5iI3bwvl9LWNq\nT7re7LB8v4iJP0Lqm7YjfDiU3jPyyyHmW4tTlBhhPH/yZE/KjyPHG80Ki7dFuSlKPmThtgjZ\nPeuT3U6nFrbvFzHxRUiHsrtEF11r7QtdHmnZ2uYUe555LXLs7v05os3m/MhxkFls8bYoN4XF\n28JxCsMX36bcaPl+ERtfhPSZyY0u/mjuD13+wYy3OcWRVrVXhQ5vm47ez3Bixt9Dlzsa1j1o\n87Yom8LmbfHLjNDDySM/MZ9avl/ExhchvW4mRBeFF5r+469NOWuf1Smmp2Tn3jcwpe4S72d4\nM7XRPX968MTws/kWb4tyU1i8LZbVqj9qfBdzl2P5fhEbX4T0BzO5eLVnTJuMVrduszzFvMvq\np7e80cpT+vMGNElv0Pvd8NLibVFuCou3xad9Gtbo9KfI0ub9Ija+CAkIOkICBAgJECAkQICQ\nAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAAB\nQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECCkA7jSlLrA9CypG\nSAEwfVRII3Nb6HLy8XfDBkIKijPNAdsj4J8jpKAoDmnTyJyMxv0XhlZDzI6fNa3ZdcG+US2z\nz18S+sAAk5/bNPPUZ+zOWU0RUlBEQ9rcpl7eyw+dkDXLcYaa3uOXvlAj58q8xdPqNytwnMHm\nvLy5sy8xU22PWh0RUlBEQ7olfVHo8rs6XRwn19wSWg4yV4cuR5m54ZCGhJY7s9panbOaIqSg\niIRU1LjTxrA+Zk8opA9DH77HvBy6fMZMC4c0Pbyxt8m3O2m1REhBEQlpU+l58C9DIa0MfXic\nmRm6nGr+HA5pVXjjULPU7qTVEiEFRSSkNabDe1E7QiGtccIhzXZKQ/o2vHFkJC14i5CCovhv\npA6lH6ggpPBfUc71ZpmlEd+ONIwAAADrSURBVKszQgqK6MmGxjV2hH+x2akwpL+GP3ee2Wxv\nymqLkIKi+KydGRu63Nz8ygpDuiK0/HvKqVbnrKYIKSiiIf2QY376wkM5Gf9bYUi9r5zyTFvz\nquVJqyVCCoriVzZsvKV1ev1+C5wKQ1ozumXmGS9YHbO6IqTkMdhssD1C9UVIyYOQLCKk5EFI\nFhFS8iAkiwgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQ\nAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAIH/B4oJwi7P97hdAAAA\nAElFTkSuQmCC",
"text/plain": [
"plot without title"
]
},
"metadata": {
"tags": [],
"image/png": {
"width": 420,
"height": 420
}
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "T16PyFEo8cxY",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"outputId": "fb5fd27e-af03-461d-f056-21502fffbb11"
},
"source": [
"#Correlación entre dos variables\n",
"#Si es muy cercano a uno, hay mucha correlación.\n",
"#Si es cercano a cero, las variables son independientes.\n",
"#Si la correlación es negativa, hay una relación linal pero cuando una crece, la otra decrece.\n",
"cor(dat$temp, dat$chirridos)"
],
"execution_count": 40,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"[1] 0.8351438"
],
"text/latex": "0.835143787031155",
"text/markdown": "0.835143787031155",
"text/html": [
"0.835143787031155"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "j4IasAkO9L1l",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 323
},
"outputId": "00846f1c-6d79-4ae3-cdaf-a6d4f478e40a"
},
"source": [
"#Linear model\n",
"r <- lm(chirridos ~ temp, data = dat)\n",
"\n",
"#Resumen estadístico\n",
"summary(r)"
],
"execution_count": 51,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"\n",
"Call:\n",
"lm(formula = chirridos ~ temp, data = dat)\n",
"\n",
"Residuals:\n",
" Min 1Q Median 3Q Max \n",
"-1.56009 -0.57930 0.03129 0.59020 1.53259 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error t value Pr(>|t|) \n",
"(Intercept) -0.30914 3.10858 -0.099 0.922300 \n",
"temp 0.21192 0.03871 5.475 0.000107 ***\n",
"---\n",
"Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n",
"\n",
"Residual standard error: 0.9715 on 13 degrees of freedom\n",
"Multiple R-squared: 0.6975,\tAdjusted R-squared: 0.6742 \n",
"F-statistic: 29.97 on 1 and 13 DF, p-value: 0.0001067\n"
]
},
"metadata": {
"tags": []
}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dO6DJPhD-lb3",
"colab_type": "text"
},
"source": [
"# *chirridos* = 0.31 + 0.21 *temp*"
]
},
{
"cell_type": "code",
"metadata": {
"id": "hf4SiHD1-65g",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 437
},
"outputId": "12301f5e-cada-423e-d7ab-88d5407a1b63"
},
"source": [
"#Gráfica de dispersión con línea de modelo lineal\n",
"plot(dat$temp,dat$chirridos)\n",
"abline(r,col=\"red\")"
],
"execution_count": 50,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdaVxV1eLG8QdJEEe0HMgRhxS1qyUiCs6algMHJ7IcsDQH8jZoV5rU5rDh\n5tX8K5lZjmhaKiXmrIBMOaZ+TE0rnFLUUIzR83/BvWROqHHOPmfz+746rL05+3nR9T7stfda\nLlarVQAAAHB+JYwOAAAAgKJBsQMAADAJih0AAIBJUOwAAABMgmIHAABgEhQ7AAAAk6DYAQAA\nmATFDgAAwCQodgAAACZBsQMAADAJih0AAIBJUOwAAABMgmIHAABgEhQ7AAAAk6DYAQAAmATF\nDgAAwCQodgAAACZBsQMAADAJih0AAIBJUOwAAABMgmIHAABgEhQ7AAAAk6DYAQAAmATFDgAA\nwCQodgAAACZBsQMAADAJih0AAIBJUOwAAABMgmIHAABgEhQ7AAAAk6DYAQAAmATFDgAAwCQo\ndgAAACZBsQMAADAJih0AAIBJUOwAAABMgmIHAABgEhQ7AAAAk6DYAQAAmATFDgAAwCQodgAA\nACZBsQMAADAJih0AAIBJUOwAAABMgmIHAABgEhQ7AAAAk6DYAQAAmATFDgAAwCQodgAAACZB\nsQMAADAJih0AAIBJUOwAAABMgmIHAABgEhQ7AAAAk6DYAQAAmATFDgAAwCQodgAAACZBsQMA\nADAJih0AAIBJUOwAAABMgmIHAABgEhQ7AAAAk6DYAQAAmATFDgAAwCQodgAAACZBsQMAADAJ\nih0AAIBJUOwAAABMgmIHAABgEhQ7AAAAk6DYAQAAmATFDgAAwCQodgAAACZBsQMAADAJih0A\nAIBJUOwAAABMgmIHAABgEhQ7AAAAk6DYAQAAmATFDgAAwCQodgAAACZBsQMAADAJih0AAIBJ\nUOwAAABMgmIHAABgEhQ7AAAAk6DYAQAAmATFDgAAwCQodgAAACZBsQMAADAJih0AAIBJUOwA\nAABMgmIHAABgEhQ7AAAAk6DYAQAAmATFDgAAwCTuMjqAc9i1a1dubq7RKQAAgEO46667mjVr\nZnSK66DYFS4lJaVly5ZGpwAAAA4kOTnZ19fX6BRXo9gVLjs7W1JWVpabm5vRWQAAgMGys7Pd\n3d3z64Gj4Rk7AAAAk6DYAQAAmATFDgAAwCQodgAAACZBsQMAADAJih0AAIBJUOwAAABMgmIH\nAABgEhQ7AAAAk6DYAQAAmITzbSlmtVqPHDny008/XbhwQVKFChUaNGhQs2ZNo3MBAAAYzJmK\n3blz595666158+b99ttvVx2qVavW8OHDx48f7+HhYUg2AAAAwzlNsTtx4kRAQMCRI0caNGjw\nyCOP1K5du0yZMpLS09MPHz68efPmiRMnLlu2bOPGjRUrVjQ6LAAAgAGcpti9+uqrqampS5Ys\n6d+//7VH8/LyZs2a9fTTT7/22msfffSR/eMBAAAYzmlenvjmm28GDx583VYnydXVdcyYMQMG\nDFi+fLmdgwEAADgIpyl2aWlp9erVu/k5Pj4+p06dsk8eAAAAR+M0U7H33nvvrl27bn7Ojh07\n7r33XvvkAQDgthw9enTu3Lm7d+++cOFC06ZNg4OD27VrZ3QomI3T3LGzWCxLly59//33s7Ky\nrj2akZExadKkFStWhISE2D8bAAA3t2DBgsaNG69atapmzZp+fn4HDhzo1KnT6NGjL1++bHQ0\nmIqL1Wo1OsMtOX/+fOfOnbdv316uXDk/P7+aNWuWLVvWarVevHjx559/TkpKunTpUtu2bb/9\n9tuyZcsW7aXj4+MDAgKysrLc3NyK9psBAMXB999/7+/v//777z/zzDMFgwkJCQ8//HB4ePiE\nCRMMzIY7kJ2d7e7uHhcX16ZNG6OzXM1pip2k7Ozsjz/++IsvvtizZ09eXl7BeMmSJVu0aPHE\nE0888cQTrq6uRX5dih0A4O8YMGBAbm7uta/3zZo166WXXjp16tRddznNk1EQxa7IZWZm/vrr\nr/k7T5QvX75WrVp3XLkuX768ZcuW3Nzcm5yzd+/eZ599lmIHALgzXl5e77333qBBg64aP336\ndJUqVXbu3NmsWTNDguHOOHKxc8o/EUqVKtWgQYNrx8+dO/f777/XqVPn1r/q559/zv9D6ibn\n5D/Vl5OTQ7EDANyBCxcuVKpU6drxSpUqubi4pKen2z8SzMppXp6QtHv37h49etSpU6dt27Yz\nZsy4cjY2X0REhLe39219p7e392+//Xb2pj788ENJznhrEwDgCGrUqHHo0KFrxw8ePGi1Wtnu\nHEXIaYpdXFycn5/ft99+e/r06cTExLCwsM6dO587d87oXAAAFMJiscycOTMzM/Oq8alTpzZr\n1uy2JpqAm3OaYvfOO+9cvnz5q6++unjx4oULFz788MP4+Phu3bplZGQYHQ0AgJt54YUXLl26\n1KNHj4L7dr///vsLL7zw6aefsg0mipbTFLvdu3eHhIRYLBYXFxd3d/fnnnsuJiZm165dAwYM\nuHZOFgAAx3H33Xdv2rQpNze3QYMG9957b4MGDe6+++6oqKhVq1Z16NDB6HQwFad5eeLkyZN1\n69a9cqRTp06zZ88eMmTI888/P3XqVKOCAQBQqDp16mzevHnfvn0FO0+0aNGCd/JQ5Jym2FWt\nWnXnzp1XDQ4ePHj//v3vvPNOjRo1XnjhBUOCAQBwixo3bty4cWOjU8DMnKbY9enTZ9q0adOn\nTx85cmTJkiULxt96663jx4//61//On78OHOyAACgOHOaYjdx4sSvv/567NixK1asWLt2bcG4\ni4vLZ599VqFCBZ4/BQAAxZzTvDxx9913f//992PGjGnatOlVh1xcXKZOnbps2bJ69eoZkg0A\nAMAROM0dO0n33HPPxx9/fKOjffr06dOnjz3zAAAAOBSnuWMHAACAm6PYAQAAmATFDgAAwCQo\ndgAAACbhTC9PAAAA3IHz58/v3btXUpMmTTw9PY2OY0PcsQMAAKaVmpoaFBRUqVKl9u3bt2/f\nvlKlSkFBQampqUbnshWKHQAAMKcTJ060adPm7NmzW7ZsycjIyMjI2LJly9mzZwMCAk6ePGl0\nOpug2AEAAHN69dVXq1Spsm7dusDAQHd3d3d398DAwLVr11auXPmVV14xOp1NUOwAAIAJ5eXl\nLV26dMKECe7u7leOlypVasKECUuXLjXlFvMUOwAAYEKnT59OT0+///77rz10//33p6ennzlz\nxv6pbI1iBwAATMjDw0PSpUuXrj2UkZEhqVSpUvbOZHsUOwAAYEIVKlS47777YmJirj0UExNz\n3333VahQwf6pbI1iBwAAzOmZZ56JiIhISUm5cjAlJWXKlCnPPvusUalsigWKAQCAOY0ePXr7\n9u2BgYGPP/54q1atJCUmJi5YsGDQoEGjRo0yOp1NUOwAAIA5ubi4zJ49u1evXvPmzfvggw8k\n3X///VFRUUFBQUZHsxWKHQAAMLOgoCATN7mr8IwdAACASVDsAAAATIJiBwAAYBIUOwAAAJOg\n2AEAAJgExQ4AAMAkKHYAAAC3x2GXi6PYAQAA3IYSn332odEZboRiBwAAcGtycjR27F1jx8YZ\nHeRGKHYAAAC3IC1N3btr8eLcb76JMjrLjTjsHDEAAIDD2L1bFosqVFBy8uV77zU6zQ1xxw4A\nAOCmlixRmzby81NcnOrUMTrNzVDsAAAAbsBqVUSEHn9cr76qRYtUurTRgQrBVCwAAMD1XLig\nwYO1caOWLVPv3kanuSUUOwAAgGscPCiLRbm5SkiQj4/RaW4VU7EAAAB/tXq1/PxUp46Skpyo\n1YliBwAA8Kf8h+p69dLIkVq1ShUqGB3o9jAVCwAAIEnKzNRTT+mrr7R4sfr1MzrNnaDYAQAA\nSKmpCg7WqVPatEktWhid5g4xFQsAAIq9rVvl66vSpZWS4rytThQ7AABQ3EVGqnNnBQVp3TpV\nqWJ0mr+FqVgAAFBcZWUpLEzz52vmTD3xhNFpigDFDgAAFEsnTqhPH/3yizZvVqtWRqcpGkzF\nAgCA4mf7dvn7y8VFKSmmaXWi2AEAgGJn4UIFBqpdO61fLy8vo9MUJYodAAAoNvLyFB6uoUM1\naZLmzZOHh9GBihjP2AEAgOLh7FmFhGjHDsXEqHNno9PYBMUOAAAUA3v2yGJR2bJKTpa3t9Fp\nbIWpWAAAYHarVikwUL6+io83casTxQ4AAJiZ1aqICAUHa/RoLV6sMmWMDmRbTMUCAACTunBB\nQ4dq3TotW6agIKPT2APFDgAAmNGhQ7JYlJ2thAQ1bmx0GjthKhYAAJjOmjXy81PNmkpKKj6t\nThQ7AABgNlOnqmdPPfWUoqPl6Wl0GrtiKhYAAJhFZqZGjVJUlObM0eDBRqcxAMUOAACYwrFj\nCg7WiRPaulW+vkanMQZTsQAAwPnFxcnXV+7uSkkptq1OFDsAAOD0IiPVqZN699aGDapa1eg0\nRmIqFgAAOK3cXI0bp1mz9PHHGj7c6DTGo9gBAADndOaM+vfX3r1as0bt2xudxiFQ7AAAgBPa\nuVMWiypVUkqKatUyOo2j4Bk7AADgbBYvVkCAAgIUF0eruxLFDgAAOI+8PIWHa/BgTZyoBQvk\n4WF0IMfCVCwAAHASZ89q4EClpGj1anXpYnQaR0SxAwAAzuDAAVksKllSycmqW9foNA6KqVgA\nAODwvvlGrVqpfn3FxtLqboJiBwAAHJjVqogIBQVp1CitWKHy5Y0O5NCYigUAAI7q4kWFhmrN\nGi1dquBgo9M4AYodAABwSIcPy2JRZqYSEtSkidFpnANTsQAAwPFs3qzWrVW9upKSaHW3jmIH\nAAAcTGSkunZVcLCio1WxotFpnAlTsQAAwGFkZWnUKC1erE8+0dChRqdxPhQ7AADgGI4dU58+\nOnZMW7aoZUuj0zglpmIBAIADiI+Xr69KllRKCq3ujlHsAACA0T75RB07qndvbdigatWMTuPE\nKHYAAMA4ubkKD9eYMXrvPc2aJTc3owM5N56xAwAABklL04AB2r1b332njh2NTmMGFDsAAGCE\nXbtkscjTUykpql3b6DQmwVQsAACwu6gotWkjf3/FxdHqihDFDgAA2JHVqsmTNWiQJk7UokUq\nXdroQKbCVCwAALCXCxc0eLA2btTy5erVy+g0JkSxAwAAdnHwoIKClJenxEQ1amR0GnNiKhYA\nANje6tXy81PdukpKotXZDsUOAADYktWqiAj16qWRI7VypSpUMDqQmTEVCwAAbCYjQ6GhiolR\nVJT69jU6jfk5ZbHLzc09efLkxYsX3d3dK1WqVIHuDwCAA/r1VwUH6/x5bdumpk2NTlMsONNU\nbHZ29scff9y6desyZcrUrFnTx8enbt26np6e1atXDw0NTUxMNDogAAD4n61b5eurMmVodfbk\nNMUuPT29bdu2Tz/99K5duxo1auTv71+yZMn69es//vjjVatW/eKLL/z9/f/1r38ZHRMAAEiR\nkercWRaL1q1T5cpGpylGnKbYTZ48OSkp6dlnnz1x4sSuXbu2bdu2e/funJwcPz+/7du3Hzly\nxGKxvPfee3PnzjU6KQAAxVhWlp58Uv/8p2bN0qxZKlnS6EDFi4vVajU6wy2pWbNms2bNoqOj\nrxxcsGDBmDFjjh8/XqZMmby8vFatWlmt1u+//75oLz1r1qxRo0ZduHChbNmyRfvNAACYyvHj\n6ttXv/yi5cvVqpXRaWwlOzvb3d09Li6uTZs2Rme5mtPcsTt16lSra/4TadGiRXp6+s6dOyW5\nurr27t17//79RqQDAKDY275drVurRAmlpJi41Tk4pyl299xzzw8//HDV4N69eyXl5eXl/5iW\nllaaLecAALC/BQsUGKh27bR+vby8jE5TfDlNsXvooYeWLl06e/bsgrnjPXv2jBs3rkyZMi1a\ntJCUnJz8xRdftGzZ0tCYAAAUM7m5Cg9XaKgmTdK8eSpVyuhAxZrTFLvJkydXrFhxxIgRNWrU\naN++fZMmTZo1a/bzzz9HRETkP2AXEBCQk5Pz+uuvG50UAIBiIy1N3btr9mytWaMJE4xOA+cp\ndnXq1ElOTg4JCblw4cKWLVt+/PHHwMDADRs2hIWFSXJ1dX3uuecSEhK4YwcAgJ3s3q2WLXXm\njFJS1KmT0WkgOdFbsVfKyMjw8PAoUaIIWunPP//cunXrzMzMm5yTlZV16dKl9PT0cuXK/f0r\nAgBgBkuXatgw9eihOXNUpozRaezKkd+Kdcotxcrc4D+gtLS0c+fO1a9f/9a/qnr16jNmzMjJ\nybnJOWvXrv3kk09cXFxuLyUAAKZktWrKFL38sl55RZMmif9/dCROWexu5L333ouIiLite5B3\n3XWXxWK5+Tlnz5795JNP/l40AABM4cIFDRmi9eu1bJmCgoxOg6uZqtgBAAAbOnRIQUHKyVFi\nonx8jE6D63CalycAAICRYmLk56fatZWURKtzWE5zx87X17fQc44dO2aHJAAAFDtTp2rcOI0f\nr7ffVlG8vAgbcZpit2PHDkklb7qXcG5urr3iAABQPGRmauRILVmiuXM1aJDRaVAIpyndL7zw\nQpkyZX744YfMGxs/frzRMQEAMJHUVLVrp40bFRtLq3MKTlPs3njjjfr16w8cOPDmS5MAAICi\nERsrX1+VKqWUFLVoYXQa3BKnKXYlS5ZcsGDB3r17X3rpJaOzAABgdpGR6txZQUFav15Vqhid\nBrfKaZ6xk+Tj43Py5MmbPEj38MMPe3p62jMSAABmk52tsDDNm6cZM/Tkk0anwe1xpmInqXz5\n8jc52r59+/bt29stDAAAZnP6tAYM0IED2rRJ/v5Gp8Ftc5qpWAAAYFs7dqhlS6WnKyGBVuek\nKHYAAEBatEiBgQoMVGysatUyOg3uEMUOAIDiLS9P4eEaMkQTJ2r+fHl4GB0Id87JnrEDAABF\n6exZPfqotm/X6tXq0sXoNPi7KHYAABRXBw4oKEju7kpOlre30WlQBJiKBQCgWIqOVqtWuu8+\nbd1KqzMNih0AAMWM1aqICFksGjVKX3+tmy4lBufCVCwAAMXJxYsaOlRr1+rLL2WxGJ0GRYxi\nBwBAsXH4sCwWZWZq2zY1aWJ0GhQ9pmIBACgevvtOLVuqenUlJdHqzIpiBwBAMRAZqR49NHiw\nvvlGFSsanQa2wlQsAACmlpWlUaO0eLE+/VRDhhidBrZFsQMAwLyOHVOfPjp+XFu2qGVLo9PA\n5piKBQDApOLj5eurkiWVkkKrKyYodgAAmFFkpDp2VO/e2rBBVasanQZ2QrEDAMBccnMVHq6w\nML3/vmbNkpub0YFgPzxjBwCAiZw5owEDtGeP1q5Vhw5Gp4G9UewAADCLnTsVHKyKFZWSotq1\njU4DAzAVCwCAKURFKSBArVsrNpZWV2xR7AAAcHJ5eQoP16BBmjhRCxeqdGmjA8EwTMUCAODM\n0tM1eLBiY/Xtt+ra1eg0MBjFDgAAp/Xjj7JYdPmy4uLUqJHRaWA8pmIBAHBO334rPz/VravE\nRFod8lHsAABwNlarIiLUu7dGjdLKlapQwehAcBRMxQIA4FQuXtSwYYqJ0ZIl6tPH6DRwLBQ7\nAACcx6+/KjhY589r2zY1bWp0GjgcpmIBAHASW7bI11dly9LqcCMUOwAAnEFkpLp0kcWidetU\nubLRaeCgmIoFAMCxZWVpzBgtWKDISIWGGp0GDo1iBwCAAzt+XH36KDVVW7bIz8/oNHB0TMUC\nAOCotm2Tr69cXZWSQqvDraDYAQDgkObPV+fO6tlTGzeqWjWj08A5UOwAAHAwubkKD9ewYZo0\nSZGRcnMzOhCcBs/YAQDgSNLSFBKiXbu0Zo06dTI6DZwMxQ4AAIexe7csFpUvr+Rk1aljdBo4\nH6ZiAQBwDEuXqk0b+fkpPp5WhztDsQMAwGhWqyIiNHCgxo/XokUqXdroQHBWTMUCAGCoCxc0\nZIg2bNDy5erd2+g0cG4UOwAAjHPwoCwW5eYqIUE+PkangdNjKhYAAIPExMjPT3XqKDGRVoci\nQbEDAMDu8h+q69lTI0dq1Sp5ehodCCbBVCwAAPaVmamnntLy5Vq8WP36GZ0GpkKxAwDAjlJT\nFRysU6e0ebNatDA6DcyGqVgAAOwlNla+vipdWikptDrYAsUOAAC7iIxUp04KCtK6dapSxeg0\nMCeKHQDgT1ardf78+d27d69Ro0aNGjW6d+++cOFCq9VqdC4nl5WlESP0z39q5kzNmqWSJY0O\nBNPiGTsAwH/l5eU9/vjj0dHRTz755JAhQyQlJCQ89dRT0dHR8+bNc3V1NTqgczp9Wv376+BB\nbdokf3+j08DkKHYAgP+aOnXq2rVrExMTmzRpkj/y2GOPPfXUU+3atZs+ffozzzxjbDyntGOH\nLBbdc48SElSzptFpYH5MxQIA/mv69OkvvvhiQavL17Rp0/Dw8GnTphmVyoktXKiAALVtq9hY\nWh3sg2IHAJCks2fPHjlypGvXrtce6tKly+HDh3///Xf7p3JWeXkKD9fQoZo0SfPny8PD6EAo\nLpiKBQBIUnZ2tiR3d/drD5UqVUpSVlaWvTM5qbNnFRKiHTsUE6POnY1Og+KFO3YAAEmqXLmy\np6fnrl27rj20c+fOihUr3nPPPfZP5Xz27FHLlvrtNyUn0+pgfxQ7AIAkubq6hoSEvP3225cu\nXbpyPCMj45133hk4cGCJEvxfRmGioxUYqBYtFB8vb2+j06A44n+lAID/euONNzIyMtq3b79m\nzZpz586dO3cuJiamffv2mZmZr732mtHpHJvVqogIWSwaPVpRUSpTxuhAKKYodgCA/6pcuXJ8\nfPx9993Xs2fPSpUqVapUqVevXo0aNYqLi2Me9mYuXlTfvnrrLX35pd59Vy4uRgdC8cXLEwCA\nP1WpUmXBggVz5szZv3+/JB8fn+u+ToE/HToki0VZWUpIUOPGRqdBcUexAwBczd3dvXnz5kan\ncAZr1mjgQLVqpUWL5OlpdBqAqVgAAO5MZKR69tTgwYqOptXBQXDHDgCA25SZqVGjFBWlTz/V\nkCFGpwH+RLEDAOB2HDum4GCdOKGtW+Xra3Qa4C+YigUA4JbFxcnXV+7uSkmh1cEBUewAALg1\nkZHq1Em9e2vDBlWtanQa4DqYigUAoDC5uRo3TjNn6uOPNXy40WmAG6LYAQBwU2fOaMAA/fCD\nvvtO7dsbnQa4GYodAAA3tnOnLBZVqqSUFNWqZXQaoBA8YwcAwA0sXqyAALVpo7g4Wh2cAsUO\nAIBr5OUpPFyDB2viRC1cKA8PowMBt4SpWAAA/io9XYMGKS5O336rrl2NTgPcBoodAABX+PFH\nBQXJalV8vBo2NDoNcHuYigUA4H+++UZ+fqpfX0lJtDo4I4odAACS1aqICAUFadQorVih8uWN\nDgTcCaZiAQDF3sWLCg3VmjVaulTBwUanAe4cxQ4AULwdPiyLRZmZSkhQkyZGpwH+FqZiAQDF\n2JYtat1a1asrKYlWBxOg2AEAiqvISHXpouBgRUerYkWj0wBFgKlYAEDxk5Wl0aO1aJEiIxUa\nanQaoMhQ7AAAxczx4+rTR6mp2rxZfn5GpwGKElOxAIDiZNs2+frqrruUkkKrg/lQ7AAAxcb8\n+erUSb16acMGVatmdBqg6FHsAADFQG6uwsM1bJgmT9asWXJzMzoQYBNO/4xdTk7Ojz/+mJmZ\n2bRpU3d3d6PjAAAcT1qaBgzQ7t367jt17Gh0GsCGnOmO3YYNGzp27Ojt7f3II48kJiZKWrNm\nTZ06dZo2berr61ulSpUZM2YYnREA4GB27VLLljp7VsnJtDqYntMUu23btnXr1m3Tpk1nz55d\ns2ZN586dt23bNmDAAFdX1yFDhuR/CAsLi4mJMTopAMBhLFmigAC1aqW4ONWpY3QawOacpti9\n884799xzz65du37//feTJ0/6+fk9+uij3t7eBw4c+Pzzz6Oiog4fPlynTp2pU6canRQA4ACs\nVk2erMcf16uvauFClS5tdCDAHpym2MXHx4eFhf3jH/+QVLly5SlTpvzyyy/PPfech4dH/gkV\nK1YcPnx4UlKSoTEBAA7gwgUFB+vf/9by5ZowQS4uRgcC7MRpXp74/fffa9euXfBj9erVJVWu\nXPnKc7y8vNLT0+2dDADgUA4eVFCQ8vKUmKhGjYxOA9iV09yxu/vuuw8fPlzw448//ijp0KFD\nV55z+PDhu+++297JAACOY/Vq+fnJ21tJSbQ6FENOU+w6duw4bdq0jRs3Zmdn79mzZ+zYsT4+\nPh988MGxY8fyT9i/f////d//tW3b1ticAABjWK2KiFCvXho5UqtWqUIFowMBBnCaqdhJkyZ9\n8803nTp1yv+xUqVKsbGxDz/88H333deqVavMzMzk5GSr1frCCy8YmxMAYIDMTI0Yoa+/VlSU\n+vY1Og1gGKe5Y9eoUaP4+PiBAwe2atUqNDQ0Pj7ex8cnOjq6adOmmzZt2rZtW61atZYtW+bH\nxn8AUNz8+qsCA7V5szZvptWhmHOaO3aSmjZtunDhwqtGEhMTL168+Mcff1z1IsUtunjx4pQp\nU7Kzs29yzs6dO+/gmwEA9rB1q/r1U6NGSklRlSpGpwEM5kzF7kbKli1btmxZSWlpaefOnatf\nv/6t/25GRsb27duzsrJuck7+Y3xWq/Vv5gQAFLHISD39tIYN0/TpKlnS6DSA8cxQ7Aq89957\nERERt9XAqlatGh0dffNzZs2aNWrUKBeWQQIAx5GVpbAwzZ+vWbM0bJjRaQBHYapiBwAoFo4f\nV9+++uUXbd6sVq2MTgM4EKd5eQIAAEnavl2tW8vFRSkptDrgKk5zx87X17fQcwrWtAMAmNOC\nBRoxQn37KjJS/9tSEkABpyl2O3bskFTyps/G5ubm2isOAMC+8vL08sv64AO9+aYmTDA6DeCg\nnGYq9oUXXihTpswPP/yQeWPjx483OiYAwAbS0tS9u2bPVkwMrQ64Cacpdm+88Ub9+vUHDhyY\nk5NjdBYAgB3t2aOWLfXbb0pOVufORqcBHJrTFLuSJUsuWLBg7969L730ktFZACJEF1AAACAA\nSURBVAD2smqVAgPVsqXi4+XtbXQawNE5zTN2knx8fE6ePHmTB+kefvhhT09Pe0YCANiK1aop\nU/Tyyxo/Xu+8IxYTBW6BMxU7SeXLl7/J0fbt27dv395uYQAAtnLhgoYO1bp1WrZMQUFGpwGc\nhpMVOwCA+R06JItF2dlKSFDjxkanAZyJ0zxjBwAoFtaskZ+fatVSUhKtDrhdFDsAgMOYOlU9\neuippxQdLZ6ZBm4fU7EAAAeQmamRI7VkiT77TIMHG50GcFYUOwCA0VJT1aePTpzQ1q26hQ0k\nAdwIU7EAAEPFxcnXV6VKKSWFVgf8TRQ7AIBxIiPVqZOCgrR+vapWNToN4PSYigUAGCE3V88/\nr8hIzZihJ580Og1gEhQ7AIDdnTmj/v21d6/WrBELywNFh6lYAIB97dghX1+lpyslhVYHFC2K\nHQDAjhYtUmCgAgIUG6tatYxOA5gNxQ4AYBd5eQoP15AhmjhRCxbIw8PoQIAJ8YwdAMD2zp7V\no4/q+++1erW6dDE6DWBaFDsAgI0dOCCLRSVLKjlZdesanQYws1udis3Lyyv4nJWVlZiYuGPH\nDqvVaptUAACz+OYbtWqlBg0UG0urA2yt8GKXl5cXFhb26KOP5v949OjRxo0b+/v7P/jgg+3a\ntbt48aKNEwIAnJPVqogIBQVp1Ch9/bXKlzc6EGB+hRe79957b8aMGbX+9+5SWFjYkSNHRo8e\nPWbMmPj4+OnTp9s4IQDACV28qH799OabWrpU776rEryrB9hD4c/YLViwoE+fPh988IGkY8eO\nrV69+oknnpgxY4akzMzMqKio8PBwm8cEADiRw4dlsSgzUwkJatLE6DRAMVL4n1BHjx596KGH\n8j+vWbPGarUOHDgw/8cWLVocPXrUduEAAM5n82a1bq3q1ZWURKsD7KzwYufi4lLwed26dWXK\nlGnbtm3+j1arNScnx1bRAABOJzJSXbtq4EB9840qVjQ6DVDsFF7sateuvWXLFkmnTp1atWrV\nQw895Obmln9o165dNWrUsG1AAIBTyMrSsGF65hl98ommTpWrq9GBgOKo8GfsHnvssZdeeunI\nkSM///zzxYsXn3nmmfzxL7744vPPPy/4EQBQfB07pj59dOyYtmxRy5ZGpwGKr8KL3XPPPffj\njz9GRUW5ubn95z//af+/DZvDw8MbNmz44osv2jghAMCxxcerb1/Vq6eUFFWrZnQaoFgrfCq2\nVKlSn3322aVLl86fPz927NiC8eXLl2/fvr0ij1AAQHH2ySfq2FG9e2vDBlodYLjb2FLszJkz\nBw8ezMjIKFeuXMOGDf39/W0XCwDg6HJz9cor+uADffCB/vlPo9MAkG6x2MXGxo4fPz4xMbFg\nxMXFpVOnTh999FHTpk1tlg0A4KjOnFFIiHbv1tq16tDB6DQA/qvwYpeUlNSlS5fc3NzAwMCG\nDRt6eHhkZGTs27dvw4YNAQEBSUlJDRs2tENQAICj2LVLFos8PZWSotq1jU4D4E+FF7s333yz\ncuXKa9eubdSo0ZXjO3bs6N69+2uvvbZw4UKbxQMAOJioKD3xhHr31qefqnRpo9MA+IvCX56I\nj48fM2bMVa1O0gMPPDBmzJgNGzbYJhgAwMFYrZo8WYMGaeJELVpEqwMcUOF37H7//fcbrUJc\np06ds2fPFnUkAIDjSU/X4MGKjdU33+h/+0wCcDSFF7sqVars37//uof27dtXpUqVoo4EAHAw\nP/4oi0WXLysuTtdM4ABwHIVPxT700EPTpk1bsWKF1WotGLRarV999dXHH3/88MMP2zIeAMBo\n336rVq1Ut64SE2l1gIMr/I7dpEmTvv32W4vFUq1atcaNG5cpUyb/rdiTJ096eXlNmjTJDikB\nAAawWjVlil5+WePH6+23VaLwewEAjFV4satTp05KSsqrr7769ddfF7wqUalSpeHDh7/++ute\nXl42TggAMEJGhkJDFROjqCj17Wt0GgC35JYWKK5Zs+bcuXOtVuvJkyczMjLKli1bjX1jAMDE\nfv1VwcE6f17btomF6AHncRtbirm4uHB/DgDMb8sW9e8vHx+tXq3KlY1OA+A2XL/Y3fo+sNnZ\n2du3by+6PAAAQ0VG6umnNWyYpk9XyZJGpwFwe65f7FJSUq78sUSJEjk5OfmfXVxcCl6PrVCh\nQvny5W2aDwBgJ1lZGjNGCxYoMlKhoUanAXAnrv+KU+4VTp8+7e/vHxYWtnPnzj/++OPy5cvp\n6emxsbGPPvpoixYt9uzZY+fEAICid/y4OnRQTIy2bKHVAc6r8HfXx48f7+XlNX369GbNmpUq\nVUpSuXLlAgICFi1a5OHhMW7cONuHBADY0vbt8vdXiRJKSZGfn9FpANy5wovdqlWrunXrdt1D\nHTp0WLlyZVFHAgDY0YIFCgxU9+7auFG8IQc4ucKLXXp6+unTp697KC0tLT09vagjAQDsIjdX\n4eEKDdWkSYqMlJub0YEA/F2FF7vGjRtPmzYtOTn5qvGkpKQ5c+Y0YnsZAHBGaWnq3l2zZ2vN\nGk2YYHQaAEWj8HXsXn/9dYvF4ufnV79+fW9v71KlSmVmZh45cuTQoUMuLi7Tp0+3Q0oAQFHa\nvVsWi8qXV0qK6tQxOg2AIlN4sevZs+emTZveeuutTZs2HTp0KH/Qzc2tQ4cO4eHhN3r8DgDg\noJYu1bBh6tlTc+aodGmj0wAoSre080RgYODq1asvX7584sSJS5cueXh4VKtW7a67bmPXCgCA\n8axWTZmil1/WK69o0iS5uBgdCEARu345O3nypLu7e8WKFfM/F4y7urqWK1dO0pkzZwoG2TcW\nAJzAhQsaMkTr12vZMgUFGZ0GgE1cv9h5eXl169YtJiYm//PNv6JgIwoAgIM6dEhBQcrJUWKi\nfHyMTgPAVq5f7EJCQpo3b17w2Y55AABFLSZGAweqdWstXChPT6PTALCh6xe7xYsXX/czAMDJ\nTJ2qceM0frzeflslCl/iCoBTK/wFiJUrV9arV69JkyZ2SAMAKDKZmRo5UsuWafFi9etndBoA\n9lD4X28hISHR0dF2iAIAKDKpqWrbVhs3avNmWh1QfBRe7AIDAzdv3nz58mU7pAEAFIHYWPn6\nysNDKSlq0cLoNADsp/Cp2Pnz5z/33HM9evQYMmTIfffdV6FChatOqF+/vm2yAQBuX2Sknn5a\nw4Zp+nSVLGl0GgB2VXixK1imLn/1k2ux3AkAOITsbIWFad48zZypJ54wOg0AAxRe7EJCQtzc\n3EqWLOnCGuUA4LBOn1b//jp4UJs2yd/f6DQAjFF4sWO5EwBwdDt2yGLRPfdo2zbVqmV0GgCG\nKfzliZUrV+7du9cOUQAAd2LRIgUEqG1bxcbS6oBijuVOAMBp5eUpPFxDhmjSJM2fLw8PowMB\nMBjLnQCAczp7Vg8/rNmzFROjCROMTgPAIbDcCQA4oQMHFBQkd3clJ8vb2+g0ABwFy50AgLOJ\njtbjj6tbN332mcqUMToNAAfCcicA4DysVk2Zopdf1vjxevttlSj8cRoAxQrLnQCAk7h4UUOH\nau1affmlLBaj0wBwRNcvdidPnnR3d69YsWL+55t/RcFcLQDAVg4flsWizExt26YmTYxOA8BB\nXb/YeXl5devWLf+hOi8vr5t/Bc/YAUBRsVqtp0+frlKlyl9Gv/tOjz6qVq20cKEqVjQoGgAn\ncP1iFxIS0rx584LPdswDAMVUXFzc5MmTExISLl68WL58+TZt2rzxxhu+vr6KjFRYmMaM0Ycf\nytXV6JgAHNr1i92Vz9XxjB0A2NrChQuHDh362GOPRUVF1a5d+6effpo/f36nNm32tmtXMy5O\nn36qIUOMzgjACRT+8gQAwKZOnjw5cuTIiIiI559/Pn+kSZMmvR588FhcnMvGjRfWri3XqZOx\nCQE4i8KLndVqXbhwYVRU1PHjxzMzM6894YcffrBBMAAoLhYvXlylSpVnn332z6G4OPXrd2+9\nev/Izn7+55+HGZcNgHMpvNi98cYbkyZNkuTq6lq2bFnbRwKA4mXv3r2tW7cuUbAoXWSkxo5V\naKjLtGl1+vbdu3evoekAOJPCi93s2bNr1ar19ddfN2/enDWKAaDI/flPa26uXnlF//63Pv5Y\nw4cbGgqAUyp81fKTJ08+/fTTDzzwAK0OAGyhSZMm27Ztu/zbb3roIc2ZozVr8ltdTk5OcnJy\nE1atA3DLCi92Xl5erFQHALYTEhJS7eTJiz4+On9eycnq0CF//M0338zNzQ0ODjY0HQBnUnix\nGzVq1NKlS3NycuyQBgCKoWqbNm3Ozf323LkRPj7f7t27d+/eVatWhYSEvPPOO3PmzPH09DQ6\nIACncf1n7A4dOlTwecCAAT/++GOnTp3GjRvXoEEDd3f3q06uX7++DQMCgInl5enll/XBB3e9\n+WbNwMCjkyeHhIQULFAcHx/v6+trdEQAzuT6xa5BgwbXDsbGxl73ZCZqATiFlStXRkVF7du3\nr2TJks2aNXviiSdat25tu8udOHFi+vTpSUlJqamp9evXb9++/ejRo8uUKfPnGenpGjRIcXH6\n9lt17RogrV279vpbigHArbl+sXvyySftnAMAbCcvLy80NHTp0qX9+/cfOnRodnZ2fHx827Zt\nJ02a9Oqrr9riinFxcb17965evXqvXr369u178ODBqVOnRkZGrlu3rlatWpL0448KCpLVqvh4\nNWxY8IsuLi60OgB37PrFbvbs2XbOAQC28957761evToxMbFZs2YFg9HR0X369GnevHmvXr2K\n9nLnz58PDg4OCQmZNm2a6/92d508ebLFYhkwYMC2bdtcVq/WY4+pbVvNn68KFYr26gCKs8Jf\nnsi3d+/eM2fOXPnjjh07bBMJAIpSXl7eRx999Nprr13Z6iT17NlzxIgR77//fpFf8YsvvvDw\n8Pjoo48KWp2kcuXKff7559u///7o6NHq3VujRmnFClodgKJVeLHLycl58sknmzZteuXWYRs3\nbnzwwQeHDRuWl5dny3h/Onr06NmzZ+1zLQBmcvTo0VOnTvXs2fPaQz169EhKSiryB4UTEhK6\ndu3q5uZ21XgNT8+YcuWqf/aZlizRu++qxK3+aQ0At6jwf1amTZs2Z86cHj161K5du2Cwa9eu\nISEhc+fOnT59ui3j/cnb27t69epvvfVWdna2fa4IwBwuXbokqVy5ctceKleuXFZWVpH/gXrp\n0qXrXO7XX9W+faPMzNlPPqk+fYr2igCQr/BiN3fu3J49e0ZHR3t7excMNmzYcPHixY888ojd\nip2katWqTZo0qXnz5ps2bbLbRQE4u5o1a7q6uu7bt+/aQ/v27atRo8ZddxW+ueJt8fb23r9/\n/1+GtmyRr6/17rs7lStXplWror0cABQovNgdOnSoY8eO1z3UoUOHn3/+uagj3VBISEhCQkKp\nUqU6duzYpUuXGy2/AgBX8vT07Nq167vvvnv58uUrxy9dujR16tT+/fsX+RX79++/bt26pKSk\n//4cGakuXWSxfNavX2pGxiOPPFLkVwSAfIUXu/Llyx89evS6h44ePVqpUqUiTnRTvr6+ycnJ\n//73v3fv3t22bdv27dt/8cUXv//+uz0zAHA6H374YVxc3IABA/bv32+1WnNzcxMTE7t06ZKd\nnf3yyy8X+eXatGkTGhr6yCOPLJo7N2fwYP3znxc//HBKvXqjx4599913K1euXORXBIB8hU9A\n9OjR49NPP+3evfuVf2Xm5OTMnTs3MjJy4MCBtox3Ha6urs8+++yIESOmTZv2/vvvDx061NXV\n9cEHH/zHP/7h7e1dvnz5sWPH2jkSAAfn4+OzZcuWESNGNG7cuGzZsjk5OdnZ2b169fryyy9t\n9NfpzJkzfSpUaDB8+G95eaHly68bO7ZatWqzZs0KDQ21xeUAIJ9Loa+DnThxokWLFidOnKhV\nq1bDhg3d3d3Pnz+/b9++s2fPenl5JSQk/HexTVsHdXGZMGHCu+++e+XgpUuXli9fvmTJkg0b\nNmRkZOQPFvkLbrNmzRo1atSFCxfKli1btN8MwM5+/vnn/J0n7r///qpVq9rwStu2qW/fvFq1\n9kyefOSPP+rVq+fj41OyZEkbXvEKCQkJmzdvPnz4cM2aNVu1atW1a1cXFxf7XBooDrKzs93d\n3ePi4tq0aWN0lqsVfsfOy8trx44dkydPXrp06dq1a/MHK1euPGLEiEmTJlWvXt3GCW+mdOnS\ngwYNGjRoUHZ29r59+w4cOMCSKABuonbt2le+4G8r8+frqac0eLDrtGnN3dya2/x6f7p06dKQ\nIUO++uorX1/fBg0arFu37q233vL19f3yyy+rVatmxyAAjHFL74JVrVr1//7v/2bMmHHixIk/\n/vijWrVqf9nu0AG4ubk1b968eXN7/vsJANfIzdUrr+iDD/Tmm5owwf7Xf/LJJ3fs2LFz5877\n778/fyQ1NbVfv369e/fetm3blQsmAzClQl6eSE5O/umnn/I/u7i43H333dHR0QMGDGjbtu2/\n/vWv3377zfYJ/8vd3d1usxgAcCfS0tS9uz79VN99Z0ir2717d1RU1JdfflnQ6iTVqFFjxYoV\n+/fv//rrr+0fCYCd3fCOXWZmZmhoaFRU1L///e9nn302f/Cxxx5bvny5q6tr2bJlY2NjlyxZ\nkpSUZJ/9qjMzM230zb/++mtOTs5NTrhyLzUAuL7du2WxqEIFJSerTh1DIqxdu7Zp06YPPPDA\nVeNVq1Z96KGH1q5d27dvX0OCAbCbGxa7999/Pyoqqk+fPl27ds0fWbdu3fLly3v27Llw4cJy\n5cotXrz4sccee+ONN6ZNm2avtIVIS0s7d+5c/fr1b/1XDh8+3KBBgyJ/3wJA8bJkiZ54Qj17\nas4clS5tVIq0tLR77733uofuvffeEydO2DkPAPu7YbH79NNP27Rps2zZsoKRefPmubq6zpw5\nM3+rnEcfffSLL76Ijo52nGL33nvvRURE3FZLq1ev3rFjx/7444+bnLNo0aJXXnnlb6cDYEZW\nq6ZM0Suv6M039a9/ydCXTytXrpyamnrdQ6mpqV5eXnbOA8D+rl/s1q1bl5qa2qFDh3Xr1hUM\nrlmzJn+fnIKtcjw9PY8dO7Zu3bq6devWrVvXHnltoNB/7O655x77JAHgZC5c0ODB2rhRy5ap\nd2+j06hbt27jxo1LTExs9dddy1JTU7/77ruFCxcaFQyA3Vy/2PXr1y83NzcqKuqrr77KH8nN\nzc3IyEhPT+/Xr1/BaVlZWTk5Of369QsPDw8PD7dHXgBwEAcPymJRbq4SEuTjY3QaSWrcuPHQ\noUP79ev35ZdfFnS7gwcPDhgw4MEHH+zVq5ex8QDYwfWL3fnz5ytVqvT8888XTEFOnz597Nix\nMTEx7dq1Kzjt+eef//zzz9PS0uwQ1NfXt9Bzjh07ZockAKDVq/XYY2rTRgsXqkIFo9P8aebM\nmSNHjmzdunXjxo3r1auXmpq6a9euzp07L1y4sESJwveQBODsbrjzRJs2baxWa3x8vIuLyx9/\n/PHAAw+kp6enpqYW/NNw+fLlBx54wM3NLTk52Q5B85dfuvmKJ7m5uXl5eew8AcCG8h+qe/ll\njR+vt9+WQ7alPXv2bN269eDBgzVr1vT393fAxfEBp+aUO0+EhYUNGjSobdu2vr6+a9euPXDg\nwH/+85+CVnf+/Pnx48fv3r17+vTp9gn6wgsvzJgxY/v27Td56TU8PDwiIsI+eQAUR5mZeuop\nffWVFi/WFc+lOJr777//yqXsABQfNyx2jz/++C+//PLaa6/FxcW5u7tPnDjx6aefLjjq4+Nz\n8uTJHj16jBgxwi459cYbb3z33XcDBw6Mj49npWIABkhNVXCwTp3Spk1q0cLoNABwHTebRHjx\nxRfPnj17+PDhs2fPvvbaa1fuIT1q1Ki5c+euWLHCzc3N9iElqWTJkgsWLNi7d+9LL71knysC\nwJ+2bpWvr0qXVkoKrQ6Awypkr9jSpUsfP37c09Oz9F+X3Jw0aZKkpKSkX3/91W5LmeffJszN\nzb3RCQ8//LCnp6d9wgAoRiIj9fTTGjZM06eLGQMADqzwx37btm27ZcuW6x7aunWr3aZi85Uv\nX75SpUo3Otq+fXtWXQFQlLKyNHy4/vlPzZypWbNodQAc3A3v2B06dOjQoUP5n3fs2FGqVKmr\nTvjjjz+WLFmSlZVlw3QAYKDTp9W/vw4e1ObN+uuSvwDgmG5Y7L788ssXX3wx//Prr79+o9P6\nOfB7YQBw57ZvV3CwqldXSorYjAuAk7hhsQsPDx86dGhycnJQUNDgwYMbN2581Qmurq5169bt\n7QC76ABAEVu4UMOHq08fffKJPDyMTgMAt+pmL094eXn17t27R48eY8aM8ff3v/aEjIyMtLS0\natWq2SweANhXXp5eflkffKA339SECUanAYDbU8hbsZKio6NvdGjFihXjx48/fvx4kUYCAIOc\nPauQEO3YoZgYde5sdBoAuG2FFztJZ86cWbx48dGjR69caiQzMzM6OvrixYs2ywYAdrRnjywW\nlS2r5GR5exudBgDuROHF7ujRo35+fqdPn77OL99116uvvmqDVABgX9HRevxxdeumzz5TmTJG\npwGAO1T4OnavvPJKZmbm9OnT169fL2n27NkxMTHh4eHVq1ePjo6eOHGi7UMCgM1YrYqIkMWi\n0aMVFUWrA+DUCr9jt3Xr1rCwsLCwsMzMTElNmjTx9/fv1q1bSEhI586dV65cGRAQYPucAGAD\nFy9qyBCtW6cvv5TFYnQaAPi7Cr9jd+LEibp160oqUaKEpOzs7Pzx5s2bh4WF5e8tBgDO59Ah\n+fvrhx+UkECrA2AOhRe7cuXKnTp1SpKbm1vZsmV/+umngkONGzdOSUmxYToAsJE1a+Tnp5o1\nlZSka9bpBAAndUt7xc6cOXPTpk2S7r///o8//rjgTdgNGza4u7vbNB8AFL3ISPXqpaeeUnS0\nPD2NTgMARabwYvfSSy+lpaWNHz9e0ogRI1JSUho3btynT58HHnjgk08+6dq1q+1DAkARycxU\naKieeUaffqp335Wrq9GBAKAoFf7yhJ+fX2xsbFJSkqTQ0NCDBw9+9NFHX331lYuLS+/evT/6\n6CPbhwSAonDsmIKDdeKEtm6Vr6/RaQCg6N3SAsUtWrRo0aKFJBcXl7fffnvixIknT56sWrWq\nB1soAnAWcXHq10/16yslRVWrGp0GAGyi8KnYa5UqVapOnTq0OgBOIzJSnTqpd29t2ECrA2Bi\n179j5+/vf4u/n52dvX379qLLAwBFKjdX48Zp1ix9/LGGDzc6DQDY1vWL3VWLmJQoUSInJyf/\ns4uLi9Vqzf9coUKF8uXL2zQfANy5M2fUv7/27tWaNWrf3ug0AGBz15+Kzb3C6dOn/f39w8LC\ndu7c+ccff1y+fDk9PT02NvbRRx9t0aLFnj177JwYAG7Jzp3y9dXvvyslhVYHoJgo/Bm78ePH\ne3l5TZ8+vVmzZqVKlZJUrly5gICARYsWeXh4jBs3zvYhAeA2LV6sgAAFBCguTrVqGZ0GAOyk\n8GK3atWqbt26XfdQhw4dVq5cWdSRAOBvyMtTeLgGD9bEiVqwQLzmBaA4KXy5k/T09NOnT1/3\nUFpaWnp6elFHAoA7lZ6uQYMUF6fVq9Wli9FpAMDeCr9j17hx42nTpiUnJ181npSUNGfOnEaN\nGtkmGADcpgMH1KqVjh5VcjKtDkDxVPgdu9dff91isfj5+dWvX9/b27tUqVKZmZlHjhw5dOiQ\ni4vL9OnT7ZASAArxzTd6/HG1basFC8Tb+gCKq8KLXc+ePTdt2vTWW29t2rTp0KFD+YNubm4d\nOnQIDw+/0eN3AGAnVqumTNHLL2v8eL39tkrcybrrAGAOt7SlWGBg4OrVqy9fvnzixIlLly55\neHhUq1btrrtu6XcBwIYuXlRoqNas0dKlCg42Og0AGOw2ylmJEiWqV69uuygAcHsOH5bFosxM\nJSSoSROj0wCA8ZizAOCctmxR69aqXl1JSbQ6AMhHsQPghCIj1aWLgoMVHa2KFY1OAwCOgufk\nADiVrCyNHq1Fi/TJJxo61Og0AOBYKHYAnMfx4+rTR6mp2rJFLVsanQYAHA5TsQCcRHy8fH11\n111KSaHVAcB1UewAOIP589W5s3r10oYNqlbN6DQA4KAodgAcW26uwsM1bJgiIjRrltzcjA4E\nAI6LZ+wAOLC0NA0YoN279d136tjR6DQA4OgodgAc1a5dsljk6amUFNWubXQaAHACTMUCcEhR\nUWrTRv7+iouj1QHALaLYAXAwVqsmT9agQZo4UYsWqXRpowMBgNNgKhaAI7lwQYMHa+NGLV+u\nXr2MTgMAToZiB8BhHDyooCDl5SkxUY0aGZ0GAJwPU7EAHMPq1fLzU926Skqi1QHAnaHYATCa\n1aqICPXqpZEjtXKlKlQwOhAAOCumYgEYKjNTI0bo668VFaW+fY1OAwDOjWIHwDi//qrgYJ0/\nr23b1LSp0WkAwOkxFQvAIFu3ytdXZcrQ6gCgqFDsABghMlKdO8ti0bp1qlzZ6DQAYBJMxQKw\nr6wsjRmjBQs0a5aGDTM6DQCYCsUOgB0dP66+ffXLL9q8Wa1aGZ0GAMyGqVgA9rJ9u1q3louL\nUlJodQBgCxQ7AHaxYIECA9Wundavl5eX0WkAwJwodgBsLC9P4eEKDdWkSZo3Tx4eRgcCANPi\nGTsAtpSWpkcf1Y4dWrNGnToZnQYATI5iB8Bmdu+WxaLy5ZWcLG9vo9MAgPkxFQvANpYuVZs2\natlScXG0OgCwD4odgKJmtSoiQgMHavx4LV6sMmWMDgQAxQVTsQCK1IULGjJE69dr2TIFBRmd\nBgCKF4odgKJz6JCCgpSTo8RE+fgYnQYAih2mYgEUkZgY+fmpdm0lJdHqAMAQFDsARWHqVPXs\nqaeeUnS0PD2NTgMAxRRTsQD+nsxMjRypJUs0d64GDTI6DQAUaxQ7AH9DTRQ7XAAAIABJREFU\naqr69NHJk4qNVYsWRqcBgOKOqVgAdyo2Vr6+KlVKKSm0OgBwBBQ7AHckMlKdOysoSOvXq0oV\no9MAACSmYgHctuxshYVp3jzNmKEnnzQ6DQDgTxQ7ALfj9GkNGKADB7Rpk/z9jU4DAPgLpmIB\n3LIdO9SypdLTlZBAqwMAB8QdOwC3ZtEiDR+u4GB98ok8PIxOgz+lpaXNnz9/586d586d8/Hx\n6dmzZ0BAgNGhABiDO3YACpOXp/BwDRmiiRM1fz6tzqGsX7++YcOGU6dOtVqt3t7eSUlJ7dq1\nGz58eF5entHR/r+9Ow+Iqtz/OP5F9k0WxTUUDXMvlwFUVBTrlhuLaWoJaVrikpq3ktwtK9G0\nvGopZZuaIGbdUhN3lCUWxSU1910wwZAdBOf3xxQ/LihqwpxZ3q+/mOecOfORMwc/nOecAYAC\nOGMHoEo3b8qwYXLggPzyizz9tNJp8D8uXrwYEBDw2muvhYWFmZn99fM8OTm5X79+DRs2fO+9\n95SNB0D7OGMH4N5OnpRu3SQ9XZKTaXU6aPHixe3atfvoo4/KWp2IeHh4/Oc//1m8eHFeXp6C\n2QAogmIH4B62bBEvL3niCYmNlebNlU6Du4iJiRkyZIiJiUmF8cDAwNu3byclJSmSCoCCKHYA\nKlGrJSxM/P0lJER+/FFq11Y6EO4uKyurbt26lcetrKzs7e2zsrK0HwmAsrjGDsD/ys2Vl1+W\nHTskKkoCA5VOg6o0atTo/Pnzlcdv3rx569atRo0aaT8SAGVxxg5AOWfPSteucuSIJCTQ6nTf\nwIEDv/7668rX0n322Wf169dXqVSKpAKgIIodgL9t3y4eHtK4sSQlSdu2SqfB/b3++utmZmb9\n+/c/d+6cZqS4uPiTTz6ZO3fukiVLTE1NlY0HQPsodgBERCQ8XPr3l6Ag2bJFnJyUToMHYm9v\nv2vXLrVa7e7u/vjjj6tUKmdn53nz5n3xxRfDhg1TOh0ABXCNHWD0iookJEQiImT1agkOVjoN\nHk6TJk1iYmJSU1NTU1OzsrLatGnTrVu32tzvAhgrih1g3K5elUGD5No12bdPPDyUToN/qGPH\njh07dlQ6BQDlMRULGLH4eFGpxNxcUlJodQBgACh2gLEKD5fevcXPT3bvlvr1lU4DAKgGFDvA\n+JSUSGioTJggH30kq1aJhYXSgQAA1UO/r7ErLS09fvx4Tk6Oq6urq6ur0nEAfZCRIS+8IEeP\nyo4d0quX0mkAANVJn87YxcfHT5w4sezh2rVrGzdu/OSTT3p7ezdp0qRDhw779u1TMB6gBw4d\nEg8PycqSlBRaHQAYHr0pdnv37u3du/c333yjVqtFZOPGjUFBQXl5eUOGDBk/fvwzzzxz9OjR\nf/3rXwcOHFA6KaCrIiPF21u6dpXYWGnaVOk0AIDqpzdTsfPmzXN0dIyLizMxMRGRt99+u2nT\npgkJCQ0bNtSskJiY2Lt373nz5v3000+KJgV0T2mpzJghixfL/PkybZrSaQAANUVvit3Bgwdf\ne+01d3d3Ebl169b58+eXLl1a1upExMvLa8SIEVFRUcplBHRSdrYEBUlsrGzdKs88o3QaAEAN\n0ptiV1paam1trfnaysrKxMTkscceq7DOY489VlhYqPVohiw/P//EiRNWVlZPPPGEubm50nHw\n8E6dkoAAuXNH4uKkVSul0yivoKDg+PHjlpaWLVu25C0NwPDozTV2HTp0iIiIyM/PFxFLS8uu\nXbsmJCSUX6GoqGjTpk0tW7ZUKKChuXjxor+/v729vUqlateunb29fUhIyK1bt5TOhYexdat4\nekrz5pKYSKu7dOlSQECAnZ2dSqVq3769vb392LFjeUsDMDB6U+xCQ0NPnz7do0eP7du3l5SU\nLFu2bN26dd9++21+fv7t27cTExP79et3+PDh8ePHK53UEFy4cKFLly7Z2dm7du26devWjRs3\nIiIiYmJievfunZeXp3Q6PAC1WsLCxM9PQkLkp5/EwUHpQAq7ePFily5dsrKydu7cqXlLR0ZG\n7t+/v1evXrm5uUqnA4BqY6K5yVQvfPHFF1OmTMnLy7O2tm7WrFleXt7FixdNTU1FpLS01MTE\n5I033vjoo480d1dUo1WrVoWEhOTk5NjZ2VXvlnXWoEGDbt68uWPHjvJzVZmZmZ06dRo1atTc\nuXOVi4YHkJsro0bJtm3yzTcyaJDSaXTC4MGD//jjj127dpV/S9+8ebNTp07BwcHvvvuugtkA\n6J3i4mJLS8u4uLhu3bopnaUivTljJyJjxow5e/bsokWLevbsmZeXd/PmTUtLS0dHxw4dOkya\nNCklJWXx4sXV3uqMUHZ29ubNm2fPnl3hCqQ6deq88cYb3333nVLB8EAuX5ZevSQ1VRISaHUa\nOTk5P/30U+W3tLOz89SpU3lLAzAkenPzhEb9+vXffPPNN998s7o2mJaW9sILLxQUFFSxzo0b\nN0REj05tPqILFy7cvn27Q4cOlRd16NDh3LlzpaWlmhOl0Dn79smQIdK6tfzyi7i4KJ1GV1y8\neLGKt/T58+dLSkrMzPTshyEA3JVB/SzLzMz8888/NR+J8oAcHBwCAwNv375dxTqJiYmXLl0y\nnnOBlpaWIlJUVFR5UWFhoZmZWa1a+nSi14iEh8vEiTJqlCxfLtzvWc5939L8ogLAYBhUsVu0\naFFYWNhDnVqzsbGZOnVq1eusWrXqhx9+eLRo+qR58+aOjo47duwIDg6usGjnzp2dOnUyno6r\nN4qKZPx4WbdOwsNl5Eil0+gcNzc3Z2fnHTt2jKz0zdm5c2fHjh15SwMwGJx6QUXm5uZjx46d\nMWPGxYsXy4/Hx8d/+umnr7/+ulLBcHfXrkmvXhIdLfv20eruSvOWnjlz5oULF8qPJyQkLF++\nnLc0AENiUGfsUF3mzp178ODBjh07jhkzRqVSFRYWxsXFff3116+99trw4cOVTodyEhLk+eel\nWTNJSZEGDZROo7vmzJlT9pb28PDQvKW/+eab0aNHv/jii0qnA4BqozfFTqVS3Xedq1evaiGJ\nMbCysvrll1+++OKLqKiob775xtraun379lFRUX5+fkpHQznr1smrr8qIEbJ8uVhYKJ1Gp1la\nWm7ZsmX16tUbNmxYs2aNlZVVu3btIiMj/f39lY4GANVJbz7HTnN1c9V/AqikpKS0tLTa/0VG\n+Dl20HUlJTJzpixeLPPny7RpSqcBAOPC59hVg7feesvW1va3334rvLdq/BgUQHdlZspzz8nq\n1RIdTasDAJSnN8Xuvffec3d3Hz58eNUfTQIYuCNHxMNDMjIkOVl8fZVOAwDQLXpT7MzNzdet\nW3fs2LHp06crnQVQSFSUdOsmnp4SHy9ubkqnAQDoHL25eUJEWrdunZ6eXlJScq8V+vbt6+jo\nqM1IgJao1bJwocyYITNnypw5wueuAQDuRp+KnYjUrl27iqU+Pj4+Pj5aCwNoSU6OBAfL7t2y\naZNwYzIA4N70rNgBRuf0aQkIkJIS+fVXad1a6TQAAJ2mN9fYAcZo2zbx9BQ3N0lMpNUBAO6L\nYgfoJLVawsJkwAAZO1Z+/lm4eBQA8ACYigV0T2GhvPaabNokEREyeLDSaQAAeoNiB+iYK1ck\nMFCuX5eYGOncWek0AAB9wlQsoEtiY0WlEhsbSUmh1QEAHhbFDtAZ4eHi6yv+/rJzp9Srp3Qa\nAID+YSoW0AFFRTJxoqxZIytXyiuvKJ0GAKCvKHaA0m7ckCFD5PRp2btXunRROg0AQI8xFQso\nKjVVVCrJyZGEBFodAOARUewA5axfL97e0qOHxMZKkyZKpwEA6D2KHaCE0lIJDZXgYJkzR9au\nFWtrpQMBAAwB19gBWnfzpgwbJgcPyrZt0qeP0mkAAIaDYgdo19GjEhAgdnaSnCzNmimdBgBg\nUJiKBbRo82bp3l06d5b4eFodAKDaUewArVCrJSxMAgJk3DiJiBBbW6UDAQAMEFOxQM3LzZXg\nYNm5UzZulIAApdMAAAwWxQ6oYWfOSECAFBXJr79KmzZKpwEAGDKmYoGaFB0tnp7i6irJybQ6\nAEBNo9gBNSY8XAYMkKAg2bxZHB2VTgMAMHxMxQI1oLBQQkIkMlJWr5bgYKXTAACMBcUOqG5X\nr0pgoKSlyf79olIpnQYAYESYigWqVVycqFRiaSkpKbQ6AICWUeyA6hMeLr6+4ucnu3dL/fpK\npwEAGB2mYoHqUFIi//63rFwpK1bImDFKpwEAGCmKHfDIMjLkhRfkt99k+3bx8VE6DQDAeFHs\ngEdz6JAEBIizs6SkSJMmSqcBABg1rrEDHkFEhHh7S7duEhdHqwMAKI5iB/wjpaUSGipBQTJ7\ntnz3nVhbKx0IAACmYoF/IDtbRoyQuDjZulWeeUbpNAAA/IViBzykU6fE31/UaomPl5YtlU4D\nAMD/YyoWeBhbtoinp7i7S2IirQ4AoGsodsCDUaslLEz8/SUkRP77X3FwUDoQAAAVMRULPIDc\nXBk5UqKjZcMGGTRI6TQAANwdxQ64n3PnJCBA8vMlIUHatau8vKCgwJq7YgEAOoCpWKBK+/ZJ\n167SsKEkJ1doddHR0X369HFycrK1tW3WrNmrr7567do1pWICACAUO6Aq4eHy9NMSECBbtoiT\nU/klixYtGjBgQIsWLb766qu4uLhZs2YdPny4Q4cOx48fVyosAABMxQJ3U1Qk48bJ+vUSHi4j\nR1ZYmJqa+s4770RERAwePFgz0rVr1+Dg4MGDBwcHBycnJ5uYmGg7MAAAFDvgLq5dk0GD5MoV\niYkRT8/Ky7/44ovevXuXtToNMzOzZcuWubm5paSkeHh4aCsrAAD/j6lY4H8lJIhKJWZmkpJy\n11YnIkePHu3Zs2flcVdXVzc3t6NHj9ZwRAAA7o5iB5Szdq34+srAgbJ7tzRocK+17ty5Y2pq\netdFpqamd+7cqbF8AABUhWIHiIhISYmEhsqoUTJ3rqxaJRYWVazbunXrxMTEyuN//PHHuXPn\nWrduXWMpAQCoCtfYASKZmfLCC3LkiGzfLr1733f1kSNH9uzZc/fu3b6+vuXHp02b1qJFiy5d\nutRYUAAAqkKxg9E7fFgCA8XBQZKTxc3tQZ7h7e09derU/v37T5s2rV+/fvXq1Tt+/PiKFSv2\n7du3a9eue83SAgBQ05iKhXHbsEG8vcXLS+LiHrDVaSxatGjVqlVRUVFdu3Zt1qzZkCFDTE1N\nk5KSPO9xvwUAAFrAGTvt+fXXX9esWXPs2DERadu2bVBQEHN2SlKrZd48ef99mT9f3n5bHv6T\n54KDg4ODg/Pz82/cuOHq6lqrFr8mAQAUxn9FWjJz5szu3btfuHDB19fX19f3woUL3bt3nzlz\nptK5jFVOjgQGyscfy6ZNMm3aP2h1ZWxsbJo2bUqrAwDoAs7YacO6desWL168devWf/3rX2WD\n0dHRAQEBrVu3fumllxTMZoxOnxZ/fyktlcREadVK6TQAAFQbTjNoQ1hY2NSpU8u3OhF59tln\np06dunDhQqVSGalffhFPT2nWTJKSaHUAAANDsatxOTk5R48e9ff3r7zIz8/vyJEjOTk52k9l\njNRqCQuTgQNl7Fj5+WdxcFA6EAAA1Yyp2BqXm5srIg53qxGOjo6aFezt7bUdy9gUFsqrr8qP\nP0pkpDz/vNJpAACoEZyxq3EuLi42NjYnT56svOjkyZM2NjYuLi7aT2VcLl+W7t0lJkZiYmh1\nAAADRrGrcWZmZn5+fkuWLCktLS0/XlpaumTJEj8/PzMzzpvWpP37RaUSW1tJSZFOnZROAwBA\nDaLYacP7779/7NixwYMHnz17VjNy5syZwYMHHzt27IMPPlA2m4ELD5c+fSQgQHbulHr1lE4D\nAEDNothpQ/PmzWNiYq5du+bu7l63bt26deu2aNEiLS0tJiamWbNmSqczUEVFMmaMTJokK1fK\nqlVibq50IAAAahyTgFrSpk2bxMTEkydP/vbbbyLSrl27li1bKh3KcKWlyaBBcumSxMSIl5fS\naQAA0BKKnVa1bNmSPlfjDh6UwEBp3FhSUqRhQ6XTAACgPUzFwrB895107y49e8quXbQ6AICx\nodjBUJSWSmiovPyyzJkja9aItbXSgQAA0DamYmEQbt6UoUMlNVW2bZM+fZROAwCAMih20H9H\nj0pAgNjZSXKycJcxAMCIMRULPffzz9K9u6hUEh9PqwMAGDmKHfSWWi1hYRIYKOPGSUSE2Noq\nHQgAAIUxFQv9lJMjL78sO3fK99+Lv7/SaQAA0AkUO+ihM2ckIECKi+XXX6VNG6XTAACgK5iK\nhb6JjhZPT2nSRJKSaHUAAJRHsYNeWbpU+veX116TzZvF0VHpNAAA6BamYqEnCgtl7FjZsEG+\n+kqCgpROAwCALqLYQR9cuSKDBklamuzfLyqV0mkAANBRTMVC58XFiUolVlaSkkKrAwCgChQ7\n6LbwcPH1FX9/2bVL6tdXOg0AADqNqVjoqpISmTpVwsPl009l9Gil0wAAoAcodtBJGRkyZIgc\nOybR0eLjo3QaAAD0A1Ox0D2pqaJSSXa2pKTQ6gAAeHAUO+iY9eule3fx9pbYWGnSROk0AADo\nE4oddEZpqYSGSnCwzJ4t69aJtbXSgQAA0DNcYwfdcPOmDBsmBw7IL7/I008rnQYAAL1EsYMO\nOHlSAgLE3FySk6V5c6XTAACgr5iKhdK2bBEvL3F3l9hYWh0AAI+CYgflqNUSFib+/hISIv/9\nr9SurXQgAAD0m35PxRYXFx8+fDg3N9fNza1Zs2ZKx8HDyM2VkSMlOlqioiQwUOk0AAAYAr05\nYzd//vw9e/aUH1m1alWDBg08PT19fX2bN2+uUqkOHTqkVDw8nLNnpWtXOXxYfv2VVgcAQHXR\nm2I3a9as6OjosodbtmwJCQnJz88PDAwcO3ast7f3gQMHevXqdfbsWQVD4oHExEjXrtK4sSQl\nSdu2SqcBAMBw6E2xq+CNN95wcHBITU3dtGnTypUrY2Njv//+++zs7Pfff1/paKhSeLg884wE\nBsrmzeLkpHQaAAAMil5eY3fjxo3Tp09Pnz69devWZYODBg3y9/ffvn27gsFQlaIiCQmRiAj5\n/HN5+WWl0wAAYID08oxdYWGhiJRvdRrt2rX7448/lEiE+7l6VXr2lB07ZN8+Wh0AADVEL4td\no0aNHBwcrly5UmH82rVr9vb2ikRCVeLjRaUSc3NJSREPD6XTQG8cOHAgJCSka9euTz311LBh\nw6KiotRqtdKhAECn6VOxu3TpUkpKypkzZ/7888/x48evXr06Pz+/bOnvv/8eGRnp7e2tYELc\nxeefS+/e4ucnu3dLgwZKp4He+Pjjj7t06XLp0iV/f//Ro0dbW1uPHDny+eefv337ttLRAECH\nqfXEXcNv3LhRs3TdunW2tra1atVKSkqq9pdeuXKliOTk5FT7lg3c7dvqadPUZmbqpUuVjgI9\ns3v3blNT04iIiPKDJ06caNCgwfTp05VKBQAaRUVFIhIXF6d0kLvQm5snvvrqq6xybt26lZWV\n5fT3bZVZWVmOjo4REREezPTpiIwMGTpUjhyRHTukVy+l00DPLFmy5MUXXxw6dGj5wVatWi1c\nuHDixImzZ8+2tLRUKhsA6DITtUFcs5Kbm2tjY1Or1kPPLBcXF69fv15Tve9l375969aty8nJ\nsbOze4SMxuTwYQkIEEdH+fFHadpU6TTQP/Xq1Vu2bFmFYiciN2/erFOnzsGDBzt27KhIMAAQ\nkeLiYktLy7i4uG7duimdpSK9OWNXNU3lyszM/PPPP93d3R/8idevX1+wYEFxcXEV6+Tl5YmI\nqanpI4Y0FpGR8sor4ucnq1eLjY3SaaCX8vLy7nojlGaw/MW1AIDyDKTYaSxatCgsLOyhzkG6\nurqeOHGi6nXi4+O9vb0pdvenVsu8efL++zJ/vkybpnQa6LFmzZodP368X79+FcaPHz8uIm5u\nbgpkAgB9oE93xUKnZWdLQIB8/LFs2kSrwyMaMmTIihUrbt26VWH8ww8/9Pb2bty4sSKpAED3\nUexQHU6dki5d5ORJSUyUgQOVTgO9N3XqVFtbW19f39jYWM3nm5w6dSooKGjz5s3/+c9/lE4H\nALpLb6ZiVSrVfde5evWqFpKgoq1b5aWXxNtb1q0TBwel08AQ2Nvb79mzZ8KECT4+PmZmZpaW\nljk5OR07dty7d2+nTp2UTgcAuktvil1qaqqImJubV7FOSUmJtuJARETUalm4UGbMkDfflA8+\nkIe/Kxm4FxcXlw0bNmRkZBw5cqSgoKB169bNmzdXOhQA6Dq9+Z/4rbfesrW1/e233wrv7c03\n31Q6pjHJy5MXXpD58yUyUhYsoNWhJtStW9fX17d///60OgB4EHrzn/F7773n7u4+fPhw/qCQ\nTrh8WXx8JDVVEhLk+eeVTgMAAET0qNiZm5uvW7fu2LFj06dPVzqL0du/X1QqsbWVhARp107p\nNAAA4C96c42diLRu3To9Pb2KC+n69u3r6OiozUjGKDxcJk6UUaNk+XKp8pJHAACgZfpU7ESk\ndu3aVSz18fHx8fHRWhijU1Qk48fLunWyapWMGqV0GgAAUJGeFTso5to1ef55uXRJYmLEy0vp\nNAAA4C705ho7KOngQenaVWrVkpQUWh0AADqLYof7WbdOuneXnj1l1y5p2FDpNAAA4J4odri3\nkhIJDZWRI2XOHFmzRqyslA4EAACqwjV2uIfMTBk6VA4dkuho8fVVOg0AALg/ih3u5sgRCQiQ\n2rUlJUXc3JROAwAAHghTsagkKkq6dRNPT4mPp9UBAKBHKHYoR62WsDAZPlzefFPWrxcbG6UD\nAQCAh8BULP6WkyPBwbJrl3z/vfj7K50GAAA8NIodRETkzBnx95fbtyUxUVq3VjoNAAD4J5iK\nhci2beLhIU2bSlISrQ4AAP1FsTN6S5fKgAEydqxs3iyOjkqnAQAA/xxTsUassFDGjpUNG+Tr\nr2XECKXTAACAR0WxM1ZXrkhgoFy/LrGx0rmz0mkAAEA1YCpWV2RkZFy/fl1LLxYbKyqVWFtL\nSgqtDgAAg0GxU1hBQcE777zTsGFDFxeXBg0auLi4TJ48OTs7uwZfMjxcfH3F31927ZJ69Wrw\nhQAAgHYxFauk/Pz8Pn36pKWlvffee127djU1NU1KSnr//fd37969f/9+x2q/laG4WCZMkDVr\nZOVKeeWVat44AABQGsVOSQsWLLh69WpKSkq9v8+ctWrVyt/fv0uXLrNmzVq2bFl1vtiNGzJk\niJw6JXv3Spcu1bllAACgG5iKVdLXX389bdq0ev87H+rg4DB79uy1a9eWlJRU2yulpopKJTk5\n8uuvtDoAAAwVxU4xubm5ly9f9vLyqrzIy8srKyvr2rVr1fNK69dL9+7So4fExkqTJtWzTQAA\noHsodoqpVauWiNy5c6fyotLSUhExNTV91NcoLZXQUAkOltmzZe1asbZ+1A0CAAAdxjV2irGx\nsXF3d9+3b5+np2eFRfv379fcJPtIL3DzpgwbJgcPyi+/yNNPP9KmAACAPuCMnZJee+21hQsX\nnjt3rvxgWlravHnzRo8e/Uhn7E6elG7d5Pp1SU6m1QEAYCQ4Y6ekKVOm7Nmzx9PT84033ujS\npUutWrVSUlI+/vjjxx9/fNasWf98u5s3y4gR0rOnrF0rtWtXX14AAKDTOGOnJHNz859//nnW\nrFkbN27s16/fs88+++23377++uu7du2ysbH5J1tUqyUsTAICJCREfvyRVgcAgFHhjJ3CTE1N\nJ0+ePHny5JKSErVabW5u/s+3lZsrL78sO3bIxo0SEFB9GQEAgH6g2OkKM7NH2xdnz0pAgBQW\nSkKCtG1bTaEAAIA+YSrWIGzfLh4e8thjkpREqwMAwGhR7PRfeLj07y9BQbJ5szg5KZ0GAAAo\nhqlYfVZYKOPGSUSErF4twcFKpwEAAAqj2Omtq1dl0CC5dk327RMPD6XTAAAA5TEVq5/i4kSl\nEgsLSUmh1QEAAA2KnR4KDxdfX/Hzk127pH59pdMAAABdwVSsXikpkZkz5eOPZcUKGTNG6TQA\nAEC3UOz0R0aGvPCC/PabREdLr15KpwEAADqHYqcnDh2SwEBxcpLkZGnaVOk0AABAF3GNnT6I\niBBvb+naVWJjaXUAAOBeKHa6rbRUQkMlKEhmz5bvvhMbG6UDAQAA3cVUrA7LzpYRIyQuTrZu\nlWeeUToNAADQdRQ7XXXqlPj7i1otcXHSqpXSaQAAgB5gKlYnbd0qnp7y+OOSmEirAwAAD4hi\np2PUagkLEz8/CQmRn34SBwelAwEAAL3BVKwuyc2VUaNk2zbZsEEGDVI6DQAA0DMUO51x+bIE\nBkpWliQkSLt2SqcBAAD6h6lY3bBvn6hUUqeOJCfT6gAAwD/DGTsdEB4uEyfKqFGyYoWYsUcg\nBQUFycnJJ06ccHZ27tChQ4sWLZROBADQD9QIRRUVyfjxsm6dhIfLyJFKp4FOiIyMnDRp0s2b\nN93d3TMyMjIyMgYMGPDFF1/Ur19f6WgAAF3HVKxyrl0THx+JjpZ9+2h10Pj+++9HjBgxefLk\nW7dunThx4saNG0eOHElPT3/mmWcKCgqUTgcA0HUUO4UkJIhKJaamkpIinp5Kp4FOKC0tnTx5\n8owZM6ZPn27z95+Pa9++/Y4dOzIyMlauXKlsPACA7qPYKWHtWunTRwYOlD17pEEDpdNAVyQn\nJ6elpU2aNKnCuKOj48iRI3/88UdFUgEA9AjFTrtKSiQ0VEaNkjlzZNUqsbBQOhB0yJUrV5yd\nnZ2dnSsvatGixZUrV7QfCQCgX7h5QosyM2XoUDl8WLZvl969lU4DnVO7du2cnJySkhKzSjdH\nZ2Zm1q5dW5FUAAA9whk7bTlyRDw8JDNTkpNpdbgrLy8vtVq9efPmyot++OGH7t27az8SAEC/\nUOy0YsMG6dZNPD0lLk7c3JROAx3l4OAwYcKECRMmHDt2rGzwzp3jHiV1AAAUcklEQVQ7M2bM\nOHTo0BtvvKFgNgCAXmAqtoap1bJwocycKfPny9tvi4mJ0oGg0xYsWHD58uVOnTr169evffv2\nmZmZe/fuvXr1alRUVPPmzZVOBwDQdRS7mpSTI0FBsmePfP+9+PkpnQZ6wMLCIioqatu2bZs3\nb46Li6tTp85LL700atSohg0bKh0NAKAHKHY15vRpCQiQkhL59Vdp3VrpNNAnzz333HPPPad0\nCgCA/uEau5rxyy/i6SlubpKURKsDAADaQbGrbmq1hIXJwIEydqz8/LM4OCgdCAAAGAumYqtV\nYaG89pr88INERMjgwUqnAQAAxoViV32uXJHAQLl+Xfbulc6dlU4DAACMDlOx1SQ2VlQqsbGR\nlBRaHQAAUATFrjqEh4uvr/j7y86dUq+e0mkAAICRYir20RQVycSJsmaNrFwpr7yidBoAAGDU\nKHaP4MYNGTJETp+WvXulSxel0wAAAGPHVOw/lZoqKpUUF0tKCq0OAADoAordP/Ldd+LtLT16\nyK5dwt96AgAAuoFi95BKSyU0VF5+WebMkbVrxdpa6UAAAAB/4Rq7h3HzpgwdKqmpsm2b9Omj\ndBoAAID/QbF7UCa//SZDhoidnSQnS7NmSscBAACoiKnYB9JPxNzHRzp3lvh4Wh0AANBNFLsH\nMlCk9O23JTJSbG2VzgIAAHB3FLsHMk2kdNo0MTFROggAAMA9cY3d/VlYWGSLWFpaKh0EAADo\nCgsLC6Uj3IWJWq1WOoMeOHz4cElJiSIvvXDhwjNnzrzxxhuKvDoqW7ZsmYODQ3BwsNJB8Jd3\n3323Y8eOAwcOVDoI/jJlypTBgwd3795d6SD4y8svv7x8+XJPT0+lgxgUMzOzp556SukUd8EZ\nuwei4M5r3LhxUVHRiBEjlAqACn766ad69eqxR3THp59+2qFDB/aI7pgxY0a3bt3YI7rj5Zdf\nbtmyZefOnZUOAm3gGjsAAAADQbEDAAAwEBQ7AAAAA0GxAwAAMBAUOwAAAANBsQMAADAQFDsA\nAAADQbEDAAAwEBQ7AAAAA0Gx03UWFha6+dfojBZ7RNewR3QNe0TXsEeMCn8rVtdlZ2cXFxfX\nrVtX6SD4S2ZmppmZmYODg9JB8Je0tDRHR0dra2ulg+Avly5datSokZkZf7JSV5w/f97Nzc3E\nxETpINAGih0AAICBYCoWAADAQFDsAAAADATFDgAAwEBQ7AAAAAwExQ4AAMBAUOwAAAAMBMUO\nAADAQFDsAAAADATFDgAAwEBQ7AAAAAwExQ4AAMBAUOwAAAAMBMUOAADAQFDsAAAADATFDgAA\nwEBQ7HSClZWVyT1cuHBBs05WVtaUKVPc3NwsLCwaNWo0ZsyYtLQ0RVMbsvvuka+//vquS+fP\nn690doP1+++/BwUFNWzY0Nzc3MXFJTAwMCkpqfwKHCNaVvUe4RjRvosXL44ePbpx48YWFhZN\nmzb997//nZOTU34FjhFjYKZ0AIiIvPXWW7dv364wGBkZmZ6eXrt2bREpLi7u06fPwYMHn3/+\n+U6dOp09e/bbb7/dvXv3gQMHnJyclIhs4O67R7KyskRk+PDhTZo0Kb+Ot7e31kIalWPHjnXt\n2tXc3HzixInu7u4XL15csWKFt7d3dHS0r6+vcIxo3X33CMeIlp0/f97T0zMzM3Pw4MHt27eP\nj49fsmRJfHz8vn37zM3NhWPEeKihk1JSUkxNTefPn695uGTJEhEJCwsrWyEyMlJE/v3vfysU\n0OhU2CNz5swRkeTkZGVTGY8XX3xRRHbv3l02cvjwYRHp1auX5iHHiJbdd49wjGjZsGHDROTz\nzz8vG5k8ebKIrFixQvOQY8RImKjVaiX6JKpSWlrq4eFRWFh46NAhCwsLEenYsePZs2dv3Lhh\naWlZtlqLFi2ys7PT09NNTEyUC2sUKu+RKVOmLF269PTp0+7u7kqnMwpdunRJTEwsLi7WnHvQ\ncHBwcHZ2Pn/+vHCMaN199wjHiJY5ODjY2dlduXKl7N2elZXVqFGjp556KiEhQThGjAbX2Omi\nZcuWpaamfvrpp5oOUVhYePToUU9Pz/JHo4h07979jz/+0PwMRY2qsEfk72kmR0fH0tLSK1eu\nZGRkKBrQ8LVq1UpETp48WTaSkZGRm5vbunVr4RhRQtV7RDhGtCsvLy87O9vd3b18P3N0dGzR\nosXBgwdLS0s5RowHxU7n5OXlffDBB3369OnVq5dm5PLly6Wlpa6urhXWbNq0qYicO3dOywmN\nTeU9IiK3bt0SkU8++cTFxcXV1dXFxaVly5bfffedYikN3bRp05ycnEaMGBEbG5uenp6amjps\n2DArKyvNfB/HiPZVvUeEY0S7rK2tzczMKrdnGxub4uLitLQ0jhHjwc0TOmf58uU3btwo++Eo\nIprbmmxtbSusaWdnV7YUNafyHpG/z0asX7/+7bffbty48YkTJ1asWPHSSy/l5OSMHTtWoaSG\nrHXr1gkJCYMGDerRo4dmpEmTJjt37vTy8hKOESVUvUeEY0S7atWq1bVr19jY2KNHj7Zv314z\nePLkyQMHDohIbm5ufn6+cIwYB87Y6ZaCgoKPPvqoZ8+eZT8ry1S+AEJzfSQXRtSoe+2RWbNm\nbdy48ciRI6GhoUFBQR988EFCQoKlpeX06dOLi4uVSmvATpw40bdv35ycnMWLF//888+rV6+2\nt7fv27fvzp07y9bhGNGm++4RjhEtmzdvnlqt9vPz+/HHH0+ePBkZGdmvXz/NLcll068cI8aA\nM3a6ZdOmTRkZGaNHjy4/qPl8jcq/UWVnZ4uIvb291uIZobvuERHRfKBDeW3atOnXr98PP/xw\n+PBhDw8PbQU0Fq+88sr169dPnTrVuHFjzciwYcOeeOKJkSNHnj9/nmNE+6reI+bm5hwjWta7\nd+9ly5ZNmzYtMDBQROzs7N57772UlJSzZ886OTmVlpYKx4hx4IydbomMjDQ1NfXz8ys/2KRJ\nEzMzs4sXL1ZY+ezZsyLSokUL7eUzPnfdI/dSr149EcnNza3hUEYnNzc3MTHRy8urrEOIiI2N\nTZ8+fa5evXrq1CmOES277x651xM5RmrUxIkT09PT9+7du2/fvmvXrk2ZMuXEiRMNGzZ0dHTk\nGDEenLHTIcXFxbt37+7YsaOjo2P5cQsLi86dOyclJeXn59vY2GgG79y5ExMT4+rqWuHDP1GN\n7rVHcnNz16xZ4+joOHz48PLjx44dk78vRkY1KigoUKvVhYWFFcY1I4WFhRwjWnbfPcIxoojS\n0lJ7e3sfHx/Nw0uXLqWmpgYFBQn/jxgVBT9DDxWkpqaKyOjRoysvCg8PF5G5c+eWjXz22Wfy\n90UVqCH32iOlpaWNGze2s7M7ceJE2eCPP/4oIh07dtRuRmPRrFkzc3PzkydPlo38+eefzs7O\ntWvXLiwsVHOMaF3Ve4RjRPvefvttc3PzpKQkzcPS0tJBgwaJSEJCgmaEY8RIUOx0SEREhIiU\n/W2D8kpKSjQX7/v7+8+bN2/YsGEmJibt27fPy8vTfk7jUcUe+e9//2tiYmJrazt69OhZs2YF\nBgaamJjUrl37wIED2s9pDDZt2lSrVq06derMmDHjyy+/fP/995s1ayblPlWfY0TL7rtHOEa0\n7PDhwzY2No6OjpMnT543b55KpRKRt956q2wFjhEjQbHTIZpfnpYuXXrXpTk5OW+++WbTpk3N\nzc0bN248YcKEzMxMLSc0NlXvkfj4+L59+zo6OpqZmTVq1Cg4OPj06dNaTmhU4uPjAwICXFxc\nzMzMnJycnn766S1btpRfgWNEy+67RzhGtCwhIeHZZ591dna2srLq1KnTl19+WWEFjhFjwJ8U\nAwAAMBDcFQsAAGAgKHYAAAAGgmIHAABgICh2AAAABoJiBwAAYCAodgAAAAaCYgcAAGAgKHYA\nAAAGgmIHAABgICh2AAAABoJiBwAAYCAodgAAAAaCYgcAAGAgKHYAAAAGgmIHAABgICh2AAAA\nBoJiBwAAYCAodgAAAAaCYgcAAGAgKHYAAAAGgmIHAABgICh2AAAABoJiBwAAYCAodgAAAAaC\nYgcAAGAgKHYAAAAGgmIHAABgICh2AAAABoJiBwAAYCAodgAAAAaCYgcAAGAgKHYAAAAGgmIH\nwECYmZl16dKlWjbl6Oi4c+fOatkUAGgTxQ6AkVqwYMGZM2fKj2zYsKFnz54uLi63bt3q27fv\n448//uGHHxYWFlbxFADQKRQ7AMYoLS3tnXfeKd/SFixYMHTo0Nu3b0+aNMna2nrEiBH169ef\nPn36qFGj7vUUANA1FDsAxig5Obn8w/z8/Llz53p7e8fHx8+aNcvCwuKll16Kj48fNGhQRERE\nSkpK5acAgA6i2AHQS1u3bu3cubO1tXW9evXGjBmTlZVVYYWkpKTAwMC6detaWFi4ubkFBQVd\nuHBBs2jAgAH+/v4i0rdvXxMTk9jY2PT09KKiIg8PDxMTk/Ibeffdd5csWeLk5FT5KZoVrl+/\nPmHChKZNm1pYWLi4uAQEBJTvfy+++KKJiUlWVtbYsWPr169vY2PTpUuXpKSk/Pz8KVOmNG7c\n2M7Orlu3bgcPHix7SmBgoImJSVpa2pgxY+rXr29padmqVavPPvus+r+DAAyRmdIBAOChxcbG\n+vn51a9ff/bs2S4uLjExMX5+frVq/f9vqgcOHPDx8XF2dp48eXKDBg3OnTu3YsWK7du3Hz9+\nvE6dOjNnznR2dl6zZs3s2bM7duzYpk0bKysrS0vLnTt3FhQUWFtbl22nbdu2bdu2FZHKTxGR\nGzdueHl5ZWVlhYSEtGvX7vLly59++mmPHj2io6N9fHxExMLCQkSGDBnSo0ePbdu2HTlyJCQk\nZMiQIU8++WTbtm1/+umnCxcujBkzpl+/fpcvXzY3NxcRS0tLEQkICOjdu/cPP/xw586dd999\nd/z48ebm5mPGjNHutxmAHlIDgL557rnnRCQpKalsZPz48SLi5eWlefjpp5926tRpz549ZSss\nW7ZMRJYtW6Z5+OGHH4rIL7/8UrbC7NmzRaRly5bLly+3tbXdsWNHhRet/JRx48aZmZklJyeX\njVy6dMne3l6lUmkejh49WkTGjRtXtsILL7wgIoMHDy4bmTx5sojExcVpHg4dOlREhg8fXrZC\nVlaWpaWlm5vbw3yHABgppmIB6Jk7d+7ExMQ8/vjjHh4eZYOvvvpq+XXGjRt34MCBXr16icjt\n27cLCws159jKZmMrmzt37tKlS7OysiZOnJiXlxcUFDRy5Mi9e/fea321Wh0VFfXkk08+9thj\n6X8zNzfv1q1bSkpKbm5u2ZqDBg0q+7pFixYiopnV1WjZsqWIpKWlld/4sGHDyr52cHDo0aPH\nhQsXKqwDAJVR7ADombS0tIKCgubNm5cfbNWqVYXV1qxZ4+Pj4+TkZGFhYW1t3adPHxEpKSm5\n12ZNTEwmTZp09erVvXv3Wltb29jYrFmzpnfv3kOHDi0uLq68/h9//JGRkXHw4MGG/ys6OlpE\nLl26VLZm48aNy742MzOrMKKZgb19+3b5jT/xxBPlH2rWT09Pv1d4ANDgGjsAeiY/P19ErKys\nyg9aWVmVv+9h+vTpH374oUql+vjjj5s1a2ZpaXns2LEHuUbN1NTUx8fHwsJi1apVLVq0GDdu\n3IYNG7y9vSdNmlRhzZycHBHp0KGDZoq2gkaNGpV9ralu5VUeqcDGxqb8Q1tbWxGpfIMIAFRA\nsQOgZzQ3N5T/3GARyc3NVavVmq8LCws/+eQTV1fXPXv22NnZaQZv3br1sC/UtGnTiIgIZ2fn\n6OjoysXO3t5e84Xmgr/qlZeXV/6hJnydOnWq/YUAGBimYgHomQYNGlhYWJw/f7784JEjR8q+\nTk9PLygoUKlUZa1ORGJiYqrY5rx58xo2bFj5lFjt2rXt7Oyys7MrP6V+/fp169b9/fffKzzr\nxo0bD/5vuZcTJ06Uf3j69GkRadiw4aNvGYBho9gB0DNmZmbdunU7c+ZM+U+MW7FiRdnX9evX\nNzExKX+fxKFDh7799lspd57P1NRURAoKCjQP3dzc0tPTQ0NDy077aURFRd26dcvLy6vyU0Rk\nyJAhhYWFixYtKhu5cePGk08+OXDgwEf8N3755ZdlX586dSo5Oblly5YuLi6PuFkABo+pWAD6\n5+23346JiRkwYMArr7xSp06dmJiY/Px8BwcHzVJra+v+/ftv3rw5JCSkV69ex48fX758+bp1\n6/z8/LZs2bJ+/Xo/Pz/NvRcLFiw4f/58jx49RowYERERsWrVql9//bVPnz5FRUVfffXVsmXL\nfv75Z1dX17feektEKjzFw8Nj7ty5W7Zs+eCDD9LS0nx8fK5du7Zy5crMzMzK87YPq6ioaODA\ngQMGDLhz587ChQvVf38aCwDch7KftgIA/0xERET79u01f+/hlVde+fPPP11dXTt27KhZ+scf\nf7z44osuLi4ODg6+vr779+9Xq9Xz5s2zs7Nr0KBBWlpacXHx888/b21t7eTkFBUVpVarCwsL\nly5d2rlzZycnJxExMzNr2rTphAkT0tPTNdus/BS1Wp2WljZu3DhXV1czMzNHR0c/P7/ExMSy\nkJrPsTt9+nTZyJw5c0REk0fj888/F5H169drHmo+x+706dNTpkxp1KiRhYVFmzZtvv766xr8\nVgIwICbq/513AAA4Ojpu3Ljx6aef1v5LDxs2LDIy8vLly4899pj2Xx2AvuMaOwCoKDQ0tMLn\n5AGAXuAaOwCoKDQ0VOkIAPBPcMYOAADAQHCNHQAAgIHgjB0AAICBoNgBAAAYCIodAACAgaDY\nAQAAGAiKHQAAgIGg2AEAABgIih0AAICBoNgBAAAYCIodAACAgaDYAQAAGAiKHQAAgIGg2AEA\nABgIih0AAICBoNgBAAAYCIodAACAgaDYAQAAGAiKHQAAgIGg2AEAABgIih0AAICBoNgBAAAY\nCIodAACAgaDYAQAAGAiKHQAAgIGg2AEAABgIih0AAICBoNgBAAAYiP8Dfm1lHhLCkUAAAAAA\nSUVORK5CYII=",
"text/plain": [
"plot without title"
]
},
"metadata": {
"tags": [],
"image/png": {
"width": 420,
"height": 420
}
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Tc4skFYhBmpC",
"colab_type": "code",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
},
"outputId": "6db8848c-acc2-485f-9b0f-828274edfef8"
},
"source": [
"#Usando el modelo lineal, para 84 F, se determina el número de chirridos\n",
"print(\"La temperatura es\")\n",
"-0.31+0.21*84\n"
],
"execution_count": 54,
"outputs": [
{
"output_type": "stream",
"text": [
"[1] \"La temperatura es\"\n"
],
"name": "stdout"
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"[1] 17.33"
],
"text/latex": "17.33",
"text/markdown": "17.33",
"text/html": [
"17.33"
]
},
"metadata": {
"tags": []
}
}
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment