Last active
March 11, 2025 00:25
-
-
Save ruvnet/56807c220f4d80a82b6e0e8b276f631b to your computer and use it in GitHub Desktop.
Diffusion-Based Coding Model with PyTorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Diffusion-Based Coding Model with PyTorch\n", | |
"\n", | |
"Welcome to the Diffusion-Based Coding Model notebook. This notebook provides a comprehensive, step-by-step guide to building a diffusion-based coding model from scratch using PyTorch. Our approach blends state-of-the-art ideas from diffusion models with code generation tasks. The notebook covers:\n", | |
"\n", | |
"- **Introduction**: Learn about the project, its features, and benefits.\n", | |
"- **Requirements & Installation**: How to set up your environment.\n", | |
"- **Data Collection & Preprocessing**: Fetching code snippets from GitHub, tokenizing, and augmenting data.\n", | |
"- **Model Architecture**: A baseline diffusion model with plans to extend to iterative denoising.\n", | |
"- **Training & Evaluation**: How to train, validate, and evaluate the model.\n", | |
"- **Inference**: Generate code snippets using the trained model.\n", | |
"- **Model Saving & Error Handling**: Best practices for saving models and robust logging.\n", | |
"\n", | |
"## Features\n", | |
"\n", | |
"- **Comprehensive Pipeline**: Data collection, preprocessing, augmentation, training, evaluation, and deployment.\n", | |
"- **Diffusion Model Foundations**: While simplified here, the structure is designed to be extended with iterative denoising steps typical of diffusion models.\n", | |
"- **Robust Data Handling**: Incorporates code tokenization, augmentation (insertion, deletion, swapping) to enhance model robustness.\n", | |
"- **Flexible Architecture**: A baseline LSTM-based model which can be replaced or extended with Transformer-based denoising architectures for diffusion.\n", | |
"\n", | |
"## Benefits\n", | |
"\n", | |
"- **Faster Inference Potential**: Diffusion models offer opportunities for parallel generation and iterative refinement, promising much faster token generation compared to autoregressive models.\n", | |
"- **Improved Global Consistency**: The iterative refinement process can help maintain code consistency across longer sequences.\n", | |
"- **Scalability**: Designed to be extended to distributed and large-scale training setups, which is critical for real-world coding assistants.\n", | |
"\n", | |
"Let's get started!" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Requirements & Installation\n", | |
"\n", | |
"Before running this notebook, install the required packages. You can install all dependencies by running the cell below." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"trusted": true | |
}, | |
"outputs": [], | |
"source": [ | |
"!pip install torch torchvision torchtext requests beautifulsoup4 scikit-learn pandas numpy" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Data Collection\n", | |
"Collect code snippets and their corresponding prompts from GitHub repositories. In this example, we fetch code from a specified repository URL." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import requests\n", | |
"from bs4 import BeautifulSoup\n", | |
"\n", | |
"def fetch_code_snippets(repo_url):\n", | |
" response = requests.get(repo_url)\n", | |
" if response.status_code == 200:\n", | |
" soup = BeautifulSoup(response.content, 'html.parser')\n", | |
" code_snippets = []\n", | |
" for code_tag in soup.find_all('code'):\n", | |
" code_snippet = code_tag.get_text()\n", | |
" if code_snippet.strip():\n", | |
" code_snippets.append(code_snippet.strip())\n", | |
" return code_snippets\n", | |
" else:\n", | |
" raise Exception(f'Failed to fetch code snippets from {repo_url}')\n", | |
"\n", | |
"repo_url = 'https://github.com/example/repo'\n", | |
"code_snippets = fetch_code_snippets(repo_url)\n", | |
"print(f'Fetched {len(code_snippets)} code snippets.')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Data Preprocessing\n", | |
"Tokenize code snippets and convert them into sequences of tokens using a basic tokenizer. In a real-world scenario, you would choose a tokenizer that understands code syntax better." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from torchtext.data.utils import get_tokenizer\n", | |
"\n", | |
"def tokenize_code(code_snippet):\n", | |
" tokenizer = get_tokenizer('basic_english')\n", | |
" tokens = tokenizer(code_snippet)\n", | |
" return tokens\n", | |
"\n", | |
"def preprocess_data(code_snippets):\n", | |
" tokenized_snippets = [tokenize_code(snippet) for snippet in code_snippets]\n", | |
" all_tokens = [token for snippet in tokenized_snippets for token in snippet]\n", | |
" unique_tokens = list(set(all_tokens))\n", | |
" token_to_idx = {token: idx for idx, token in enumerate(unique_tokens)}\n", | |
" idx_to_token = {idx: token for token, idx in token_to_idx.items()}\n", | |
" return tokenized_snippets, token_to_idx, idx_to_token\n", | |
"\n", | |
"tokenized_snippets, token_to_idx, idx_to_token = preprocess_data(code_snippets)\n", | |
"print(f'Total unique tokens: {len(token_to_idx)}')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Data Augmentation\n", | |
"Enhance the training data to make the model more robust. Here, we apply random insertion, deletion, and swapping of tokens." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"\n", | |
"def augment_data(tokenized_snippets, token_to_idx):\n", | |
" augmented_snippets = []\n", | |
" for snippet in tokenized_snippets:\n", | |
" # Random Insertion\n", | |
" if np.random.rand() < 0.1:\n", | |
" insertion_index = np.random.randint(0, len(snippet) + 1)\n", | |
" inserted_token = np.random.choice(list(token_to_idx.keys()))\n", | |
" snippet.insert(insertion_index, inserted_token)\n", | |
" # Random Deletion\n", | |
" if np.random.rand() < 0.1 and len(snippet) > 1:\n", | |
" deletion_index = np.random.randint(0, len(snippet))\n", | |
" del snippet[deletion_index]\n", | |
" # Random Swap\n", | |
" if np.random.rand() < 0.1 and len(snippet) > 1:\n", | |
" swap_index1, swap_index2 = np.random.choice(len(snippet), 2, replace=False)\n", | |
" snippet[swap_index1], snippet[swap_index2] = snippet[swap_index2], snippet[swap_index1]\n", | |
" augmented_snippets.append(snippet)\n", | |
" return augmented_snippets\n", | |
"\n", | |
"augmented_snippets = augment_data(tokenized_snippets, token_to_idx)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Model Architecture\n", | |
"Define the diffusion model architecture using PyTorch. In a full diffusion model, you would include a noise scheduler and iterative denoising steps. Here, we illustrate a baseline model (using an LSTM) that can serve as a foundation for adding diffusion-specific components." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import torch.nn as nn\n", | |
"\n", | |
"class DiffusionModel(nn.Module):\n", | |
" def __init__(self, vocab_size, embedding_dim, hidden_dim):\n", | |
" super(DiffusionModel, self).__init__()\n", | |
" self.embedding = nn.Embedding(vocab_size, embedding_dim)\n", | |
" # In a full diffusion model, replace the LSTM with a Transformer-based denoiser that accepts time-step conditioning\n", | |
" self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)\n", | |
" self.fc = nn.Linear(hidden_dim, vocab_size)\n", | |
"\n", | |
" def forward(self, x):\n", | |
" x = self.embedding(x)\n", | |
" x, _ = self.lstm(x)\n", | |
" x = self.fc(x)\n", | |
" return x\n", | |
"\n", | |
"vocab_size = len(token_to_idx)\n", | |
"embedding_dim = 256\n", | |
"hidden_dim = 512\n", | |
"learning_rate = 0.001\n", | |
"\n", | |
"model = DiffusionModel(vocab_size, embedding_dim, hidden_dim)\n", | |
"criterion = nn.CrossEntropyLoss()\n", | |
"optimizer = optim.Adam(model.parameters(), lr=learning_rate)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Data Preparation\n", | |
"Prepare the data for training by converting tokens to indices and creating batches using a custom Dataset class." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from torch.utils.data import Dataset, DataLoader\n", | |
"from sklearn.model_selection import train_test_split\n", | |
"\n", | |
"class CodeDataset(Dataset):\n", | |
" def __init__(self, tokenized_snippets, token_to_idx, seq_length=100):\n", | |
" self.tokenized_snippets = tokenized_snippets\n", | |
" self.token_to_idx = token_to_idx\n", | |
" self.seq_length = seq_length\n", | |
" def __len__(self):\n", | |
" return len(self.tokenized_snippets)\n", | |
" def __getitem__(self, idx):\n", | |
" snippet = self.tokenized_snippets[idx]\n", | |
" input_seq = snippet[:self.seq_length]\n", | |
" target_seq = snippet[1:self.seq_length+1]\n", | |
" input_seq = [self.token_to_idx[token] for token in input_seq]\n", | |
" target_seq = [self.token_to_idx[token] for token in target_seq]\n", | |
" return torch.tensor(input_seq), torch.tensor(target_seq)\n", | |
"\n", | |
"seq_length = 100\n", | |
"batch_size = 32\n", | |
"\n", | |
"dataset = CodeDataset(augmented_snippets, token_to_idx, seq_length)\n", | |
"train_dataset, val_dataset = train_test_split(dataset, test_size=0.2, random_state=42)\n", | |
"train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n", | |
"val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Training\n", | |
"Train the model using the prepared data. In a full diffusion model, you would incorporate a noise schedule and iterative denoising. Here, we demonstrate a standard training loop for a baseline model." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"num_epochs = 10\n", | |
"scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)\n", | |
"\n", | |
"for epoch in range(num_epochs):\n", | |
" model.train()\n", | |
" total_loss = 0\n", | |
" for inputs, targets in train_loader:\n", | |
" optimizer.zero_grad()\n", | |
" outputs = model(inputs)\n", | |
" loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))\n", | |
" loss.backward()\n", | |
" optimizer.step()\n", | |
" total_loss += loss.item()\n", | |
" scheduler.step()\n", | |
" avg_loss = total_loss / len(train_loader)\n", | |
" print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss}')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Evaluation\n", | |
"Evaluate the model on the validation set." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"model.eval()\n", | |
"total_loss = 0\n", | |
"with torch.no_grad():\n", | |
" for inputs, targets in val_loader:\n", | |
" outputs = model(inputs)\n", | |
" loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))\n", | |
" total_loss += loss.item()\n", | |
"\n", | |
"val_loss = total_loss / len(val_loader)\n", | |
"print(f'Validation Loss: {val_loss}')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Inference\n", | |
"Generate code snippets using the trained model. This function takes a prompt and iteratively predicts the next token." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def generate_code(model, prompt, max_length=100):\n", | |
" model.eval()\n", | |
" input_seq = [token_to_idx[token] for token in tokenize_code(prompt)]\n", | |
" input_seq = torch.tensor(input_seq).unsqueeze(0)\n", | |
" generated_code = []\n", | |
" with torch.no_grad():\n", | |
" for _ in range(max_length):\n", | |
" outputs = model(input_seq)\n", | |
" _, predicted = torch.max(outputs[:, -1, :], 1)\n", | |
" generated_code.append(idx_to_token[predicted.item()])\n", | |
" input_seq = torch.cat([input_seq, predicted.unsqueeze(0)], dim=1)\n", | |
" return ' '.join(generated_code)\n", | |
"\n", | |
"prompt = 'def hello_world():'\n", | |
"generated_code = generate_code(model, prompt)\n", | |
"print(generated_code)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Model Saving and Loading\n", | |
"Save and load the trained model for later use." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def save_model(model, path):\n", | |
" torch.save(model.state_dict(), path)\n", | |
"\n", | |
"def load_model(model, path):\n", | |
" model.load_state_dict(torch.load(path))\n", | |
" model.eval()\n", | |
"\n", | |
"model_path = 'diffusion_model.pth'\n", | |
"save_model(model, model_path)\n", | |
"load_model(model, model_path)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Error Handling and Logging\n", | |
"Robust error handling and logging are essential for tracking training and inference processes. The cell below demonstrates how to integrate logging into the training loop." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import logging\n", | |
"\n", | |
"logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')\n", | |
"\n", | |
"try:\n", | |
" for epoch in range(num_epochs):\n", | |
" model.train()\n", | |
" total_loss = 0\n", | |
" for inputs, targets in train_loader:\n", | |
" optimizer.zero_grad()\n", | |
" outputs = model(inputs)\n", | |
" loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))\n", | |
" loss.backward()\n", | |
" optimizer.step()\n", | |
" total_loss += loss.item()\n", | |
" scheduler.step()\n", | |
" avg_loss = total_loss / len(train_loader)\n", | |
" logging.info(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss}')\n", | |
"except Exception as e:\n", | |
" logging.error(f'An error occurred: {e}')" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"name": "python", | |
"version": "3.8.5", | |
"file_extension": ".py", | |
"mimetype": "text/x-python" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment