Skip to content

Instantly share code, notes, and snippets.

@CVxTz
Last active February 1, 2020 16:14
Show Gist options
  • Save CVxTz/ebefe56a857fe3284b312f67952bb954 to your computer and use it in GitHub Desktop.
Save CVxTz/ebefe56a857fe3284b312f67952bb954 to your computer and use it in GitHub Desktop.
for i, step_size in enumerate(step_sizes):
X_used = X[used_samples, ...]
Y_used = Y[used_samples, ...]
X_unused = X[unused_samples, ...]
Y_unused = Y[unused_samples, ...]
model = get_model()
model.fit(X_used, Y_used, epochs=45, verbose=1, batch_size=32)
pred_ununsed = model.predict(X_unused).tolist()
entr = [entropy(l) for l in pred_ununsed]
threshold = sorted(entr, reverse=True)[step_size]
pred_test = model.predict(X_test)
pred_test = np.argmax(pred_test, axis=-1)
f1 = f1_score(Y_test, pred_test, average="macro")
acc = accuracy_score(Y_test, pred_test)
results.append({"size": X_used.shape[0], "accuracy": acc, "f1": f1})
step = [x for x, v in zip(unused_samples, entr) if v >= threshold]
used_samples += step
unused_samples = list(set(unused_samples) - set(step))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment