Created
November 7, 2022 20:09
-
-
Save Emekaborisama/6de33b16b11338acfe46f2f2385c3540 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# using linear regression | |
from sklearn.linear_model import LinearRegression | |
model = LinearRegression() | |
model.fit(X_train, y_train) | |
preds_valid = model.predict(X_test) | |
linearreg =mean_absolute_error(y_test, preds_valid) | |
print(linearreg) | |
>>> 54.0539523895 | |
# using xgboost regressor | |
from xgboost import XGBRegressor | |
model = XGBRegressor(n_estimators=1000, max_depth=7, eta=0.1, subsample=0.7, colsample_bytree=0.8) | |
model.fit(X_train, y_train) | |
preds_valid = model.predict(X_test) | |
xgboost_res = mean_absolute_error(y_test, preds_valid) | |
print(xgboost_res) | |
>>> 142.000435933435 | |
# using ridge regressor | |
from sklearn.linear_model import Ridge | |
clf = Ridge(alpha=1.0) | |
clf.fit(X_train, y_train) | |
preds_valid = clf.predict(X_test) | |
ridge_reg = mean_absolute_error(y_test, preds_valid) | |
print(ridge_reg) | |
>>> 123.245023458340 | |
# export the model with pickle | |
import pickle | |
pickle.dump(model, open( "model_lin.p", "wb" )) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment