Created
July 31, 2025 14:39
-
-
Save Hermann-SW/3d7481e57a4f62a3c37d6a228deec0fc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" pylinted, and code formatted with black """ | |
from math import lcm | |
from cryptography.hazmat.primitives.asymmetric import rsa | |
from cryptography.hazmat.backends import default_backend | |
from cryptography.hazmat.primitives import serialization | |
# P and Q are prime factors of largest factored sofar RSA-250 | |
# | |
P = 641352894770715802787901901705773890848250147429434472081168596 * 10**62 | |
P += 32024532344630238623598752668347708737661925585694639798853367 | |
Q = 333720275949781565562260106053551142279407603447675546667845209 * 10**62 | |
Q += 87023841729210037080257448673296881877565718986258036932062711 | |
E = 0x10001 | |
L = lcm(P - 1, Q - 1) | |
private_key = rsa.RSAPrivateNumbers( | |
p=P, | |
q=Q, | |
d=pow(E, -1, L), | |
dmp1=pow(E, -1, P - 1), | |
dmq1=pow(E, -1, Q - 1), | |
iqmp=pow(Q, -1, P), | |
public_numbers=rsa.RSAPublicNumbers(e=E, n=P * Q), | |
).private_key(default_backend()) | |
pem = private_key.private_bytes( | |
encoding=serialization.Encoding.PEM, | |
encryption_algorithm=serialization.NoEncryption(), | |
format=serialization.PrivateFormat.TraditionalOpenSSL, | |
) | |
with open("private_key.pem", "wb") as f: | |
f.write(pem) | |
public_key = private_key.public_key() | |
pem = public_key.public_bytes( | |
encoding=serialization.Encoding.PEM, | |
format=serialization.PublicFormat.SubjectPublicKeyInfo, | |
) | |
with open("public_key.pem", "wb") as f: | |
f.write(pem) |
Encrypt and sign message with private key:
pi@raspberrypi5:~/RSA-250 $ echo "This is v3ry SECRET!" |
> openssl pkeyutl -sign -inkey private_key.pem -in "-" -out "msg.sig"
pi@raspberrypi5:~/RSA-250 $ ls
generate_rsa_keys_from_p_and_q.py msg.sig private_key.pem public_key.pem
pi@raspberrypi5:~/RSA-250 $
Verify signature, and recover message:
pi@raspberrypi5:~/RSA-250 $ openssl pkeyutl -verifyrecover -pubin -inkey public_key.pem -in msg.sig -pkeyopt rsa_padding_mode:none -hexdump
0000 - 00 01 ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
0010 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
0020 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
0030 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
0040 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
0050 - ff ff 00 54 68 69 73 20-69 73 20 76 33 72 79 20 ...This is v3ry
0060 - 53 45 43 52 45 54 21 0a- SECRET!.
pi@raspberrypi5:~/RSA-250 $
Verification of RSA-250 modulus ...
pi@raspberrypi5:~/RSA-250 $ gp -q
? printf("%x",\
641352894770715802787901901705773890848250147429434472081168596\
32024532344630238623598752668347708737661925585694639798853367\
*\
333720275949781565562260106053551142279407603447675546667845209\
87023841729210037080257448673296881877565718986258036932062711)
1321d2fddde8bd9dff379aff030de205b846eb5cecc40fa8aa9c2a85ce3e992193e873b2bc667dabe2ac3ee9dd23b3a9ed9ec0c3c7445663f5455469b727dd6fbc03b1bf95d03a13c0368645767630c7eabf5e7ab5fa27b94ade7e1e23bcc65d2a7ded1c5b364b51
?
... in public key:
pi@raspberrypi5:~/RSA-250 $ openssl rsa -pubin -inform PEM -text -noout < public_key.pem
Public-Key: (829 bit)
Modulus:
13:21:d2:fd:dd:e8:bd:9d:ff:37:9a:ff:03:0d:e2:
05:b8:46:eb:5c:ec:c4:0f:a8:aa:9c:2a:85:ce:3e:
99:21:93:e8:73:b2:bc:66:7d:ab:e2:ac:3e:e9:dd:
23:b3:a9:ed:9e:c0:c3:c7:44:56:63:f5:45:54:69:
b7:27:dd:6f:bc:03:b1:bf:95:d0:3a:13:c0:36:86:
45:76:76:30:c7:ea:bf:5e:7a:b5:fa:27:b9:4a:de:
7e:1e:23:bc:c6:5d:2a:7d:ed:1c:5b:36:4b:51
Exponent: 65537 (0x10001)
pi@raspberrypi5:~/RSA-250 $
Using openssl with deprecated rsautl can be seen in this gist comment:
https://gist.github.com/Hermann-SW/4aefd5b12ff179700bb6594ba25f9646?permalink_comment_id=5701082#gistcomment-5701082
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Generate public and private key with modulus RSA-250 given its factors P and Q: