Created
December 15, 2023 00:31
-
-
Save JitendraZaa/2a5a31cef950c11fadd08ca2151b3194 to your computer and use it in GitHub Desktop.
Talk To Salesforce data using Langchain, OpenAI, Python, ChromaDB
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import sys | |
import json | |
import openai | |
from langchain.chains import ConversationalRetrievalChain, RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import DirectoryLoader, TextLoader | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.indexes import VectorstoreIndexCreator | |
from langchain.indexes.vectorstore import VectorStoreIndexWrapper | |
from langchain.llms import OpenAI | |
from langchain.vectorstores import Chroma | |
from langchain.document_loaders import JSONLoader | |
import numpy as np | |
from numpy.linalg import norm | |
import pandas as pd | |
import requests | |
from ast import literal_eval | |
import myconstants | |
os.environ["OPENAI_API_KEY"] = myconstants.APIKEY | |
# Salesforce credentials | |
sf_username = myconstants.SF_USERNAME | |
sf_password = myconstants.SF_PASSWORD | |
sf_security_token = myconstants.SF_SECURITY_TOKEN | |
sf_instance = myconstants.SF_INSTANCE | |
sf_instance_afterlogin = myconstants.SF_INSTANCE_AFTERLOGIN | |
sf_client_id = myconstants.SF_CLIENT_ID | |
sf_client_secret = myconstants.SF_CLIENT_SECRET | |
# Salesforce authentication endpoint | |
auth_url = f'https://{sf_instance}/services/oauth2/token' | |
# Salesforce REST API endpoint for querying accounts | |
query_url = f'https://{sf_instance_afterlogin}/services/data/v57.0/query?q=SELECT+Id,Name,Company,Title,LeadSource,Email,Status+FROM+Lead' | |
# Salesforce authentication payload | |
auth_payload = { | |
'grant_type': 'password', | |
'client_id': sf_client_id, # Replace with your Salesforce Connected App's client ID | |
'client_secret': sf_client_secret, # Replace with your Salesforce Connected App's client secret | |
'username': sf_username, | |
'password': sf_password + sf_security_token | |
} | |
# Authenticate with Salesforce | |
auth_response = requests.post(auth_url, data=auth_payload) | |
auth_data = auth_response.json() | |
access_token = auth_data['access_token'] | |
# Query Salesforce to get account information | |
headers = {'Authorization': f'Bearer {access_token}'} | |
query_response = requests.get(query_url, headers=headers) | |
leads = query_response.json().get('records', []) | |
# Save Salesforce response as JSON file | |
json_filename = 'salesforce_lead_response.json' | |
with open(json_filename, 'w') as json_file: | |
json.dump(leads, json_file) | |
# Generate content from Salesforce response | |
content = "\n".join([f"Lead Name = {lead['Name']} , ID = {lead['Id']}, Company = {lead['Company']}, Title = {lead['Title']}, Email = {lead['Email']}" for lead in leads]) | |
# Specify the file path | |
file_path = "salesforce_lead_response.txt" | |
# Open the file in write mode and write the content | |
with open(file_path, 'w') as file: | |
file.write(content) | |
# Enable to save to disk & reuse the model (for repeated queries on the same data) | |
PERSIST = False | |
query = None | |
if len(sys.argv) > 1: | |
query = sys.argv[1] | |
if PERSIST and os.path.exists("persist"): | |
print("Reusing index...\n") | |
vectorstore = Chroma(persist_directory="persist", embedding_function=OpenAIEmbeddings()) | |
index = VectorStoreIndexWrapper(vectorstore=vectorstore) | |
else: | |
loader = TextLoader(file_path) # Use this line if you only need data.txt | |
#loader = DirectoryLoader("data/") | |
# loader = TextLoader(content) | |
# loader = JSONLoader( file_path='salesforce_lead_response.json', jq_schema='.', text_content=False) | |
if PERSIST: | |
index = VectorstoreIndexCreator(vectorstore_kwargs={"persist_directory":"persist"}).from_loaders([loader]) | |
else: | |
index = VectorstoreIndexCreator().from_loaders([loader]) | |
chain = ConversationalRetrievalChain.from_llm( | |
llm=ChatOpenAI(model="gpt-3.5-turbo"), | |
retriever=index.vectorstore.as_retriever(search_kwargs={"k": 1}), | |
) | |
chat_history = [] | |
while True: | |
if not query: | |
query = input("Prompt: ") | |
if query in ['quit', 'q', 'exit']: | |
sys.exit() | |
result = chain({"question": query, "chat_history": chat_history}) | |
print(result['answer']) | |
chat_history.append((query, result['answer'])) | |
query = None |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment