Last active
April 2, 2022 20:14
-
-
Save MBoustani/437cea275fa9d40c9e60eac9ba71456c to your computer and use it in GitHub Desktop.
Simple Tensorflow RNN LSTM text generator
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
#set hyperparameters | |
max_len = 40 | |
step = 2 | |
num_units = 128 | |
learning_rate = 0.001 | |
batch_size = 200 | |
epoch = 60 | |
temperature = 0.5 | |
def read_data(file_name): | |
''' | |
open and read text file | |
''' | |
text = open(file_name, 'r').read() | |
return text.lower() | |
def featurize(text): | |
''' | |
featurize the text to train and target dataset | |
''' | |
unique_chars = list(set(text)) | |
len_unique_chars = len(unique_chars) | |
input_chars = [] | |
output_char = [] | |
for i in range(0, len(text) - max_len, step): | |
input_chars.append(text[i:i+max_len]) | |
output_char.append(text[i+max_len]) | |
train_data = np.zeros((len(input_chars), max_len, len_unique_chars)) | |
target_data = np.zeros((len(input_chars), len_unique_chars)) | |
for i , each in enumerate(input_chars): | |
for j, char in enumerate(each): | |
train_data[i, j, unique_chars.index(char)] = 1 | |
target_data[i, unique_chars.index(output_char[i])] = 1 | |
return train_data, target_data, unique_chars, len_unique_chars | |
def rnn(x, weight, bias, len_unique_chars): | |
''' | |
define rnn cell and prediction | |
''' | |
x = tf.transpose(x, [1, 0, 2]) | |
x = tf.reshape(x, [-1, len_unique_chars]) | |
x = tf.split(x, max_len, 0) | |
cell = tf.contrib.rnn.BasicLSTMCell(num_units, forget_bias=1.0) | |
outputs, states = tf.contrib.rnn.static_rnn(cell, x, dtype=tf.float32) | |
prediction = tf.matmul(outputs[-1], weight) + bias | |
return prediction | |
def sample(predicted): | |
''' | |
helper function to sample an index from a probability array | |
''' | |
exp_predicted = np.exp(predicted/temperature) | |
predicted = exp_predicted / np.sum(exp_predicted) | |
probabilities = np.random.multinomial(1, predicted, 1) | |
return probabilities | |
def run(train_data, target_data, unique_chars, len_unique_chars): | |
''' | |
main run function | |
''' | |
x = tf.placeholder("float", [None, max_len, len_unique_chars]) | |
y = tf.placeholder("float", [None, len_unique_chars]) | |
weight = tf.Variable(tf.random_normal([num_units, len_unique_chars])) | |
bias = tf.Variable(tf.random_normal([len_unique_chars])) | |
prediction = rnn(x, weight, bias, len_unique_chars) | |
softmax = tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y) | |
cost = tf.reduce_mean(softmax) | |
optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate).minimize(cost) | |
init_op = tf.global_variables_initializer() | |
sess = tf.Session() | |
sess.run(init_op) | |
num_batches = int(len(train_data)/batch_size) | |
for i in range(epoch): | |
print "----------- Epoch {0}/{1} -----------".format(i+1, epoch) | |
count = 0 | |
for _ in range(num_batches): | |
train_batch, target_batch = train_data[count:count+batch_size], target_data[count:count+batch_size] | |
count += batch_size | |
sess.run([optimizer] ,feed_dict={x:train_batch, y:target_batch}) | |
#get on of training set as seed | |
seed = train_batch[:1:] | |
#to print the seed 40 characters | |
seed_chars = '' | |
for each in seed[0]: | |
seed_chars += unique_chars[np.where(each == max(each))[0][0]] | |
print "Seed:", seed_chars | |
#predict next 1000 characters | |
for i in range(1000): | |
if i > 0: | |
remove_fist_char = seed[:,1:,:] | |
seed = np.append(remove_fist_char, np.reshape(probabilities, [1, 1, len_unique_chars]), axis=1) | |
predicted = sess.run([prediction], feed_dict = {x:seed}) | |
predicted = np.asarray(predicted[0]).astype('float64')[0] | |
probabilities = sample(predicted) | |
predicted_chars = unique_chars[np.argmax(probabilities)] | |
seed_chars += predicted_chars | |
print 'Result:', seed_chars | |
sess.close() | |
if __name__ == "__main__": | |
#get data from https://s3.amazonaws.com/text-datasets/nietzsche.txt | |
text = read_data('nietzsche.txt') | |
train_data, target_data, unique_chars, len_unique_chars = featurize(text) | |
run(train_data, target_data, unique_chars, len_unique_chars) |
Hi where can i change the seed? thanks. Or ask the user to input the seed.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Result:
----------- Epoch 40/60 -----------
Seed: discipline and training of the intellect
Result: discipline and training of the intellectual into the same restrain, or the contempt of the same estimates which one of the need of superiority of the good and man are the fact that the same as the sacrifice of a god and the same time alternatory of the moral form of such protested by the world with the problem of the demonstroup religious feelings, the world as the contempt of the master of the experience of the same moral true spectacle and instinctive men through the same with a the strength of an end with the more devolved as the beneficted when they will protes the same time the sense of the saint of the sacrifice of in all the superstitious and man is to be accepts in the self range and the present spectacle the slave as a peoples of the soul of the same into the same wholly because still misunderstanding the reality in the saints of god and the most strong and man who exercise with the saints of delight that
the subjection of the singular conscience when they have been produces of the same way the saint of the same and