Last active
December 27, 2018 03:02
-
-
Save ProGamerGov/bcbd27a3d2e431adb73ef158d9990d93 to your computer and use it in GitHub Desktop.
Working Multi-Region Spatial Control in Neural-Style. Also known as "masked style transfer", and "semantic/segmented style transfer".
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- Original mask related code from: https://github.com/martinbenson/deep-photo-styletransfer | |
-- Modified mask code by github.com/ProGamerGov | |
require 'torch' | |
require 'nn' | |
require 'image' | |
require 'optim' | |
require 'loadcaffe' | |
local cmd = torch.CmdLine() | |
-- Basic options | |
cmd:option('-style_image', 'examples/inputs/seated-nude.jpg', | |
'Style target image') | |
cmd:option('-style_seg', '', | |
'Style segmentation image') | |
cmd:option('-style_blend_weights', 'nil') | |
cmd:option('-content_image', 'examples/inputs/tubingen.jpg', | |
'Content target image') | |
cmd:option('-content_seg', '', | |
'Style segmentation image') | |
cmd:option('-image_size', 512, 'Maximum height / width of generated image') | |
cmd:option('-gpu', '0', 'Zero-indexed ID of the GPU to use; for CPU mode set -gpu = -1') | |
cmd:option('-multigpu_strategy', '', 'Index of layers to split the network across GPUs') | |
cmd:option('-color_codes', 'blue,green,black,white,red,yellow,grey,lightblue,purple', 'Colors used in content mask') | |
-- Optimization options | |
cmd:option('-content_weight', 5e0) | |
cmd:option('-style_weight', 1e2) | |
cmd:option('-tv_weight', 1e-3) | |
cmd:option('-num_iterations', 1000) | |
cmd:option('-normalize_gradients', false) | |
cmd:option('-init', 'random', 'random|image') | |
cmd:option('-init_image', '') | |
cmd:option('-optimizer', 'lbfgs', 'lbfgs|adam') | |
cmd:option('-learning_rate', 1e1) | |
cmd:option('-lbfgs_num_correction', 0) | |
-- Output options | |
cmd:option('-print_iter', 50) | |
cmd:option('-save_iter', 100) | |
cmd:option('-output_image', 'out.png') | |
-- Other options | |
cmd:option('-style_scale', 1.0) | |
cmd:option('-original_colors', 0) | |
cmd:option('-pooling', 'max', 'max|avg') | |
cmd:option('-proto_file', 'models/VGG_ILSVRC_19_layers_deploy.prototxt') | |
cmd:option('-model_file', 'models/VGG_ILSVRC_19_layers.caffemodel') | |
cmd:option('-backend', 'nn', 'nn|cudnn|clnn') | |
cmd:option('-cudnn_autotune', false) | |
cmd:option('-seed', -1) | |
cmd:option('-content_layers', 'relu4_2', 'layers for content') | |
cmd:option('-style_layers', 'relu1_1,relu2_1,relu3_1,relu4_1,relu5_1', 'layers for style') | |
local function main(params) | |
local dtype, multigpu = setup_gpu(params) | |
local loadcaffe_backend = params.backend | |
if params.backend == 'clnn' then loadcaffe_backend = 'nn' end | |
local cnn = loadcaffe.load(params.proto_file, params.model_file, loadcaffe_backend):type(dtype) | |
local content_image = image.load(params.content_image, 3) | |
content_image = image.scale(content_image, params.image_size, 'bilinear') | |
local content_image_caffe = preprocess(content_image):float() | |
local style_size = math.ceil(params.style_scale * params.image_size) | |
local style_image_list = params.style_image:split(',') | |
local style_images_caffe = {} | |
for _, img_path in ipairs(style_image_list) do | |
local img = image.load(img_path, 3) | |
img = image.scale(img, style_size, 'bilinear') | |
local img_caffe = preprocess(img):float() | |
table.insert(style_images_caffe, img_caffe) | |
end | |
local init_image = nil | |
if params.init_image ~= '' then | |
init_image = image.load(params.init_image, 3) | |
local H, W = content_image:size(2), content_image:size(3) | |
init_image = image.scale(init_image, W, H, 'bilinear') | |
init_image = preprocess(init_image):float() | |
end | |
-- Handle style blending weights for multiple style inputs | |
local style_blend_weights = nil | |
if params.style_blend_weights == 'nil' then | |
-- Style blending not specified, so use equal weighting | |
style_blend_weights = {} | |
for i = 1, #style_image_list do | |
table.insert(style_blend_weights, 1.0) | |
end | |
else | |
style_blend_weights = params.style_blend_weights:split(',') | |
assert(#style_blend_weights == #style_image_list, | |
'-style_blend_weights and -style_images must have the same number of elements') | |
end | |
-- Normalize the style blending weights so they sum to 1 | |
local style_blend_sum = 0 | |
for i = 1, #style_blend_weights do | |
style_blend_weights[i] = tonumber(style_blend_weights[i]) | |
style_blend_sum = style_blend_sum + style_blend_weights[i] | |
end | |
for i = 1, #style_blend_weights do | |
style_blend_weights[i] = style_blend_weights[i] / style_blend_sum | |
end | |
local content_layers = params.content_layers:split(",") | |
local style_layers = params.style_layers:split(",") | |
-- segmentation images | |
local style_seg_images_caffe = {} | |
local color_content_masks, color_style_masks = {}, {} | |
local color_codes = params.color_codes:split(",") | |
if params.content_seg and params.style_seg ~= '' then | |
local content_seg = image.load(params.content_seg, 3) | |
content_seg = image.scale(content_seg, params.image_size, 'bilinear') | |
local content_seg_caffe = content_seg:float() | |
local style_segs = params.style_seg:split(',') | |
assert(#style_segs == #style_image_list, | |
'-style_seg and -style_image must have the same number of elements') | |
for i, img_path in ipairs(style_segs) do | |
local style_seg = image.load(img_path, 3) | |
style_seg = image.scale(style_seg, style_size, 'bilinear') | |
local style_seg_caffe = style_seg:float() | |
table.insert(style_seg_images_caffe, style_seg_caffe) | |
end | |
--local color_content_masks, color_style_masks = {}, {} | |
for j = 1, #color_codes do | |
local content_mask_j = ExtractMask(content_seg_caffe, color_codes[j], dtype) | |
table.insert(color_content_masks, content_mask_j) | |
end | |
for i=1, #style_image_list do | |
tmp_table = {} | |
for j = 1, #color_codes do | |
local style_mask_i_j = ExtractMask(style_seg_images_caffe[i], color_codes[j], dtype) | |
table.insert(tmp_table, style_mask_i_j) | |
end | |
table.insert(color_style_masks, tmp_table) | |
end | |
end | |
-- Set up the network, inserting style and content loss modules | |
local content_losses, style_losses = {}, {} | |
local next_content_idx, next_style_idx = 1, 1 | |
local net = nn.Sequential() | |
if params.tv_weight > 0 then | |
local tv_mod = nn.TVLoss(params.tv_weight):type(dtype) | |
net:add(tv_mod) | |
end | |
for i = 1, #cnn do | |
if next_content_idx <= #content_layers or next_style_idx <= #style_layers then | |
local layer = cnn:get(i) | |
local name = layer.name | |
local layer_type = torch.type(layer) | |
local is_pooling = (layer_type == 'cudnn.SpatialMaxPooling' or layer_type == 'nn.SpatialMaxPooling') | |
local is_conv = (layer_type == 'nn.SpatialConvolution' or layer_type == 'cudnn.SpatialConvolution') | |
if params.content_seg and params.style_seg ~= '' then | |
if is_pooling then | |
local pool_layer | |
if params.pooling == 'avg' then | |
assert(layer.padW == 0 and layer.padH == 0) | |
local kW, kH = layer.kW, layer.kH | |
local dW, dH = layer.dW, layer.dH | |
local avg_pool_layer = nn.SpatialAveragePooling(kW, kH, dW, dH):type(dtype) | |
local msg = 'Replacing max pooling at layer %d with average pooling' | |
print(string.format(msg, i)) | |
pool_layer=avg_pool_layer | |
else | |
pool_layer=layer | |
end | |
net:add(pool_layer) | |
for k = 1, #color_codes do | |
color_content_masks[k] = image.scale(color_content_masks[k]:float(), math.ceil(color_content_masks[k]:size(2)/2), math.ceil(color_content_masks[k]:size(1)/2)):type(dtype) | |
end | |
for j = 1, #style_image_list do | |
for k = 1, #color_codes do | |
color_style_masks[j][k] = image.scale(color_style_masks[j][k]:float(), math.ceil(color_style_masks[j][k]:size(2)/2), math.ceil(color_style_masks[j][k]:size(1)/2)):type(dtype) | |
end | |
color_style_masks[j] = deepcopy(color_style_masks[j]) | |
end | |
elseif is_conv then | |
net:add(layer) | |
local sap = nn.SpatialAveragePooling(3,3,1,1,1,1):type(dtype) | |
for k = 1, #color_codes do | |
color_content_masks[k] = sap:forward(color_content_masks[k]:repeatTensor(1,1,1))[1]:clone() | |
end | |
for j = 1, #style_image_list do | |
for k = 1, #color_style_masks do | |
color_style_masks[j][k] = sap:forward(color_style_masks[j][k]:repeatTensor(1,1,1))[1]:clone() | |
end | |
color_style_masks[j] = deepcopy(color_style_masks[j]) | |
end | |
else | |
net:add(layer) | |
end | |
color_content_masks = deepcopy(color_content_masks) | |
elseif is_pooling and params.pooling == 'avg' then | |
assert(layer.padW == 0 and layer.padH == 0) | |
local kW, kH = layer.kW, layer.kH | |
local dW, dH = layer.dW, layer.dH | |
local avg_pool_layer = nn.SpatialAveragePooling(kW, kH, dW, dH):type(dtype) | |
local msg = 'Replacing max pooling at layer %d with average pooling' | |
print(string.format(msg, i)) | |
net:add(avg_pool_layer) | |
else | |
net:add(layer) | |
end | |
if name == content_layers[next_content_idx] then | |
print("Setting up content layer", i, ":", layer.name) | |
local norm = params.normalize_gradients | |
local loss_module = nn.ContentLoss(params.content_weight, norm):type(dtype) | |
net:add(loss_module) | |
table.insert(content_losses, loss_module) | |
next_content_idx = next_content_idx + 1 | |
end | |
if name == style_layers[next_style_idx] then | |
print("Setting up style layer ", i, ":", layer.name) | |
local norm = params.normalize_gradients | |
local loss_module | |
if params.content_seg ~= '' then | |
loss_module = nn.MaskedStyleLoss(params.style_weight, norm, color_style_masks, color_content_masks, color_codes, name):type(dtype) | |
else | |
loss_module = nn.StyleLoss(params.style_weight, norm):type(dtype) | |
end | |
net:add(loss_module) | |
table.insert(style_losses, loss_module) | |
next_style_idx = next_style_idx + 1 | |
end | |
end | |
end | |
if multigpu then | |
net = setup_multi_gpu(net, params) | |
end | |
net:type(dtype) | |
-- Capture content targets | |
for i = 1, #content_losses do | |
content_losses[i].mode = 'capture' | |
end | |
print 'Capturing content targets' | |
print(net) | |
content_image_caffe = content_image_caffe:type(dtype) | |
net:forward(content_image_caffe:type(dtype)) | |
-- Capture style targets | |
for i = 1, #content_losses do | |
content_losses[i].mode = 'none' | |
end | |
for i = 1, #style_images_caffe do | |
print(string.format('Capturing style target %d', i)) | |
for j = 1, #style_losses do | |
style_losses[j].mode = 'capture' | |
style_losses[j].blend_weight = style_blend_weights[i] | |
end | |
net:forward(style_images_caffe[i]:type(dtype)) | |
end | |
-- Set all loss modules to loss mode | |
for i = 1, #content_losses do | |
content_losses[i].mode = 'loss' | |
end | |
for i = 1, #style_losses do | |
style_losses[i].mode = 'loss' | |
end | |
-- We don't need the base CNN anymore, so clean it up to save memory. | |
cnn = nil | |
for i=1, #net.modules do | |
local module = net.modules[i] | |
if torch.type(module) == 'nn.SpatialConvolutionMM' then | |
-- remove these, not used, but uses gpu memory | |
module.gradWeight = nil | |
module.gradBias = nil | |
end | |
end | |
collectgarbage() | |
if params.style_seg ~= '' then | |
style_images_caffe=nil | |
style_seg_images_caffe=nil | |
end | |
-- Initialize the image | |
if params.seed >= 0 then | |
torch.manualSeed(params.seed) | |
end | |
local img = nil | |
if params.init == 'random' then | |
img = torch.randn(content_image:size()):float():mul(0.001) | |
elseif params.init == 'image' then | |
if init_image then | |
img = init_image:clone() | |
else | |
img = content_image_caffe:clone() | |
end | |
else | |
error('Invalid init type') | |
end | |
img = img:type(dtype) | |
-- Run it through the network once to get the proper size for the gradient | |
-- All the gradients will come from the extra loss modules, so we just pass | |
-- zeros into the top of the net on the backward pass. | |
local y = net:forward(img) | |
local dy = img.new(#y):zero() | |
-- Declaring this here lets us access it in maybe_print | |
local optim_state = nil | |
if params.optimizer == 'lbfgs' then | |
optim_state = { | |
maxIter = params.num_iterations, | |
verbose=true, | |
tolX=-1, | |
tolFun=-1, | |
} | |
if params.lbfgs_num_correction > 0 then | |
optim_state.nCorrection = params.lbfgs_num_correction | |
end | |
elseif params.optimizer == 'adam' then | |
optim_state = { | |
learningRate = params.learning_rate, | |
} | |
else | |
error(string.format('Unrecognized optimizer "%s"', params.optimizer)) | |
end | |
local function maybe_print(t, loss) | |
local verbose = (params.print_iter > 0 and t % params.print_iter == 0) | |
if verbose then | |
print(string.format('Iteration %d / %d', t, params.num_iterations)) | |
for i, loss_module in ipairs(content_losses) do | |
print(string.format(' Content %d loss: %f', i, loss_module.loss)) | |
end | |
for i, loss_module in ipairs(style_losses) do | |
print(string.format(' Style %d loss: %f', i, loss_module.loss)) | |
end | |
print(string.format(' Total loss: %f', loss)) | |
end | |
end | |
local function maybe_save(t) | |
local should_save = params.save_iter > 0 and t % params.save_iter == 0 | |
should_save = should_save or t == params.num_iterations | |
if should_save then | |
local disp = deprocess(img:double()) | |
disp = image.minmax{tensor=disp, min=0, max=1} | |
local filename = build_filename(params.output_image, t) | |
if t == params.num_iterations then | |
filename = params.output_image | |
end | |
-- Maybe perform postprocessing for color-independent style transfer | |
if params.original_colors == 1 then | |
disp = original_colors(content_image, disp) | |
end | |
image.save(filename, disp) | |
end | |
end | |
-- Function to evaluate loss and gradient. We run the net forward and | |
-- backward to get the gradient, and sum up losses from the loss modules. | |
-- optim.lbfgs internally handles iteration and calls this function many | |
-- times, so we manually count the number of iterations to handle printing | |
-- and saving intermediate results. | |
local num_calls = 0 | |
local function feval(x) | |
num_calls = num_calls + 1 | |
net:forward(x) | |
local grad = net:updateGradInput(x, dy) | |
local loss = 0 | |
for _, mod in ipairs(content_losses) do | |
loss = loss + mod.loss | |
end | |
for _, mod in ipairs(style_losses) do | |
loss = loss + mod.loss | |
end | |
maybe_print(num_calls, loss) | |
maybe_save(num_calls) | |
collectgarbage() | |
-- optim.lbfgs expects a vector for gradients | |
return loss, grad:view(grad:nElement()) | |
end | |
-- Run optimization. | |
if params.optimizer == 'lbfgs' then | |
print('Running optimization with L-BFGS') | |
local x, losses = optim.lbfgs(feval, img, optim_state) | |
elseif params.optimizer == 'adam' then | |
print('Running optimization with ADAM') | |
for t = 1, params.num_iterations do | |
local x, losses = optim.adam(feval, img, optim_state) | |
end | |
end | |
end | |
function setup_gpu(params) | |
local multigpu = false | |
if params.gpu:find(',') then | |
multigpu = true | |
params.gpu = params.gpu:split(',') | |
for i = 1, #params.gpu do | |
params.gpu[i] = tonumber(params.gpu[i]) + 1 | |
end | |
else | |
params.gpu = tonumber(params.gpu) + 1 | |
end | |
local dtype = 'torch.FloatTensor' | |
if multigpu or params.gpu > 0 then | |
if params.backend ~= 'clnn' then | |
require 'cutorch' | |
require 'cunn' | |
if multigpu then | |
cutorch.setDevice(params.gpu[1]) | |
else | |
cutorch.setDevice(params.gpu) | |
end | |
dtype = 'torch.CudaTensor' | |
else | |
require 'clnn' | |
require 'cltorch' | |
if multigpu then | |
cltorch.setDevice(params.gpu[1]) | |
else | |
cltorch.setDevice(params.gpu) | |
end | |
dtype = torch.Tensor():cl():type() | |
end | |
else | |
params.backend = 'nn' | |
end | |
if params.backend == 'cudnn' then | |
require 'cudnn' | |
if params.cudnn_autotune then | |
cudnn.benchmark = true | |
end | |
cudnn.SpatialConvolution.accGradParameters = nn.SpatialConvolutionMM.accGradParameters -- ie: nop | |
end | |
return dtype, multigpu | |
end | |
function setup_multi_gpu(net, params) | |
local DEFAULT_STRATEGIES = { | |
[2] = {3}, | |
} | |
local gpu_splits = nil | |
if params.multigpu_strategy == '' then | |
-- Use a default strategy | |
gpu_splits = DEFAULT_STRATEGIES[#params.gpu] | |
-- Offset the default strategy by one if we are using TV | |
if params.tv_weight > 0 then | |
for i = 1, #gpu_splits do gpu_splits[i] = gpu_splits[i] + 1 end | |
end | |
else | |
-- Use the user-specified multigpu strategy | |
gpu_splits = params.multigpu_strategy:split(',') | |
for i = 1, #gpu_splits do | |
gpu_splits[i] = tonumber(gpu_splits[i]) | |
end | |
end | |
assert(gpu_splits ~= nil, 'Must specify -multigpu_strategy') | |
local gpus = params.gpu | |
local cur_chunk = nn.Sequential() | |
local chunks = {} | |
for i = 1, #net do | |
cur_chunk:add(net:get(i)) | |
if i == gpu_splits[1] then | |
table.remove(gpu_splits, 1) | |
table.insert(chunks, cur_chunk) | |
cur_chunk = nn.Sequential() | |
end | |
end | |
table.insert(chunks, cur_chunk) | |
assert(#chunks == #gpus) | |
local new_net = nn.Sequential() | |
for i = 1, #chunks do | |
local out_device = nil | |
if i == #chunks then | |
out_device = gpus[1] | |
end | |
new_net:add(nn.GPU(chunks[i], gpus[i], out_device)) | |
end | |
return new_net | |
end | |
function build_filename(output_image, iteration) | |
local ext = paths.extname(output_image) | |
local basename = paths.basename(output_image, ext) | |
local directory = paths.dirname(output_image) | |
return string.format('%s/%s_%d.%s',directory, basename, iteration, ext) | |
end | |
-- Preprocess an image before passing it to a Caffe model. | |
-- We need to rescale from [0, 1] to [0, 255], convert from RGB to BGR, | |
-- and subtract the mean pixel. | |
function preprocess(img) | |
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68}) | |
local perm = torch.LongTensor{3, 2, 1} | |
img = img:index(1, perm):mul(256.0) | |
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img) | |
img:add(-1, mean_pixel) | |
return img | |
end | |
-- Undo the above preprocessing. | |
function deprocess(img) | |
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68}) | |
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img) | |
img = img + mean_pixel | |
local perm = torch.LongTensor{3, 2, 1} | |
img = img:index(1, perm):div(256.0) | |
return img | |
end | |
-- Combine the Y channel of the generated image and the UV channels of the | |
-- content image to perform color-independent style transfer. | |
function original_colors(content, generated) | |
local generated_y = image.rgb2yuv(generated)[{{1, 1}}] | |
local content_uv = image.rgb2yuv(content)[{{2, 3}}] | |
return image.yuv2rgb(torch.cat(generated_y, content_uv, 1)) | |
end | |
-- Define an nn Module to compute content loss in-place | |
local ContentLoss, parent = torch.class('nn.ContentLoss', 'nn.Module') | |
function ContentLoss:__init(strength, normalize) | |
parent.__init(self) | |
self.strength = strength | |
self.target = torch.Tensor() | |
self.normalize = normalize or false | |
self.loss = 0 | |
self.crit = nn.MSECriterion() | |
self.mode = 'none' | |
end | |
function ContentLoss:updateOutput(input) | |
if self.mode == 'loss' then | |
self.loss = self.crit:forward(input, self.target) * self.strength | |
elseif self.mode == 'capture' then | |
self.target:resizeAs(input):copy(input) | |
end | |
self.output = input | |
return self.output | |
end | |
function ContentLoss:updateGradInput(input, gradOutput) | |
if self.mode == 'loss' then | |
if input:nElement() == self.target:nElement() then | |
self.gradInput = self.crit:backward(input, self.target) | |
end | |
if self.normalize then | |
self.gradInput:div(torch.norm(self.gradInput, 1) + 1e-8) | |
end | |
self.gradInput:mul(self.strength) | |
self.gradInput:add(gradOutput) | |
else | |
self.gradInput:resizeAs(gradOutput):copy(gradOutput) | |
end | |
return self.gradInput | |
end | |
local Gram, parent = torch.class('nn.GramMatrix', 'nn.Module') | |
function Gram:__init() | |
parent.__init(self) | |
end | |
function Gram:updateOutput(input) | |
assert(input:dim() == 3) | |
local C, H, W = input:size(1), input:size(2), input:size(3) | |
local x_flat = input:view(C, H * W) | |
self.output:resize(C, C) | |
self.output:mm(x_flat, x_flat:t()) | |
return self.output | |
end | |
function Gram:updateGradInput(input, gradOutput) | |
assert(input:dim() == 3 and input:size(1)) | |
local C, H, W = input:size(1), input:size(2), input:size(3) | |
local x_flat = input:view(C, H * W) | |
self.gradInput:resize(C, H * W):mm(gradOutput, x_flat) | |
self.gradInput:addmm(gradOutput:t(), x_flat) | |
self.gradInput = self.gradInput:view(C, H, W) | |
return self.gradInput | |
end | |
-- Define an nn Module to compute style loss in-place | |
local StyleLoss, parent = torch.class('nn.StyleLoss', 'nn.Module') | |
function StyleLoss:__init(strength, normalize) | |
parent.__init(self) | |
self.normalize = normalize or false | |
self.strength = strength | |
self.target = torch.Tensor() | |
self.mode = 'none' | |
self.loss = 0 | |
self.gram = nn.GramMatrix() | |
self.blend_weight = nil | |
self.G = nil | |
self.crit = nn.MSECriterion() | |
end | |
function StyleLoss:updateOutput(input) | |
self.G = self.gram:forward(input) | |
self.G:div(input:nElement()) | |
if self.mode == 'capture' then | |
if self.blend_weight == nil then | |
self.target:resizeAs(self.G):copy(self.G) | |
elseif self.target:nElement() == 0 then | |
self.target:resizeAs(self.G):copy(self.G):mul(self.blend_weight) | |
else | |
self.target:add(self.blend_weight, self.G) | |
end | |
elseif self.mode == 'loss' then | |
self.loss = self.strength * self.crit:forward(self.G, self.target) | |
end | |
self.output = input | |
return self.output | |
end | |
function StyleLoss:updateGradInput(input, gradOutput) | |
if self.mode == 'loss' then | |
local dG = self.crit:backward(self.G, self.target) | |
dG:div(input:nElement()) | |
self.gradInput = self.gram:backward(input, dG) | |
if self.normalize then | |
self.gradInput:div(torch.norm(self.gradInput, 1) + 1e-8) | |
end | |
self.gradInput:mul(self.strength) | |
self.gradInput:add(gradOutput) | |
else | |
self.gradInput = gradOutput | |
end | |
return self.gradInput | |
end | |
-- Define an nn Module to compute masked style loss in-place | |
local MaskedStyleLoss, parent = torch.class('nn.MaskedStyleLoss', 'nn.Module') | |
function MaskedStyleLoss:__init(strength, normalize, color_style_masks, color_content_masks, color_codes) | |
parent.__init(self) | |
self.normalize = normalize or false | |
self.strength = strength | |
self.target_grams = {} | |
self.masked_grams = {} | |
self.masked_features = {} | |
self.mode = 'none' | |
self.gram = nn.GramMatrix() | |
self.blend_weight = nil | |
self.crit = nn.MSECriterion() | |
self.color_style_masks = deepcopy(color_style_masks) | |
self.color_content_masks = deepcopy(color_content_masks) | |
self.color_codes = color_codes | |
self.capture_count =1 | |
end | |
function MaskedStyleLoss:updateOutput(input) | |
self.loss = 0 | |
local masks | |
if self.mode == 'capture' then | |
masks = self.color_style_masks[self.capture_count] | |
self.capture_count = self.capture_count +1 | |
elseif self.mode == 'loss' then | |
masks = self.color_content_masks | |
self.color_style_masks=nil | |
end | |
if self.mode ~= 'none' then | |
for j = 1, #self.color_codes do | |
local l_mask_ori = masks[j]:clone() | |
local l_mask = l_mask_ori:repeatTensor(1,1,1):expandAs(input) | |
local l_mean = l_mask_ori:mean() | |
local masked_features = torch.cmul(l_mask, input) | |
local masked_gram = self.gram:forward(masked_features):clone() | |
if l_mean > 0 then | |
masked_gram:div(input:nElement() * l_mean) | |
end | |
if self.mode == 'capture' then | |
if j>#self.target_grams then | |
table.insert(self.target_grams, masked_gram:mul(self.blend_weight)) | |
table.insert(self.masked_grams, self.target_grams[j]:clone()) | |
table.insert(self.masked_features, masked_features) | |
else | |
self.target_grams[j]:add(masked_gram:mul(self.blend_weight)) | |
end | |
elseif self.mode == 'loss' then | |
self.masked_grams[j]=masked_gram | |
self.masked_features[j]=masked_features | |
self.loss = self.loss + self.crit:forward(self.masked_grams[j], self.target_grams[j]) * l_mean * self.strength | |
end | |
end | |
end | |
self.output = input | |
return self.output | |
end | |
function MaskedStyleLoss:updateGradInput(input, gradOutput) | |
if self.mode == 'loss' then | |
self.gradInput = gradOutput:clone() | |
self.gradInput:zero() | |
for j = 1, #self.color_codes do | |
local dG = self.crit:backward(self.masked_grams[j], self.target_grams[j]) | |
dG:div(input:nElement()) | |
local gradient = self.gram:backward(self.masked_features[j], dG) | |
if self.normalize then | |
gradient:div(torch.norm(gradient, 1) + 1e-8) | |
end | |
self.gradInput:add(gradient) | |
end | |
self.gradInput:mul(self.strength) | |
self.gradInput:add(gradOutput) | |
else | |
self.gradInput = gradOutput | |
end | |
return self.gradInput | |
end | |
local TVLoss, parent = torch.class('nn.TVLoss', 'nn.Module') | |
function TVLoss:__init(strength) | |
parent.__init(self) | |
self.strength = strength | |
self.x_diff = torch.Tensor() | |
self.y_diff = torch.Tensor() | |
end | |
function TVLoss:updateOutput(input) | |
self.output = input | |
return self.output | |
end | |
-- TV loss backward pass inspired by kaishengtai/neuralart | |
function TVLoss:updateGradInput(input, gradOutput) | |
self.gradInput:resizeAs(input):zero() | |
local C, H, W = input:size(1), input:size(2), input:size(3) | |
self.x_diff:resize(3, H - 1, W - 1) | |
self.y_diff:resize(3, H - 1, W - 1) | |
self.x_diff:copy(input[{{}, {1, -2}, {1, -2}}]) | |
self.x_diff:add(-1, input[{{}, {1, -2}, {2, -1}}]) | |
self.y_diff:copy(input[{{}, {1, -2}, {1, -2}}]) | |
self.y_diff:add(-1, input[{{}, {2, -1}, {1, -2}}]) | |
self.gradInput[{{}, {1, -2}, {1, -2}}]:add(self.x_diff):add(self.y_diff) | |
self.gradInput[{{}, {1, -2}, {2, -1}}]:add(-1, self.x_diff) | |
self.gradInput[{{}, {2, -1}, {1, -2}}]:add(-1, self.y_diff) | |
self.gradInput:mul(self.strength) | |
self.gradInput:add(gradOutput) | |
return self.gradInput | |
end | |
function ExtractMask(seg, color, dtype) | |
local mask = nil | |
if color == 'green' then | |
mask = torch.lt(seg[1], 0.1) | |
mask:cmul(torch.gt(seg[2], 1-0.1)) | |
mask:cmul(torch.lt(seg[3], 0.1)) | |
elseif color == 'black' then | |
mask = torch.lt(seg[1], 0.1) | |
mask:cmul(torch.lt(seg[2], 0.1)) | |
mask:cmul(torch.lt(seg[3], 0.1)) | |
elseif color == 'white' then | |
mask = torch.gt(seg[1], 1-0.1) | |
mask:cmul(torch.gt(seg[2], 1-0.1)) | |
mask:cmul(torch.gt(seg[3], 1-0.1)) | |
elseif color == 'red' then | |
mask = torch.gt(seg[1], 1-0.1) | |
mask:cmul(torch.lt(seg[2], 0.1)) | |
mask:cmul(torch.lt(seg[3], 0.1)) | |
elseif color == 'blue' then | |
mask = torch.lt(seg[1], 0.1) | |
mask:cmul(torch.lt(seg[2], 0.1)) | |
mask:cmul(torch.gt(seg[3], 1-0.1)) | |
elseif color == 'yellow' then | |
mask = torch.gt(seg[1], 1-0.1) | |
mask:cmul(torch.gt(seg[2], 1-0.1)) | |
mask:cmul(torch.lt(seg[3], 0.1)) | |
elseif color == 'grey' then | |
mask = torch.cmul(torch.gt(seg[1], 0.5-0.1), torch.lt(seg[1], 0.5+0.1)) | |
mask:cmul(torch.cmul(torch.gt(seg[2], 0.5-0.1), torch.lt(seg[2], 0.5+0.1))) | |
mask:cmul(torch.cmul(torch.gt(seg[3], 0.5-0.1), torch.lt(seg[3], 0.5+0.1))) | |
elseif color == 'lightblue' then | |
mask = torch.lt(seg[1], 0.1) | |
mask:cmul(torch.gt(seg[2], 1-0.1)) | |
mask:cmul(torch.gt(seg[3], 1-0.1)) | |
elseif color == 'purple' then | |
mask = torch.gt(seg[1], 1-0.1) | |
mask:cmul(torch.lt(seg[2], 0.1)) | |
mask:cmul(torch.gt(seg[3], 1-0.1)) | |
else | |
print('ExtractMask(): color not recognized, color = ', color) | |
end | |
return mask:type(dtype) | |
end | |
function deepcopy(orig) | |
local orig_type = type(orig) | |
local copy | |
if orig_type == 'table' then | |
copy = {} | |
for orig_key, orig_value in next, orig, nil do | |
copy[deepcopy(orig_key)] = deepcopy(orig_value) | |
end | |
setmetatable(copy, deepcopy(getmetatable(orig))) | |
else -- number, string, boolean, etc | |
copy = orig | |
end | |
return copy | |
end | |
local params = cmd:parse(arg) | |
main(params) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
There appears to an issue with
neural_style_seg.lua
and thefcn32s-heavy-pascal
model:Basically the model won't work with the script with the default
train_val.prototxt
. The model still works with the normal unmodified Neural-Style script.