Created
November 12, 2018 19:00
-
-
Save a-sk/fd297b8b465b49adb9d088005a26ae1a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import OrderedDict, namedtuple | |
from copy import deepcopy | |
from typing import Callable, List, Optional | |
Node = namedtuple('Node', 'name, branches') | |
Image = namedtuple('Image', 'name, build_from') | |
images = [ | |
Image('image1', 'centos:7'), # root | |
Image('image7', 'image1'), | |
Image('image2', 'image1'), | |
Image('image3', 'image2'), | |
Image('image4', 'image2'), | |
Image('image6', 'image4'), | |
Image('image8', 'image7'), | |
Image('image5', 'ubuntu:18.04'), # root | |
Image('image10', 'image5'), | |
Image('image11', 'image5'), | |
] | |
def get_images_to_rebuild(all_images: List[Image], | |
changed_images: List[str]) -> List[str]: | |
trees = make_trees(all_images) | |
changed: List[str] = [] | |
for tree in trees: | |
for image in changed_images: | |
cut = cut_tree(tree, image) | |
changed += flatten_tree(cut) | |
return uniq(compact(changed) + changed_images) | |
def uniq(lst: List) -> List: | |
"""Uniquify list `lst` preserving original order""" | |
return list(OrderedDict.fromkeys(lst)) | |
def make_trees(images: List[Image]) -> List[Node]: | |
"""Build trees out of images. | |
Each tree is an image dependency graph. | |
Note: circular dependencies are not supported | |
In the root of a tree is an image which `.build_from` is not in the image | |
names list. | |
""" | |
image_names = [img.name for img in images] | |
build_from = [img.build_from for img in images] | |
roots = [ | |
build_from_name for build_from_name in build_from | |
if build_from_name not in image_names | |
] | |
trees = [] | |
for root_node in roots: | |
tree = Node(root_node, []) | |
trees.append(tree) | |
def _build_tree(tree, images: List[Image]): | |
for image in images: | |
if image.build_from == tree.name: | |
node = Node(image.name, []) | |
tree.branches.append(node) | |
_build_tree(node, images) | |
_build_tree(tree, images) | |
return trees | |
def compact(lst: List) -> List: | |
return [value for value in lst if value] | |
def traverse(tree: Node, cb: Callable[[Node], None]) -> None: | |
"""Walk (depth first) a tree and apply `cb` function to each node.""" | |
tree = deepcopy(tree) | |
def _traverse(tree): | |
for node in tree.branches: | |
cb(node) | |
_traverse(node) | |
_traverse(tree) | |
def flatten_tree(tree: Optional[Node]) -> List[str]: | |
"""Traverse a tree and return all node names. | |
Given a tree: | |
(n0) | |
/ | \ | |
n1 n2 n3 | |
/ \ | |
n5 n6 | |
return [n0, n1, n2, n5, n6, n3] | |
""" | |
if not tree: | |
return [] | |
names = [tree.name] | |
def collect_name(node): | |
names.append(node.name) | |
traverse(tree, collect_name) | |
return names | |
def cut_tree(tree: Node, cut_to: str) -> Optional[Node]: | |
"""Cut tree returning a new tree starting from `cut_to`. | |
Given a tree: | |
(n0) | |
/ | \ | |
n1 n2 n3 | |
/ / \ \ | |
n4 n5 n6 n7 | |
And a node name (cut_to) n2, return: | |
n2 | |
/ \ | |
n5 n6 | |
""" | |
tree = deepcopy(tree) | |
if tree.name == cut_to: | |
return tree | |
found = None | |
for node in tree.branches: | |
found = cut_tree(node, cut_to) | |
if found: | |
return found | |
return found | |
def test_get_images_to_rebuild(): | |
test_cases = [ | |
[['image3', 'image2'], ['image2', 'image3', 'image4', 'image6']], | |
[['image1', 'image4'], [ | |
'image1', 'image7', 'image8', 'image2', 'image3', 'image4', | |
'image6' | |
]], | |
[['image4'], ['image4', 'image6']], | |
[['image6'], ['image6']], | |
[[], []], | |
] | |
for changed, answer in test_cases: | |
result = get_images_to_rebuild(images, changed) | |
print(f" changed: {changed}\n\tanswer: {answer}\n\tresult: {result}") | |
assert result == answer | |
print() | |
print('All tests pass: ' + len(test_cases) * '🍏') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment