Created
June 12, 2025 07:58
-
-
Save adrianlzt/435c4a95e105abd105931a0a15347b1c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env -S uv run | |
# /// script | |
# requires-python = ">=3.13" | |
# dependencies = [ | |
# "mlflow", | |
# "azureml-mlflow", | |
# "azure-ai-ml", | |
# "azure-identity", | |
# ] | |
# [tool.uv] | |
# exclude-newer = "2025-06-12T00:00:00Z" | |
# /// | |
import mlflow | |
import os | |
import random | |
from azure.ai.ml import MLClient | |
from azure.identity import DefaultAzureCredential | |
def run_experiment(): | |
""" | |
Runs a fake MLflow experiment, attempting to track to Azure ML. | |
Falls back to local MLflow server if Azure ML connection fails. | |
""" | |
credential = DefaultAzureCredential() | |
ml_client = MLClient.from_config(credential=credential) | |
azureml_tracking_uri = ml_client.workspaces.get( | |
ml_client.workspace_name | |
).mlflow_tracking_uri | |
mlflow.set_tracking_uri(azureml_tracking_uri) | |
print( | |
f"Successfully configured MLflow to track to Azure ML Workspace: {ml_client.workspace_name}" | |
) | |
print(f"Azure ML MLflow Tracking URI: {azureml_tracking_uri}") | |
# Set an experiment name | |
experiment_name = "My Fake Experiment" | |
mlflow.set_experiment(experiment_name) | |
with mlflow.start_run() as run: | |
print(f"Starting run: {run.info.run_id}") | |
# Log parameters | |
params = { | |
"learning_rate": random.uniform(0.001, 0.1), | |
"epochs": random.randint(5, 50), | |
"optimizer": random.choice(["adam", "sgd", "rmsprop"]), | |
} | |
mlflow.log_params(params) | |
print(f"Logged parameters: {params}") | |
# Log metrics (simulating training progress) | |
for epoch in range(params["epochs"]): | |
accuracy = ( | |
0.6 + (epoch / params["epochs"]) * 0.35 + random.uniform(-0.05, 0.05) | |
) | |
loss = 0.5 - (epoch / params["epochs"]) * 0.4 + random.uniform(-0.05, 0.05) | |
mlflow.log_metric("accuracy", accuracy, step=epoch) | |
mlflow.log_metric("loss", loss, step=epoch) | |
print(f"Logged metrics for {params['epochs']} epochs.") | |
# Create a dummy artifact | |
artifact_dir = "artifacts" | |
if not os.path.exists(artifact_dir): | |
os.makedirs(artifact_dir) | |
dummy_file_path = os.path.join(artifact_dir, "dummy_output.txt") | |
with open(dummy_file_path, "w") as f: | |
f.write(f"This is a dummy output for run {run.info.run_id}.\n") | |
f.write(f"Parameters used: {params}\n") | |
mlflow.log_artifact(dummy_file_path, artifact_path="outputs") | |
print(f"Logged artifact: {dummy_file_path}") | |
print(f"Run {run.info.run_id} finished.") | |
print(f"MLflow Run URI: mlflow:///{run.info.experiment_id}/{run.info.run_id}") | |
if __name__ == "__main__": | |
run_experiment() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment