Created
March 13, 2017 06:34
-
-
Save ahundt/9fe518f3a488d51f6cb4eb4e32725f72 to your computer and use it in GitHub Desktop.
tf tensorflow atrous convolution aka dilated convolution test
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
dim = 256 | |
kernel_dim = 3 | |
dilation_rate = np.array([2, 2]) | |
input_img_np = np.random.random((1, dim, dim, 1)).astype(np.float32) | |
kernel = np.random.random((kernel_dim,kernel_dim,1,1)).astype(np.float32) | |
with tf.Session() as sess: | |
concrete_input_op = tf.constant(input_img_np) | |
concrete_output_op = tf.nn.convolution(concrete_input_op, kernel, padding='SAME', dilation_rate=dilation_rate) | |
concrete_output = sess.run(concrete_output_op) | |
print('convolution + CONCRETE + SAME') | |
print('concrete_input_op: ', concrete_input_op.get_shape()) | |
print('concrete_output_op: ', concrete_output_op.get_shape()) | |
print('concrete_output:', concrete_output.shape) | |
assert(concrete_input_op.get_shape() == concrete_output_op.get_shape()) | |
undef_input_op = tf.placeholder(tf.float32, shape=(None, dim, dim, 1)) | |
undef_output_op = tf.nn.convolution(undef_input_op, kernel, padding='SAME', dilation_rate=dilation_rate) | |
undef_output = sess.run(undef_output_op, feed_dict={undef_input_op: input_img_np}) | |
print('convolution + UNDEF + SAME') | |
print('undef_input_op: ', undef_input_op.get_shape()) | |
print('undef_output_op: ', undef_output_op.get_shape()) | |
print('undef_output:', undef_output.shape) | |
# This assert will correctly fail even though the shapes are ok because shapes are only partially known | |
# assert(undef_input_op.get_shape() == undef_output_op.get_shape()) | |
valid_concrete_input_op = tf.constant(input_img_np) | |
valid_concrete_output_op = tf.nn.convolution(valid_concrete_input_op, kernel, padding='VALID', dilation_rate=dilation_rate) | |
valid_concrete_output = sess.run(valid_concrete_output_op) | |
print('convolution + CONCRETE + VALID') | |
print('valid_concrete_input_op: ', valid_concrete_input_op.get_shape()) | |
print('valid_concrete_output_op: ', valid_concrete_output_op.get_shape()) | |
print('valid_concrete_output:', valid_concrete_output.shape) | |
valid_undef_input_op = tf.placeholder(tf.float32, shape=(None, dim, dim, 1)) | |
valid_undef_output_op = tf.nn.convolution(valid_undef_input_op, kernel, padding='VALID', dilation_rate=dilation_rate) | |
valid_undef_output = sess.run(valid_undef_output_op, feed_dict={valid_undef_input_op: input_img_np}) | |
print('convolution + UNDEF + VALID') | |
print('valid_undef_input_op: ', valid_undef_input_op.get_shape()) | |
print('valid_undef_output_op: ', valid_undef_output_op.get_shape()) | |
print('valid_undef_output:', valid_undef_output.shape) | |
# This assert will correctly fail even though the shapes are ok because shapes are only partially known | |
# assert(undef_input_op.get_shape() == undef_output_op.get_shape()) | |
############################################################################ | |
# Now atrous | |
concrete_input_op = tf.constant(input_img_np) | |
concrete_output_op = tf.nn.atrous_conv2d(concrete_input_op, kernel, padding='SAME', rate=2) | |
concrete_output = sess.run(concrete_output_op) | |
print('atrous_conv2d + CONCRETE + SAME') | |
print('concrete_input_op: ', concrete_input_op.get_shape()) | |
print('concrete_output_op: ', concrete_output_op.get_shape()) | |
print('concrete_output_op: ', concrete_output_op.get_shape()) | |
print('concrete_output:', concrete_output.shape) | |
assert(concrete_input_op.get_shape() == concrete_output_op.get_shape()) | |
undef_input_op = tf.placeholder(tf.float32, shape=(None, dim, dim, 1)) | |
undef_output_op = tf.nn.atrous_conv2d(undef_input_op, kernel, padding='SAME', rate=2) | |
undef_output = sess.run(undef_output_op, feed_dict={undef_input_op: input_img_np}) | |
print('atrous_conv2d + UNDEF + SAME') | |
print('undef_input_op: ', undef_input_op.get_shape()) | |
print('undef_output_op: ', undef_output_op.get_shape()) | |
print('undef_output:', undef_output.shape) | |
# This assert will correctly fail even though the shapes are ok because shapes are only partially known | |
# assert(undef_input_op.get_shape() == undef_output_op.get_shape()) | |
valid_concrete_input_op = tf.constant(input_img_np) | |
valid_concrete_output_op = tf.nn.atrous_conv2d(valid_concrete_input_op, kernel, padding='VALID', rate=2) | |
valid_concrete_output = sess.run(valid_concrete_output_op) | |
print('atrous_conv2d + CONCRETE + VALID') | |
print('valid_concrete_input_op: ', valid_concrete_input_op.get_shape()) | |
print('valid_concrete_output_op: ', valid_concrete_output_op.get_shape()) | |
print('valid_concrete_output:', valid_concrete_output.shape) | |
valid_undef_input_op = tf.placeholder(tf.float32, shape=(None, dim, dim, 1)) | |
valid_undef_output_op = tf.nn.atrous_conv2d(valid_undef_input_op, kernel, padding='VALID', rate=2) | |
valid_undef_output = sess.run(valid_undef_output_op, feed_dict={valid_undef_input_op: input_img_np}) | |
print('atrous_conv2d + UNDEF + VALID') | |
print('valid_undef_input_op: ', valid_undef_input_op.get_shape()) | |
print('valid_undef_output_op: ', valid_undef_output_op.get_shape()) | |
print('valid_undef_output:', valid_undef_output.shape) | |
# This assert will correctly fail even though the shapes are ok because shapes are only partially known | |
# assert(undef_input_op.get_shape() == undef_output_op.get_shape()) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
convolution + CONCRETE + SAME | |
('concrete_input_op: ', TensorShape([Dimension(1), Dimension(256), Dimension(256), Dimension(1)])) | |
('concrete_output_op: ', TensorShape([Dimension(1), Dimension(256), Dimension(256), Dimension(1)])) | |
('concrete_output:', (1, 256, 256, 1)) | |
convolution + UNDEF + SAME | |
('undef_input_op: ', TensorShape([Dimension(None), Dimension(256), Dimension(256), Dimension(1)])) | |
('undef_output_op: ', TensorShape([Dimension(None), Dimension(256), Dimension(256), Dimension(1)])) | |
('undef_output:', (1, 256, 256, 1)) | |
convolution + CONCRETE + VALID | |
('valid_concrete_input_op: ', TensorShape([Dimension(1), Dimension(256), Dimension(256), Dimension(1)])) | |
('valid_concrete_output_op: ', TensorShape([Dimension(1), Dimension(252), Dimension(252), Dimension(1)])) | |
('valid_concrete_output:', (1, 252, 252, 1)) | |
convolution + UNDEF + VALID | |
('valid_undef_input_op: ', TensorShape([Dimension(None), Dimension(256), Dimension(256), Dimension(1)])) | |
('valid_undef_output_op: ', TensorShape([Dimension(None), Dimension(252), Dimension(252), Dimension(1)])) | |
('valid_undef_output:', (1, 252, 252, 1)) | |
atrous_conv2d + CONCRETE + SAME | |
('concrete_input_op: ', TensorShape([Dimension(1), Dimension(256), Dimension(256), Dimension(1)])) | |
('concrete_output_op: ', TensorShape([Dimension(1), Dimension(256), Dimension(256), Dimension(1)])) | |
('concrete_output_op: ', TensorShape([Dimension(1), Dimension(256), Dimension(256), Dimension(1)])) | |
('concrete_output:', (1, 256, 256, 1)) | |
atrous_conv2d + UNDEF + SAME | |
('undef_input_op: ', TensorShape([Dimension(None), Dimension(256), Dimension(256), Dimension(1)])) | |
('undef_output_op: ', TensorShape([Dimension(None), Dimension(None), Dimension(None), Dimension(1)])) | |
('undef_output:', (1, 256, 256, 1)) | |
atrous_conv2d + CONCRETE + VALID | |
('valid_concrete_input_op: ', TensorShape([Dimension(1), Dimension(256), Dimension(256), Dimension(1)])) | |
('valid_concrete_output_op: ', TensorShape([Dimension(1), Dimension(252), Dimension(252), Dimension(1)])) | |
('valid_concrete_output:', (1, 252, 252, 1)) | |
atrous_conv2d + UNDEF + VALID | |
('valid_undef_input_op: ', TensorShape([Dimension(None), Dimension(256), Dimension(256), Dimension(1)])) | |
('valid_undef_output_op: ', TensorShape([Dimension(None), Dimension(None), Dimension(None), Dimension(1)])) | |
('valid_undef_output:', (1, 252, 252, 1)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
amazing, very good repo!