Created
March 9, 2025 17:13
-
-
Save aigoncharov/e12931624f3538d6f4270370c807376b to your computer and use it in GitHub Desktop.
Unit tests for HW2 P2T1 for ML course at Skoltech
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
max_pooling = MaxPooling(kernel_size=2, stride=2) | |
t_in = torch.tensor([[[[6, 2, 1, 3], [4, 8, 5, 7], [3, 1, 9, 2], [6, 5, 4, 0]]]]) | |
t_expected = torch.tensor([[[[8, 7], [6, 9]]]]) | |
assert max_pooling.forward(t_in).equal(t_expected) | |
b_in = torch.tensor([[[[1, 2], [3, 4]]]]) | |
b_expected = torch.tensor([[[[0, 0, 0, 0], [0, 1, 0, 2], [0, 0, 4, 0], [3, 0, 0, 0]]]]) | |
assert max_pooling.backward(b_in).equal(b_expected) | |
max_pooling = MaxPooling(kernel_size=2, stride=1) | |
t_in = torch.tensor([[[[6, 2, 1, 3], [4, 8, 5, 7], [3, 1, 9, 2], [6, 5, 4, 0]]]]) | |
t_expected = torch.tensor([[[[8, 8, 7], [8, 9, 9], [6, 9, 9]]]]) | |
assert max_pooling.forward(t_in).equal(t_expected) | |
b_in = torch.tensor([[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]]) | |
b_expected = torch.tensor([[[[0, 0, 0, 0], [0, 7, 0, 3], [0, 0, 28, 0], [7, 0, 0, 0]]]]) | |
assert max_pooling.backward(b_in).equal(b_expected) | |
flatten_layer = FlattenLayer() | |
t_in = torch.tensor([[[[1, 2], [3, 4]]], [[[1, 2], [3, 4]]]]) | |
t_expected = torch.tensor([[1, 2, 3, 4], [1, 2, 3, 4]]) | |
assert flatten_layer.forward(t_in).equal(t_expected) | |
assert flatten_layer.backward(t_expected).equal(t_in) | |
softmax = Softmax() | |
t_in = torch.tensor([[1.0, 2.0], [1.0, 10.0]], requires_grad=True) | |
t_out = torch.nn.functional.softmax(t_in, dim=1) | |
assert softmax.forward(t_in).allclose(t_out) | |
b_in = torch.tensor([[0.5, 0.2], [0.1, 0.6]]) | |
t_out.backward(b_in) | |
b_out = t_in.grad | |
# Subtract use numerically stable version of softmax: e^{x-x_max}/\sum{e^{x-x_max}} | |
assert softmax.backward(b_in).allclose(b_out) | |
batch_size = 2 | |
in_features = 3 | |
out_features = 4 | |
dense_layer = DenseLayer(in_features, out_features) | |
torch.manual_seed(42) | |
dense_layer.weights.data = torch.randn(in_features, out_features) * 0.1 | |
dense_layer.bias.data = torch.zeros(out_features) | |
x = torch.randn(batch_size, in_features, requires_grad=True) | |
output = dense_layer.forward(x) | |
torch_linear = nn.Linear(in_features, out_features) | |
torch_linear.weight.data = dense_layer.weights.data.t() # PyTorch uses transposed weights internally | |
torch_linear.bias.data = dense_layer.bias.data | |
torch_output = torch_linear(x) | |
assert output.allclose(torch_output) | |
grad_output = torch.randn(batch_size, out_features) | |
torch_output.backward(grad_output) | |
assert x.grad.allclose(dense_layer.backward(grad_output)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment