Created
October 10, 2017 14:37
-
-
Save aweinstein/70803335da5414257a49ab1e54042eb7 to your computer and use it in GitHub Desktop.
Test all the combinations of dB and estimate when plotting the PSD of raw object.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function, division | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from itertools import product | |
import mne | |
import warnings | |
warnings.filterwarnings("ignore", category=DeprecationWarning) | |
def scipy_ex(): | |
"""Data from scipy.signals.welch doc example. | |
We change the sampling frequency, frequency and amplitude to make it | |
EEG-like. | |
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html | |
""" | |
fs = 100 | |
tmax = 60 | |
amp = 1e-6 * np.sqrt(2) | |
freq = 10. | |
noise_power = 0.0000001e-6 * fs / 2 | |
time = np.arange(tmax * fs) / fs | |
x = amp * np.sin(2*np.pi*freq*time) | |
x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) | |
return fs, time, x | |
if __name__ == '__main__': | |
fs, t, x = scipy_ex() | |
ch_types = ['eeg'] | |
ch_names = ['ch1'] | |
info = mne.create_info(ch_names=ch_names, sfreq=fs, ch_types=ch_types) | |
raw = mne.io.RawArray(np.atleast_2d(x), info) | |
plt.close('all') | |
# | dB | estimate | plot | units | | |
# |-------+-------------+------+-----------------| | |
# | True | 'power' | PSD | u**2/Hz (dB) | | |
# | False | 'amplitude' | ASD | u/sqrt{Hz} | | |
# | True | 'auto' | PSD | u**2/Hz (dB) | | |
# | False | 'power' | PSD | u**2/Hz | | |
# | True | 'amplitude' | ASD | u/sqrt{Hz} (dB) | | |
# | False | 'auto' | ASD | u/sqrt{Hz} | | |
for dB, estimate in product((True, False), ('power', 'amplitude', 'auto')): | |
msg = 'db: %s, estimate: %s' % (dB, estimate) | |
print(msg) | |
fig = raw.plot_psd(n_fft=1024, n_overlap=512, dB=dB, estimate=estimate) | |
fig.gca().set_title(msg) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment