Created
June 10, 2015 10:10
-
-
Save bindiego/12ea0ec07e4bb3effd91 to your computer and use it in GitHub Desktop.
Longest Palindromic Substring - Manacher’s algorithm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Transform S into T. | |
// For example, S = "abba", T = "^#a#b#b#a#$". | |
// ^ and $ signs are sentinels appended to each end to avoid bounds checking | |
string preProcess(string s) { | |
int n = s.length(); | |
if (n == 0) return "^$"; | |
string ret = "^"; | |
for (int i = 0; i < n; i++) | |
ret += "#" + s.substr(i, 1); | |
ret += "#$"; | |
return ret; | |
} | |
string longestPalindrome(string s) { | |
string T = preProcess(s); | |
int n = T.length(); | |
int *P = new int[n]; | |
int C = 0, R = 0; | |
for (int i = 1; i < n-1; i++) { | |
int i_mirror = 2*C-i; // equals to i' = C - (i-C) | |
P[i] = (R > i) ? min(R-i, P[i_mirror]) : 0; | |
// Attempt to expand palindrome centered at i | |
while (T[i + 1 + P[i]] == T[i - 1 - P[i]]) | |
P[i]++; | |
// If palindrome centered at i expand past R, | |
// adjust center based on expanded palindrome. | |
if (i + P[i] > R) { | |
C = i; | |
R = i + P[i]; | |
} | |
} | |
// Find the maximum element in P. | |
int maxLen = 0; | |
int centerIndex = 0; | |
for (int i = 1; i < n-1; i++) { | |
if (P[i] > maxLen) { | |
maxLen = P[i]; | |
centerIndex = i; | |
} | |
} | |
delete[] P; | |
return s.substr((centerIndex - 1 - maxLen)/2, maxLen); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment