Created
January 12, 2017 21:34
-
-
Save bxshi/4911847068987d037e09b4bb973bf472 to your computer and use it in GitHub Desktop.
Implement Hits@K evaluation metric for Knowledge Graph Completion tasks.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
with tf.Session() as sess: | |
""" | |
idx (h,r) top_3 | |
[ [ | |
[0,1], [0,8,3], | |
[1,3], [7,2,1], | |
[2,4], [4,3,9], | |
] ] | |
triples (h,r,t) | |
[ | |
[0,1,2], | |
[0,1,5], | |
[1,3,2], | |
[1,2,7], | |
[2,4,3], | |
[2,4,9], | |
[2,4,4] | |
] | |
""" | |
idx = tf.Variable([[0, 1], [1, 3], [2, 4]], trainable=False, dtype=tf.int32) | |
top_3 = tf.Variable([[0, 8, 3], [7, 2, 1], [4, 3, 9]], trainable=False, dtype=tf.int32) | |
triples = tf.Variable([[0, 1, 2], [0, 1, 5], [1, 3, 2], [1, 2, 7], [2, 4, 3], [2, 4, 9], [2, 4, 4]], | |
trainable=False, | |
dtype=tf.int32) | |
def hits_func(acc, item): | |
hr = item[0] | |
top = item[1] | |
mask = tf.logical_and(tf.equal(hr[0], triples[:, 0]), tf.equal(hr[1], triples[:, 1])) | |
t = tf.boolean_mask(triples[:, 2], mask) | |
def in_op(acc, it): | |
return tf.reduce_any(tf.equal(t, it)) | |
hits = tf.scan(in_op, top, initializer=tf.Variable(initial_value=False, dtype=tf.bool, trainable=False)) | |
return tf.reduce_mean(tf.cast(hits, dtype=tf.float32)) | |
hits_list = tf.scan(hits_func, (idx, top_3), | |
initializer=tf.Variable(initial_value=0., dtype=tf.float32, trainable=False)) | |
tf.global_variables_initializer().run() | |
print("Hits@3 is", sess.run(tf.reduce_mean(hits_list))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment