Last active
August 1, 2020 12:44
-
-
Save caseykneale/6038bc92bbc38d7c7a2752e88ab84513 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using GeometryBasics | |
x(a::Point{2, T}) where { T <: Number } = first(a) | |
y(a::Point{2, T}) where { T <: Number } = last(a) | |
#Ewy | |
Matrix(z::Vector{Point{2, T}}) where { T <: Number } = hcat( z .|> x, z .|> y ) | |
to_points(z) = [ Point(z[:,r][:]...) for r in 1:size(z,2)] | |
function orientation(p::Point{2, T}, q::Point{2, T}, r::Point{2, T})::Int where {T <: Number } | |
val = ( y(q) - y(p) ) * ( x(r) - x(q) ) - ( x(q) - x(p) ) * ( y(r) - y(q) ) | |
return (val == 0) ? 0 : ( (val > 0) ? 1 : 2 ) | |
end | |
""" | |
Classic Jarvis/Gift Wrapping Convex Hull | |
""" | |
function convexhull( points::Vector{Point{2, T}} )::Vector where {T <: Number } | |
n = length(points) | |
@assert (n > 2) "Convex Hull requires at least 3 points." | |
hull = [] | |
p, q = argmin( x.( points ) ), 0 | |
init = p | |
while ( p != init ) || (length(hull) == 0) | |
push!( hull, p ) | |
q = (( p + 1 ) % n ) + 1 #+ 1 | |
for i in 1:n | |
if orientation(points[p], points[i], points[q]) == 2 | |
q = i | |
end | |
end | |
p = q; | |
end | |
return hull | |
end | |
p1 = Vector(Point{2, Int}[ Point(3, 1), | |
Point(2, 2), | |
Point(1, 1), | |
Point(2, 1), | |
Point(3, 0), | |
Point(0, 0), | |
Point(3, 3) | |
] ) | |
hull_inds = convexhull( p1 ) | |
function minimum_bounding_rectangle( points, hull_idxs ) | |
n = length(hull_idxs) | |
# calculate edge angles | |
#edges = points[ hull_idxs[ 2:end ] ] - points[ hull_idxs[ 1:(end-1) ] ] | |
edges = points[ hull_idxs[ 1:(end-1) ] ] .- points[ hull_idxs[ 2:end ] ] | |
angles = atan.( y.( edges ), x.( edges ) ) .% (pi/2) | |
angles = unique( abs.( angles ) ) | |
# find rotation matrices | |
rot_matrices = zeros( 2, 2, length( angles ) ) | |
rot_matrices[1,1,:] = cos.(angles) | |
rot_matrices[1,2,:] = -sin.(angles ) | |
rot_matrices[2,1,:] = sin.( angles ) | |
rot_matrices[2,2,:] = cos.( angles ) | |
const_view = Matrix( points[ hull_idxs ] ) | |
rot_points = [ rot_matrices[:,:,z] * const_view' for z in 1:size( rot_matrices, 3 ) ] | |
# find the bounding points | |
min_x = [ reduce( min, rp[1,:] ) for rp in rot_points] | |
max_x = [ reduce( max, rp[1,:] ) for rp in rot_points] | |
min_y = [ reduce( min, rp[2,:] ) for rp in rot_points] | |
max_y = [ reduce( max, rp[2,:] ) for rp in rot_points] | |
# find the box with the best area | |
smallest_box = argmin( (max_x .- min_x) .* (max_y .- min_y) ) | |
x1,x2 = min_x[smallest_box], max_x[smallest_box] | |
y1,y2 = min_y[smallest_box], max_y[smallest_box] | |
return rot_matrices[:,:,smallest_box]' * [ x1 y1; x1 y2; x2 y2; x2 y1 ]' | |
end | |
p1 = Vector(Point{2, Float64}[ Point(randn(2)...), | |
Point(randn(2)...), | |
Point(randn(2)...), | |
Point(randn(2)...), | |
Point(randn(2)...), | |
Point(randn(2)...) | |
] ) | |
hull_inds = convexhull( p1 ) | |
mbr = minimum_bounding_rectangle( p1, hull_inds ) | |
using Plots | |
scatter( p1, color = "black", legend = false); | |
scatter!( p1[hull_inds], color = "purple"); | |
scatter!(mbr |> to_points , color = "pink") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment