Last active
October 15, 2021 16:27
-
-
Save chendaniely/53c2ea975a61bd2f05ef2aca46f66062 to your computer and use it in GitHub Desktop.
R Copy on write/change example
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# base R ----- | |
mycars <- mtcars | |
mycars | |
# mpg cyl disp hp drat wt qsec vs am gear carb | |
# Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 | |
# Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 | |
# Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 | |
# Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 | |
# Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 | |
# Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 | |
# Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 | |
# Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 | |
# Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 | |
# Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 | |
# Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 | |
# Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 | |
# Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 | |
# Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 | |
# Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 | |
# Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 | |
# Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 | |
# Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 | |
# Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 | |
# Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 | |
# Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 | |
# Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 | |
# AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 | |
# Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 | |
# Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 | |
# Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 | |
# Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 | |
# Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 | |
# Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 | |
# Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 | |
# Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 | |
# Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 | |
mycars[mycars$mpg > 20, ]$mpg <- 100 # similar to mycars[mycars.mpg > 20]["mpg"] = 100 in pandas | |
mycars | |
# mpg cyl disp hp drat wt qsec vs am gear carb | |
# Mazda RX4 100.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 | |
# Mazda RX4 Wag 100.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 | |
# Datsun 710 100.0 4 108.0 93 3.85 2.320 18.61 1 1 4 1 | |
# Hornet 4 Drive 100.0 6 258.0 110 3.08 3.215 19.44 1 0 3 1 | |
# Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 | |
# Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 | |
# Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 | |
# Merc 240D 100.0 4 146.7 62 3.69 3.190 20.00 1 0 4 2 | |
# Merc 230 100.0 4 140.8 95 3.92 3.150 22.90 1 0 4 2 | |
# Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 | |
# Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 | |
# Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 | |
# Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 | |
# Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 | |
# Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 | |
# Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 | |
# Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 | |
# Fiat 128 100.0 4 78.7 66 4.08 2.200 19.47 1 1 4 1 | |
# Honda Civic 100.0 4 75.7 52 4.93 1.615 18.52 1 1 4 2 | |
# Toyota Corolla 100.0 4 71.1 65 4.22 1.835 19.90 1 1 4 1 | |
# Toyota Corona 100.0 4 120.1 97 3.70 2.465 20.01 1 0 3 1 | |
# Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 | |
# AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 | |
# Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 | |
# Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 | |
# Fiat X1-9 100.0 4 79.0 66 4.08 1.935 18.90 1 1 4 1 | |
# Porsche 914-2 100.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 | |
# Lotus Europa 100.0 4 95.1 113 3.77 1.513 16.90 1 1 5 2 | |
# Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 | |
# Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 | |
# Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 | |
# Volvo 142E 100.0 4 121.0 109 4.11 2.780 18.60 1 1 4 2 | |
# reset | |
mycars <- mtcars | |
mycars[mycars$mpg > 20, "mpg"] <- 100 # similar to mycars.loc[mtcars.mpg > 20, "mpg"] = 100 in pandas | |
mycars | |
# mpg cyl disp hp drat wt qsec vs am gear carb | |
# Mazda RX4 100.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 | |
# Mazda RX4 Wag 100.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 | |
# Datsun 710 100.0 4 108.0 93 3.85 2.320 18.61 1 1 4 1 | |
# Hornet 4 Drive 100.0 6 258.0 110 3.08 3.215 19.44 1 0 3 1 | |
# Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 | |
# Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 | |
# Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 | |
# Merc 240D 100.0 4 146.7 62 3.69 3.190 20.00 1 0 4 2 | |
# Merc 230 100.0 4 140.8 95 3.92 3.150 22.90 1 0 4 2 | |
# Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 | |
# Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 | |
# Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 | |
# Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 | |
# Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 | |
# Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 | |
# Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 | |
# Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 | |
# Fiat 128 100.0 4 78.7 66 4.08 2.200 19.47 1 1 4 1 | |
# Honda Civic 100.0 4 75.7 52 4.93 1.615 18.52 1 1 4 2 | |
# Toyota Corolla 100.0 4 71.1 65 4.22 1.835 19.90 1 1 4 1 | |
# Toyota Corona 100.0 4 120.1 97 3.70 2.465 20.01 1 0 3 1 | |
# Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 | |
# AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 | |
# Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 | |
# Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 | |
# Fiat X1-9 100.0 4 79.0 66 4.08 1.935 18.90 1 1 4 1 | |
# Porsche 914-2 100.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 | |
# Lotus Europa 100.0 4 95.1 113 3.77 1.513 16.90 1 1 5 2 | |
# Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 | |
# Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 | |
# Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 | |
# Volvo 142E 100.0 4 121.0 109 4.11 2.780 18.60 1 1 4 2 | |
# tidyverse ----- | |
library(dplyr) | |
# reset | |
mycars <- mtcars | |
mycars <- mtcars %>% | |
filter(mpg > 20) %>% | |
mutate(mpg = 100) | |
mycars | |
# mpg cyl disp hp drat wt qsec vs am gear carb | |
# Mazda RX4 100 6 160.0 110 3.90 2.620 16.46 0 1 4 4 | |
# Mazda RX4 Wag 100 6 160.0 110 3.90 2.875 17.02 0 1 4 4 | |
# Datsun 710 100 4 108.0 93 3.85 2.320 18.61 1 1 4 1 | |
# Hornet 4 Drive 100 6 258.0 110 3.08 3.215 19.44 1 0 3 1 | |
# Merc 240D 100 4 146.7 62 3.69 3.190 20.00 1 0 4 2 | |
# Merc 230 100 4 140.8 95 3.92 3.150 22.90 1 0 4 2 | |
# Fiat 128 100 4 78.7 66 4.08 2.200 19.47 1 1 4 1 | |
# Honda Civic 100 4 75.7 52 4.93 1.615 18.52 1 1 4 2 | |
# Toyota Corolla 100 4 71.1 65 4.22 1.835 19.90 1 1 4 1 | |
# Toyota Corona 100 4 120.1 97 3.70 2.465 20.01 1 0 3 1 | |
# Fiat X1-9 100 4 79.0 66 4.08 1.935 18.90 1 1 4 1 | |
# Porsche 914-2 100 4 120.3 91 4.43 2.140 16.70 0 1 5 2 | |
# Lotus Europa 100 4 95.1 113 3.77 1.513 16.90 1 1 5 2 | |
# Volvo 142E 100 4 121.0 109 4.11 2.780 18.60 1 1 4 2 | |
# reset | |
mycars <- mtcars | |
mycars <- mtcars %>% | |
mutate(mpg = case_when( | |
mpg > 20 ~ 100, | |
TRUE ~ mpg | |
)) | |
mycars | |
# mpg cyl disp hp drat wt qsec vs am gear carb | |
# Mazda RX4 100.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 | |
# Mazda RX4 Wag 100.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 | |
# Datsun 710 100.0 4 108.0 93 3.85 2.320 18.61 1 1 4 1 | |
# Hornet 4 Drive 100.0 6 258.0 110 3.08 3.215 19.44 1 0 3 1 | |
# Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 | |
# Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 | |
# Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 | |
# Merc 240D 100.0 4 146.7 62 3.69 3.190 20.00 1 0 4 2 | |
# Merc 230 100.0 4 140.8 95 3.92 3.150 22.90 1 0 4 2 | |
# Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 | |
# Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 | |
# Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 | |
# Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 | |
# Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 | |
# Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 | |
# Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 | |
# Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 | |
# Fiat 128 100.0 4 78.7 66 4.08 2.200 19.47 1 1 4 1 | |
# Honda Civic 100.0 4 75.7 52 4.93 1.615 18.52 1 1 4 2 | |
# Toyota Corolla 100.0 4 71.1 65 4.22 1.835 19.90 1 1 4 1 | |
# Toyota Corona 100.0 4 120.1 97 3.70 2.465 20.01 1 0 3 1 | |
# Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 | |
# AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 | |
# Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 | |
# Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 | |
# Fiat X1-9 100.0 4 79.0 66 4.08 1.935 18.90 1 1 4 1 | |
# Porsche 914-2 100.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 | |
# Lotus Europa 100.0 4 95.1 113 3.77 1.513 16.90 1 1 5 2 | |
# Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 | |
# Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 | |
# Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 | |
# Volvo 142E 100.0 4 121.0 109 4.11 2.780 18.60 1 1 4 2 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(pryr) | |
pryr::address(mtcars) # "0x1ab08d26910" | |
dat = mtcars | |
pryr::address(dat) # "0x1ab0f1e0f88" | |
# identical is essentially R's way of using == but more safe and reliable | |
identical(mtcars, dat) # TRUE | |
dat2 = dat | |
identical(mtcars, dat2) # TRUE | |
identical(dat, dat2) # TRUE | |
pryr::address(mtcars) # "0x1ab08d26910" | |
pryr::address(dat) # "0x1ab0f1e0f88" | |
pryr::address(dat2) # "0x1ab0f1e0f88" (same as dat) | |
dat2$asdf <- "hello" # add a column "asdf" that's just "hello" values | |
pryr::address(mtcars) # "0x1ab08d26910" | |
pryr::address(dat) # "0x1ab0f1e0f88" | |
pryr::address(dat2) # "0x1ab11a68590" (new memory address) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment