Skip to content

Instantly share code, notes, and snippets.

@conclube
Last active December 19, 2022 22:55
Show Gist options
  • Save conclube/d35e9e2ecf7f1bcb28d15962af479fd5 to your computer and use it in GitHub Desktop.
Save conclube/d35e9e2ecf7f1bcb28d15962af479fd5 to your computer and use it in GitHub Desktop.
Math Matrix Problem 1.131
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{mathtools}
\title{Math Specialisation Problem 1.131}
\author{Alexander Lorentzson}
\date{December 2022}
\begin{document}
\maketitle
\tableofcontents
\section{Problem}
Show that for any $2 \times 2$ matrix \(
\mathsf{A}
:=
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\), satifies the matrix equation,
\begin{equation*}
\mathsf{X}^2
-
\mathrm{tr}(\mathsf{A})\mathsf{X}
+
(ad-bc)\mathsf{I}_{2}
=
\mathsf{O}_{2}.
\end{equation*}
Use this to determine
$
2\mathsf{A}^{10}
-
14\mathsf{A}^9
+
16\mathsf{A}^8
+
3\mathsf{A}
-
2\mathsf{I}_{2}
$
if
$
\mathsf{A}
=
\begin{bmatrix}
3 & 4\\
1 & 4
\end{bmatrix}
$
.
\section{Solution}
\subsection{Proving the equation}
The original matrix equation,
$
\mathsf{X}^2
-
\mathrm{tr}(\mathsf{A})\mathsf{X}
+
(ad-bc)\mathsf{I}_{2}
=
\mathsf{O}_{2}
$
can be solved as followed.
\begin{equation*}
\begin{aligned}
\mathrm{L}\cdot\mathrm{H}\cdot\mathrm{S}
&=
\mathsf{A}^2
-
\mathrm{tr}(\mathsf{A})\mathsf{A}
+
(ad-bc)\mathsf{I}_{2}&\\
&=
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
-
(a+d)
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
+
(ad-bc)
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}&\\
&=
\begin{bmatrix}
a^2+bc & ab+db \\
ac+dc & bc+d^2
\end{bmatrix}
-
\begin{bmatrix}
a^2+ad & ab+db \\
ac+dc & ad+d^2
\end{bmatrix}
+
\begin{bmatrix}
ad-bc & 0 \\
0 & ad-bc
\end{bmatrix}&\\
&=
\begin{bmatrix}
a^2+bc-a^2-ad+ad-bc & ab+db-ab-db \\
ac+dc-ac-dc & bc+d^2-ad-d^2+ad-bc
\end{bmatrix}&\\
&=
\begin{bmatrix}
(a^2-a^2)+(ad-ad)+(bc-bc) & (ab-ab)+(db-db) \\
(ac-ac)+(dc-dc) & (d^2-d^2)+(bc-bc)+(ad-ad)
\end{bmatrix}&\\
&=
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}&\\
&=
\mathsf{O}_{2}&\\
&=
\mathrm{R}\cdot\mathrm{H}\cdot\mathrm{S}&
\end{aligned}
\end{equation*}
This proof implies that the equation holds for all $a$, $b$, $c$ and $d$.
\subsection{Substituting into the equation}
When substituting \textsf{X} to \textsf{A} in the original matrix equation,
$
\mathsf{X}^2
-
\mathrm{tr}(\mathsf{A})\mathsf{X}
+
(ad-bc)\mathsf{I}_{2}
=
\mathsf{O}_{2}
$
a new equation can be deduced,
\begin{equation*}
\mathsf{A}^2
-
7\mathsf{A}
+
8\mathsf{I}
=
\mathsf{O}_2.
\end{equation*}
\subsection{Determining the expression}
The original expression
$
2\mathsf{A}^{10}
-
14\mathsf{A}^9
+
16\mathsf{A}^8
+
3\mathsf{A}
-
2\mathsf{I}_{2}
$
can be rewritten as
$
2\mathsf{A}^8(\mathsf{A}^2-7\mathsf{A}+8\mathsf{I})
+
3\mathsf{A}
-
2\mathsf{I}
$
and since,
$
\mathsf{A}^2
-
7\mathsf{A}
+
8\mathsf{I}
=
\mathsf{O}_2
$
the expression can be further reduced to,
$
3\mathsf{A}
-
2\mathsf{I}
$.
\newline
\newline
Since the value of \textsf{A} is known the expression can be written as,
$$
3
\begin{bmatrix}
3 & 4\\
1 & 4
\end{bmatrix}
-
2
\begin{bmatrix}
1 & 0\\
0 & 1
\end{bmatrix}
=
\begin{bmatrix}
7 & 12\\
3 & 10
\end{bmatrix}
.$$
\subsection{Answer}
$
2\mathsf{A}^{10}
-
14\mathsf{A}^9
+
16\mathsf{A}^8
+
3\mathsf{A}
-
2\mathsf{I}_{2}
=
\begin{bmatrix}
7 & 12\\
3 & 10
\end{bmatrix}
$
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment