Last active
December 19, 2022 22:55
-
-
Save conclube/d35e9e2ecf7f1bcb28d15962af479fd5 to your computer and use it in GitHub Desktop.
Math Matrix Problem 1.131
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass{article} | |
\usepackage[utf8]{inputenc} | |
\usepackage{amsmath} | |
\usepackage{amsthm} | |
\usepackage{amssymb} | |
\usepackage{amsfonts} | |
\usepackage{mathtools} | |
\title{Math Specialisation Problem 1.131} | |
\author{Alexander Lorentzson} | |
\date{December 2022} | |
\begin{document} | |
\maketitle | |
\tableofcontents | |
\section{Problem} | |
Show that for any $2 \times 2$ matrix \( | |
\mathsf{A} | |
:= | |
\begin{bmatrix} | |
a & b \\ | |
c & d | |
\end{bmatrix} | |
\), satifies the matrix equation, | |
\begin{equation*} | |
\mathsf{X}^2 | |
- | |
\mathrm{tr}(\mathsf{A})\mathsf{X} | |
+ | |
(ad-bc)\mathsf{I}_{2} | |
= | |
\mathsf{O}_{2}. | |
\end{equation*} | |
Use this to determine | |
$ | |
2\mathsf{A}^{10} | |
- | |
14\mathsf{A}^9 | |
+ | |
16\mathsf{A}^8 | |
+ | |
3\mathsf{A} | |
- | |
2\mathsf{I}_{2} | |
$ | |
if | |
$ | |
\mathsf{A} | |
= | |
\begin{bmatrix} | |
3 & 4\\ | |
1 & 4 | |
\end{bmatrix} | |
$ | |
. | |
\section{Solution} | |
\subsection{Proving the equation} | |
The original matrix equation, | |
$ | |
\mathsf{X}^2 | |
- | |
\mathrm{tr}(\mathsf{A})\mathsf{X} | |
+ | |
(ad-bc)\mathsf{I}_{2} | |
= | |
\mathsf{O}_{2} | |
$ | |
can be solved as followed. | |
\begin{equation*} | |
\begin{aligned} | |
\mathrm{L}\cdot\mathrm{H}\cdot\mathrm{S} | |
&= | |
\mathsf{A}^2 | |
- | |
\mathrm{tr}(\mathsf{A})\mathsf{A} | |
+ | |
(ad-bc)\mathsf{I}_{2}&\\ | |
&= | |
\begin{bmatrix} | |
a & b \\ | |
c & d | |
\end{bmatrix} | |
\begin{bmatrix} | |
a & b \\ | |
c & d | |
\end{bmatrix} | |
- | |
(a+d) | |
\begin{bmatrix} | |
a & b \\ | |
c & d | |
\end{bmatrix} | |
+ | |
(ad-bc) | |
\begin{bmatrix} | |
1 & 0 \\ | |
0 & 1 | |
\end{bmatrix}&\\ | |
&= | |
\begin{bmatrix} | |
a^2+bc & ab+db \\ | |
ac+dc & bc+d^2 | |
\end{bmatrix} | |
- | |
\begin{bmatrix} | |
a^2+ad & ab+db \\ | |
ac+dc & ad+d^2 | |
\end{bmatrix} | |
+ | |
\begin{bmatrix} | |
ad-bc & 0 \\ | |
0 & ad-bc | |
\end{bmatrix}&\\ | |
&= | |
\begin{bmatrix} | |
a^2+bc-a^2-ad+ad-bc & ab+db-ab-db \\ | |
ac+dc-ac-dc & bc+d^2-ad-d^2+ad-bc | |
\end{bmatrix}&\\ | |
&= | |
\begin{bmatrix} | |
(a^2-a^2)+(ad-ad)+(bc-bc) & (ab-ab)+(db-db) \\ | |
(ac-ac)+(dc-dc) & (d^2-d^2)+(bc-bc)+(ad-ad) | |
\end{bmatrix}&\\ | |
&= | |
\begin{bmatrix} | |
0 & 0 \\ | |
0 & 0 | |
\end{bmatrix}&\\ | |
&= | |
\mathsf{O}_{2}&\\ | |
&= | |
\mathrm{R}\cdot\mathrm{H}\cdot\mathrm{S}& | |
\end{aligned} | |
\end{equation*} | |
This proof implies that the equation holds for all $a$, $b$, $c$ and $d$. | |
\subsection{Substituting into the equation} | |
When substituting \textsf{X} to \textsf{A} in the original matrix equation, | |
$ | |
\mathsf{X}^2 | |
- | |
\mathrm{tr}(\mathsf{A})\mathsf{X} | |
+ | |
(ad-bc)\mathsf{I}_{2} | |
= | |
\mathsf{O}_{2} | |
$ | |
a new equation can be deduced, | |
\begin{equation*} | |
\mathsf{A}^2 | |
- | |
7\mathsf{A} | |
+ | |
8\mathsf{I} | |
= | |
\mathsf{O}_2. | |
\end{equation*} | |
\subsection{Determining the expression} | |
The original expression | |
$ | |
2\mathsf{A}^{10} | |
- | |
14\mathsf{A}^9 | |
+ | |
16\mathsf{A}^8 | |
+ | |
3\mathsf{A} | |
- | |
2\mathsf{I}_{2} | |
$ | |
can be rewritten as | |
$ | |
2\mathsf{A}^8(\mathsf{A}^2-7\mathsf{A}+8\mathsf{I}) | |
+ | |
3\mathsf{A} | |
- | |
2\mathsf{I} | |
$ | |
and since, | |
$ | |
\mathsf{A}^2 | |
- | |
7\mathsf{A} | |
+ | |
8\mathsf{I} | |
= | |
\mathsf{O}_2 | |
$ | |
the expression can be further reduced to, | |
$ | |
3\mathsf{A} | |
- | |
2\mathsf{I} | |
$. | |
\newline | |
\newline | |
Since the value of \textsf{A} is known the expression can be written as, | |
$$ | |
3 | |
\begin{bmatrix} | |
3 & 4\\ | |
1 & 4 | |
\end{bmatrix} | |
- | |
2 | |
\begin{bmatrix} | |
1 & 0\\ | |
0 & 1 | |
\end{bmatrix} | |
= | |
\begin{bmatrix} | |
7 & 12\\ | |
3 & 10 | |
\end{bmatrix} | |
.$$ | |
\subsection{Answer} | |
$ | |
2\mathsf{A}^{10} | |
- | |
14\mathsf{A}^9 | |
+ | |
16\mathsf{A}^8 | |
+ | |
3\mathsf{A} | |
- | |
2\mathsf{I}_{2} | |
= | |
\begin{bmatrix} | |
7 & 12\\ | |
3 & 10 | |
\end{bmatrix} | |
$ | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment