Created
July 10, 2021 12:18
-
-
Save conormm/df262dc9f84bb3fbc101627f01046865 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
from sklearn.ensemble import RandomForestRegressor | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from sklearn.datasets import load_boston | |
sns.set_style("whitegrid") | |
X, y = load_boston(return_X_y=True) | |
# Fit Bagging model | |
model = RandomForestRegressor( | |
n_estimators=50, | |
max_features="sqrt", | |
oob_score=True | |
) | |
model.fit(X, y) | |
# Extract inidividual learner predictions | |
tree_preds = pd.DataFrame([ | |
i.predict(X) for i in model.estimators_ | |
]).T | |
def prediction_interval(preds, interval=0.95): | |
"""Function to extract mean and prediction intervals. | |
""" | |
lb, ub = (1-interval)/2, 1-(1-interval)/2 | |
p = pd.concat([preds.mean(1), preds.quantile(lb, 1), preds.quantile(ub, 1)], 1) | |
p.columns = ["yhat_mean", "yhat_lb", "yhat_ub"] | |
return p | |
yhats = prediction_interval(tree_preds) | |
error_range = yhats.yhat_ub-yhats.yhat_lb | |
fig, ax = plt.subplots(figsize=(30, 15)) | |
plt.title("Prediction Intervals", fontsize=(18)) | |
plt.xlabel("Sample", fontsize=(18)) | |
plt.ylabel("Prediction", fontsize=(18)) | |
ax.errorbar(yhats.index, yhats.yhat_mean, yerr=error_range, fmt='ok', ecolor='gray') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment