Created
June 29, 2018 14:18
-
-
Save danijar/c5d93d051a60b356ecb99b561153ceb1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
def gaussian_blur(image, diameter): | |
padding = [[0, 0]] + [[(diameter) // 2, (diameter - 1) // 2]] * 2 + [[0, 0]] | |
diameter = tf.to_float(diameter) | |
filter_ = tf.range(-(diameter - 1) // 2, (diameter - 1) // 2 + 1) | |
filter_ = tf.exp(-0.5 * filter_ ** 2 / (diameter / 4) ** 2) # 2 stds. | |
filter_ /= tf.reduce_sum(filter_) | |
filter_ = tf.tile(filter_[:, None, None], [1, image.shape[3].value, 1]) | |
image = tf.pad(image, padding, 'SYMMETRIC') # No 'edge' mode. | |
image = tf.nn.depthwise_conv2d(image, filter_[:, None], [1, 1, 1, 1], 'VALID') | |
image = tf.nn.depthwise_conv2d(image, filter_[None, :], [1, 1, 1, 1], 'VALID') | |
return image | |
def example_image(height=60, width=80, seed=3): | |
image = np.ones((height, width, 3)) | |
image *= np.linspace( 5, 10, image.shape[0])[:, None, None] | |
image *= np.linspace(-2, 10, image.shape[1])[None, :, None] | |
image *= np.linspace(-1, 10, image.shape[2])[None, None, :] | |
image = (seed * image / 255) % 1 | |
return image | |
diameter = tf.placeholder(tf.int32, []) | |
image = tf.placeholder(tf.float32, [None, None, None, 3]) | |
output = gaussian_blur(tf.to_float(image), diameter) | |
original = example_image() | |
diameters = [1, 3, 10, 20] | |
fig, ax = plt.subplots(2, len(diameters), figsize=(5 * len(diameters), 7)) | |
ax[0, 0].set_ylabel('Blurred') | |
ax[1, 0].set_ylabel('Difference') | |
with tf.Session() as sess: | |
for index, value in enumerate(diameters): | |
blurred = sess.run(output, {image: [original], diameter: value})[0] | |
ax[0, index].set_title('Diameter {}'.format(value)) | |
ax[0, index].imshow(blurred, interpolation='nearest') | |
ax[1, index].imshow((blurred - original + 1) / 2, interpolation='nearest') | |
for axes in ax.flatten(): | |
axes.set_xticks([]) | |
axes.set_yticks([]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment