Skip to content

Instantly share code, notes, and snippets.

@dee-walia20
Last active February 18, 2020 16:21
Show Gist options
  • Save dee-walia20/51394c12cec53d07c59c03293899e8f9 to your computer and use it in GitHub Desktop.
Save dee-walia20/51394c12cec53d07c59c03293899e8f9 to your computer and use it in GitHub Desktop.
model_perf
#Prediction from test dataset
from sklearn.metrics import classification_report, confusion_matrix, f1_score, precision_score, recall_score
model_name=[]
precision_array=[]
recall_array=[]
f1_array=[]
test_time=[]
print("Classifiation Report\n")
print("*****************************************************")
for i, pipeline in enumerate(pipelines):
start=time.time()
y_pred=pipeline.predict(X_test)
stop=time.time()
test_time.append(stop-start)
print(pipelines[i].steps[1][0].upper())
model_name.append(pipelines[i].steps[1][0].upper())
f1_array.append(round(f1_score(y_test, y_pred, average='weighted'),2))
precision_array.append(round(precision_score(y_test, y_pred, average='binary'),2))
recall_array.append(round(recall_score(y_test, y_pred, average='binary'),2))
print("\n",classification_report(y_test, y_pred))
print("*****************************************************")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment