Created
June 21, 2020 18:58
-
-
Save dfaker/a8f0682d08481df0cb34dbe080090a9b to your computer and use it in GitHub Desktop.
Crop rect detection head for vgg19
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import csv | |
csvname = 'frames\\coords.csv' | |
data = [] | |
with open(csvname,'r', newline='') as csvfile: | |
reader = csv.DictReader(csvfile) | |
for row in reader: | |
data.append( row ) | |
import os | |
root = 'frames' | |
frames = [os.path.join(root,x) for x in os.listdir(root)] | |
from keras.applications.vgg19 import VGG19 | |
from keras.applications.vgg19 import preprocess_input | |
from keras.models import Model | |
from keras.layers import Dense, GlobalAveragePooling2D,Flatten | |
from keras.optimizers import SGD | |
import random | |
import cv2 | |
import numpy as np | |
base_model = VGG19(weights='imagenet', include_top=False, input_shape=(224,224,3)) | |
for l in base_model.layers: | |
l.trainable=True | |
x = base_model.output | |
x = GlobalAveragePooling2D()(x) | |
x = Dense(1024, activation='relu')(x) | |
predictions = Dense(4, activation='sigmoid')(x) | |
model = Model(inputs=base_model.input, outputs=predictions) | |
import tensorflow as tf | |
from keras import backend as K | |
class IoUloss: | |
def __call__(self,y_true, y_pred,sample_weight=0): | |
true_xy,true_wh = tf.split(y_true,[2,2],axis=-1) | |
pred_xy,pred_wh = tf.split(y_pred,[2,2],axis=-1) | |
true_wh_half = true_wh / 2. | |
true_mins = true_xy - true_wh_half | |
true_maxes = true_xy + true_wh_half | |
pred_wh_half = pred_wh / 2. | |
pred_mins = pred_xy - pred_wh_half | |
pred_maxes = pred_xy + pred_wh_half | |
intersect_mins = tf.maximum(pred_mins, true_mins) | |
intersect_maxes = tf.minimum(pred_maxes, true_maxes) | |
intersect_wh = intersect_maxes - intersect_mins | |
intersect_areas = intersect_wh[..., 0] * intersect_wh[..., 1] | |
true_areas = true_wh[..., 0] * true_wh[..., 1] | |
pred_areas = pred_wh[..., 0] * pred_wh[..., 1] | |
union_areas = pred_areas + true_areas - intersect_areas | |
iou_scores = tf.truediv(intersect_areas, union_areas) | |
return K.mean((1-iou_scores),axis=-1) | |
loss = IoUloss() | |
sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True) | |
model.compile(optimizer=sgd, loss='mse') | |
try: | |
model.load_weights('cropweights.bin') | |
except Exception as e: | |
print(e) | |
imgCache = {} | |
from keras.preprocessing.image import ImageDataGenerator | |
data_gen_args = dict( | |
rescale=1./255, | |
shear_range=0.2, | |
rotation_range=15, | |
width_shift_range=0.1, | |
zoom_range=0.2, | |
height_shift_range=0.1, | |
brightness_range=(0.8,1.2), | |
channel_shift_range=0.5 | |
) | |
image_datagen = ImageDataGenerator(**data_gen_args) | |
passn=0 | |
samp=None | |
while 1: | |
passn+=1 | |
xs=[] | |
y=[] | |
for sample in random.sample(data,min(len(data),30)): | |
imgsamp = imgCache.setdefault(sample['filename'],cv2.imread(sample['filename'])) | |
seed = random.randint(0,10000) | |
imgsamp = image_datagen.random_transform(imgsamp,seed=seed) | |
xs.append( imgsamp ) | |
y.append( [ | |
float(sample['xc']), | |
float(sample['yc']), | |
float(sample['w' ]), | |
float(sample['h' ]) | |
] ) | |
x=preprocess_input(np.array(xs)) | |
y=np.array(y) | |
loss = model.train_on_batch(x,y) | |
if passn%10==0 or samp is None: | |
samp = cv2.imread(random.choice(frames)) | |
if passn%100==0: | |
model.save_weights('cropweights.bin') | |
pred = model.predict( preprocess_input(np.array([samp])) )[0] | |
xc,yc,w,h = pred | |
print(passn,loss,xc,yc,w,h) | |
oimg = samp.copy() | |
x0 = int((xc-(w/2))*224) | |
y0 = int((yc-(h/2))*224) | |
x1 = int((xc+(w/2))*224) | |
y1 = int((yc+(h/2))*224) | |
cv2.rectangle(oimg,(x0,y0),(x1,y1),(255,255,0),2 ) | |
cv2.imshow('im',oimg) | |
cv2.waitKey(1) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment