Created
April 28, 2024 19:24
-
-
Save dineshdharme/c728d96ccb5d219f23ed69f14199f0de to your computer and use it in GitHub Desktop.
BatchWriteParquetFromStructuredStreaming.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This is not a perfect solution. But since streaming solution would be more suitable so providing it as an option. | |
Adapted from socket example below | |
https://github.com/abulbasar/pyspark-examples/blob/master/structured-streaming-socket.py | |
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html (search for 'socket' in this webpage) | |
To figure out if processing is finished., just check for this line in the logs. | |
`WARN TextSocketMicroBatchStream: Stream closed by localhost:9979` | |
Just one caveat, the number of rows may not be exactly `num_rows_per_batch` , you can set a trigger timer to gauge how much time does it take for the iterator to generate 10000 rows. | |
https://spark.apache.org/docs/3.1.1/api/python/reference/api/pyspark.sql.streaming.DataStreamWriter.trigger.html | |
from pyspark.sql import SparkSession | |
from pyspark.sql.functions import col, from_json | |
from pyspark.sql.types import StructType, StructField, StringType | |
import json | |
import threading | |
import socket | |
spark = SparkSession.builder \ | |
.appName("Example") \ | |
.getOrCreate() | |
schema = StructType([ | |
StructField("column1", StringType()), | |
StructField("column2", StringType()), | |
]) | |
def data_iterator(): | |
for i in range(100): | |
yield {"column1": f"value1_{i}", "column2": f"value2_{i}"} | |
host_given, port_given = "localhost", 9979 | |
def socket_server(): | |
host = host_given | |
port = port_given | |
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: | |
s.bind((host, port)) | |
s.listen(1) | |
conn, addr = s.accept() | |
with conn: | |
for row in data_iterator(): | |
data = json.dumps(row) + "\n" | |
conn.sendall(data.encode()) | |
server_thread = threading.Thread(target=socket_server) | |
server_thread.start() | |
df = spark.readStream \ | |
.format("socket") \ | |
.option("host", host_given) \ | |
.option("port", port_given) \ | |
.load() \ | |
.select(from_json(col("value"), schema).alias("data")) \ | |
.select("data.*") | |
output_hello = "/path/to/data_output/parquet_so/" | |
checkpoint_hello = "/path/to/data_output/parquet_checkpoint/" | |
num_rows_per_batch = 20 | |
query = df.writeStream \ | |
.format("csv") \ | |
.option("path", output_hello) \ | |
.option("checkpointLocation", checkpoint_hello) \ | |
.option("maxRowsPerFile", num_rows_per_batch) \ | |
.start() | |
query.awaitTermination() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment