This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import numpy as np | |
import k_diffusion as K | |
from PIL import Image | |
from torch import autocast | |
from einops import rearrange, repeat | |
def pil_img_to_torch(pil_img, half=False): | |
image = np.array(pil_img).astype(np.float32) / 255.0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
#input is a RGB numpy array with shape (height,width,3), can be uint,int, float or double, values expected in the range 0..255 | |
#output is a double YUV numpy array with shape (height,width,3), values in the range 0..255 | |
def RGB2YUV( rgb ): | |
m = np.array([[ 0.29900, -0.16874, 0.50000], | |
[0.58700, -0.33126, -0.41869], | |
[ 0.11400, 0.50000, -0.08131]]) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from scipy.ndimage.interpolation import map_coordinates | |
from scipy.ndimage.filters import gaussian_filter | |
def elastic_transform(image, alpha, sigma, random_state=None): | |
"""Elastic deformation of images as described in [Simard2003]_. | |
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for | |
Convolutional Neural Networks applied to Visual Document Analysis", in | |
Proc. of the International Conference on Document Analysis and | |
Recognition, 2003. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy | |
from scipy.ndimage.interpolation import map_coordinates | |
from scipy.ndimage.filters import gaussian_filter | |
def elastic_transform(image, alpha, sigma, random_state=None): | |
"""Elastic deformation of images as described in [Simard2003]_. | |
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for | |
Convolutional Neural Networks applied to Visual Document Analysis", in |