Last active
January 9, 2025 18:15
-
-
Save gngdb/4bfc6b2f7d9556e205f6f79955a44bde to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# mypy: allow-untyped-defs | |
# mypy: allow-untyped-decorators | |
import torch | |
from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten | |
from torch.utils import module_tracker as mt | |
from typing import List, Any, Dict, Optional, Union, Tuple, Iterator | |
from collections import defaultdict | |
from torch.utils._python_dispatch import TorchDispatchMode | |
from math import prod | |
from functools import wraps | |
import warnings | |
__all__ = ["FlopCounterMode", "register_flop_formula"] | |
aten = torch.ops.aten | |
def get_shape(i): | |
if isinstance(i, torch.Tensor): | |
return i.shape | |
return i | |
flop_registry: Dict[Any, Any] = {} | |
def shape_wrapper(f): | |
@wraps(f) | |
def nf(*args, out_val=None, **kwargs): | |
args, kwargs, out_shape = tree_map(get_shape, (args, kwargs, out_val)) | |
return f(*args, out_shape=out_shape, **kwargs) | |
return nf | |
def register_flop_formula(targets, get_raw=False): | |
def register_fun(flop_formula): | |
if not get_raw: | |
flop_formula = shape_wrapper(flop_formula) | |
def register(target): | |
if not isinstance(target, torch._ops.OpOverloadPacket): | |
raise ValueError( | |
f"register_flop_formula(targets): expected each target to be " | |
f"OpOverloadPacket (i.e. torch.ops.mylib.foo), got " | |
f"{target} which is of type {type(target)}") | |
if target in flop_registry: | |
raise RuntimeError(f"duplicate registrations for {target}") | |
flop_registry[target] = flop_formula | |
# To handle allowing multiple aten_ops at once | |
torch.utils._pytree.tree_map_(register, targets) | |
return flop_formula | |
return register_fun | |
@register_flop_formula(aten.mm) | |
def mm_flop(a_shape, b_shape, *args, out_shape=None, **kwargs) -> int: | |
"""Count flops for matmul.""" | |
# Inputs should be a list of length 2. | |
# Inputs contains the shapes of two matrices. | |
m, k = a_shape | |
k2, n = b_shape | |
assert k == k2 | |
# NB(chilli): Should be 2 * k - 1 technically for FLOPs. | |
return m * n * 2 * k | |
@register_flop_formula(aten.addmm) | |
def addmm_flop(self_shape, a_shape, b_shape, out_shape=None, **kwargs) -> int: | |
"""Count flops for addmm.""" | |
return mm_flop(a_shape, b_shape) | |
@register_flop_formula(aten.bmm) | |
def bmm_flop(a_shape, b_shape, out_shape=None, **kwargs) -> int: | |
"""Count flops for the bmm operation.""" | |
# Inputs should be a list of length 2. | |
# Inputs contains the shapes of two tensor. | |
b, m, k = a_shape | |
b2, k2, n = b_shape | |
assert b == b2 | |
assert k == k2 | |
# NB(chilli): Should be 2 * k - 1 technically for FLOPs. | |
flop = b * m * n * 2 * k | |
return flop | |
@register_flop_formula(aten.baddbmm) | |
def baddbmm_flop(self_shape, a_shape, b_shape, out_shape=None, **kwargs) -> int: | |
"""Count flops for the baddbmm operation.""" | |
# Inputs should be a list of length 3. | |
# Inputs contains the shapes of three tensors. | |
return bmm_flop(a_shape, b_shape) | |
def conv_flop_count( | |
x_shape: List[int], | |
w_shape: List[int], | |
out_shape: List[int], | |
transposed: bool = False, | |
) -> int: | |
"""Count flops for convolution. | |
Note only multiplication is | |
counted. Computation for bias are ignored. | |
Flops for a transposed convolution are calculated as | |
flops = (x_shape[2:] * prod(w_shape) * batch_size). | |
Args: | |
x_shape (list(int)): The input shape before convolution. | |
w_shape (list(int)): The filter shape. | |
out_shape (list(int)): The output shape after convolution. | |
transposed (bool): is the convolution transposed | |
Returns: | |
int: the number of flops | |
""" | |
batch_size = x_shape[0] | |
conv_shape = (x_shape if transposed else out_shape)[2:] | |
c_out, c_in, *filter_size = w_shape | |
""" | |
General idea here is that for a regular conv, for each point in the output | |
spatial dimension we convolve the filter with something (hence | |
`prod(conv_shape) * prod(filter_size)` ops). Then, this gets multiplied by | |
1. batch_size, 2. the cross product of input and weight channels. | |
For the transpose, it's not each point in the *output* spatial dimension but | |
each point in the *input* spatial dimension. | |
""" | |
# NB(chilli): I don't think this properly accounts for padding :think: | |
# NB(chilli): Should be 2 * c_in - 1 technically for FLOPs. | |
flop = prod(conv_shape) * prod(filter_size) * batch_size * c_out * c_in * 2 | |
return flop | |
@register_flop_formula([aten.convolution, aten._convolution]) | |
def conv_flop(x_shape, w_shape, _bias, _stride, _padding, _dilation, transposed, *args, out_shape=None, **kwargs) -> int: | |
"""Count flops for convolution.""" | |
return conv_flop_count(x_shape, w_shape, out_shape, transposed=transposed) | |
@register_flop_formula(aten.convolution_backward) | |
def conv_backward_flop( | |
grad_out_shape, | |
x_shape, | |
w_shape, | |
_bias, | |
_stride, | |
_padding, | |
_dilation, | |
transposed, | |
_output_padding, | |
_groups, | |
output_mask, | |
out_shape) -> int: | |
def t(shape): | |
return [shape[1], shape[0]] + list(shape[2:]) | |
flop_count = 0 | |
""" | |
Let's say we have a regular 1D conv | |
{A, B, C} [inp] | |
{i, j} [weight] | |
=> (conv) | |
{Ai + Bj, Bi + Cj} [out] | |
And as a reminder, the transposed conv of the above is | |
=> {Ai, Aj + Bi, Bj + Ci, Cj} [transposed conv out] | |
For the backwards of conv, we now have | |
{D, E} [grad_out] | |
{A, B, C} [inp] | |
{i, j} [weight] | |
# grad_inp as conv_transpose(grad_out, weight) | |
Let's first compute grad_inp. To do so, we can simply look at all the | |
multiplications that each element of inp is involved in. For example, A is | |
only involved in the first element of the output (and thus only depends upon | |
D in grad_out), and C is only involved in the last element of the output | |
(and thus only depends upon E in grad_out) | |
{Di, Dj + Ei, Ej} [grad_inp] | |
Note that this corresponds to the below conv_transpose. This gives us the | |
output_mask[0] branch, which is grad_inp. | |
{D, E} [inp (grad_out)] | |
{i, j} [weight] | |
=> (conv_transpose) | |
{Di, Dj + Ei, Ej} [out (grad_inp)] | |
I leave the fact that grad_inp for a transposed conv is just conv(grad_out, | |
weight) as an exercise for the reader. | |
# grad_weight as conv(inp, grad_out) | |
To compute grad_weight, we again look at the terms in the output, which as | |
a reminder is: | |
=> {Ai + Bj, Bi + Cj} [out] | |
=> {D, E} [grad_out] | |
If we manually compute the gradient for the weights, we see it's | |
{AD + BE, BD + CE} [grad_weight] | |
This corresponds to the below conv | |
{A, B, C} [inp] | |
{D, E} [weight (grad_out)] | |
=> (conv) | |
{AD + BE, BD + CE} [out (grad_weight)] | |
# grad_weight of transposed conv as conv(grad_out, inp) | |
As a reminder, the terms of the output of a transposed conv are: | |
=> {Ai, Aj + Bi, Bj + Ci, Cj} [transposed conv out] | |
=> {D, E, F, G} [grad_out] | |
Manually computing the gradient for the weights, we see it's | |
{AD + BE + CF, AE + BF + CG} [grad_weight] | |
This corresponds to the below conv | |
{D, E, F, G} [inp (grad_out)] | |
{A, B, C} [weight (inp)] | |
=> (conv) | |
{AD + BE + CF, AE + BF + CG} [out (grad_weight)] | |
For the full backwards formula, there are also some details involving | |
transpose of the batch/channel dimensions and groups, but I skip those for | |
the sake of brevity (and they're pretty similar to matmul backwards) | |
Check [conv backwards decomposition as conv forwards] | |
""" | |
# grad_inp as conv_transpose(grad_out, weight) | |
if output_mask[0]: | |
grad_input_shape = get_shape(out_shape[0]) | |
flop_count += conv_flop_count(grad_out_shape, w_shape, grad_input_shape, not transposed) | |
if output_mask[1]: | |
grad_weight_shape = get_shape(out_shape[1]) | |
if transposed: | |
# grad_weight of transposed conv as conv(grad_out, inp) | |
flop_count += conv_flop_count(t(grad_out_shape), t(x_shape), t(grad_weight_shape), transposed=False) | |
else: | |
# grad_weight as conv(inp, grad_out) | |
flop_count += conv_flop_count(t(x_shape), t(grad_out_shape), t(grad_weight_shape), transposed=False) | |
return flop_count | |
def sdpa_flop_count(query_shape, key_shape, value_shape): | |
""" | |
Count flops for self-attention. | |
NB: We can assume that value_shape == key_shape | |
""" | |
b, h, s_q, d_q = query_shape | |
_b2, _h2, s_k, _d2 = key_shape | |
_b3, _h3, _s3, d_v = value_shape | |
assert b == _b2 == _b3 and h == _h2 == _h3 and d_q == _d2 and s_k == _s3 and d_q == _d2 | |
total_flops = 0 | |
# q: [b, h, s_q, d_q] @ k: [b, h, d_q, s_k] -> scores: [b, h, s_q, s_k] | |
total_flops += bmm_flop((b * h, s_q, d_q), (b * h, d_q, s_k)) | |
# scores: [b, h, s_q, s_k] @ v: [b, h, s_k, d_v] -> out: [b, h, s_q, d_v] | |
total_flops += bmm_flop((b * h, s_q, s_k), (b * h, s_k, d_v)) | |
return total_flops | |
@register_flop_formula([aten._scaled_dot_product_efficient_attention, | |
aten._scaled_dot_product_flash_attention, | |
aten._scaled_dot_product_cudnn_attention]) | |
def sdpa_flop(query_shape, key_shape, value_shape, *args, out_shape=None, **kwargs) -> int: | |
"""Count flops for self-attention.""" | |
# NB: We aren't accounting for causal attention here | |
return sdpa_flop_count(query_shape, key_shape, value_shape) | |
def _offsets_to_lengths(offsets, max_len): | |
""" | |
If the offsets tensor is fake, then we don't know the actual lengths. | |
In that case, we can just assume the worst case; each batch has max length. | |
""" | |
from torch._subclasses.fake_tensor import FakeTensor | |
from torch._subclasses.functional_tensor import FunctionalTensor | |
if not isinstance(offsets, (FakeTensor, FunctionalTensor)): | |
return offsets.diff().tolist() | |
return [max_len] * (offsets.size(0) - 1) | |
def _unpack_flash_attention_nested_shapes( | |
*, | |
query, | |
key, | |
value, | |
grad_out=None, | |
cum_seq_q, | |
cum_seq_k, | |
max_q, | |
max_k, | |
) -> Iterator[Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Optional[Tuple[int, ...]]]]: | |
""" | |
Given inputs to a flash_attention_(forward|backward) kernel, this will handle behavior for | |
NestedTensor inputs by effectively unbinding the NestedTensor and yielding the shapes for | |
each batch element. | |
In the case that this isn't a NestedTensor kernel, then it just yields the original shapes. | |
""" | |
if cum_seq_q is not None: | |
# This means we should be dealing with a Nested Jagged Tensor query. | |
# The inputs will have shape (sum(sequence len), heads, dimension) | |
# In comparison, non-Nested inputs have shape (batch, heads, sequence len, dimension) | |
# To deal with this, we convert to a shape of (batch, heads, max_seq_len, dimension) | |
# So the flops calculation in this case is an overestimate of the actual flops. | |
assert len(key.shape) == 3 | |
assert len(value.shape) == 3 | |
assert grad_out is None or grad_out.shape == query.shape | |
_, h_q, d_q = query.shape | |
_, h_k, d_k = key.shape | |
_, h_v, d_v = value.shape | |
assert cum_seq_q is not None | |
assert cum_seq_k is not None | |
assert cum_seq_q.shape == cum_seq_k.shape | |
seq_q_lengths = _offsets_to_lengths(cum_seq_q, max_q) | |
seq_k_lengths = _offsets_to_lengths(cum_seq_k, max_k) | |
for (seq_q_len, seq_k_len) in zip(seq_q_lengths, seq_k_lengths): | |
new_query_shape = (1, h_q, seq_q_len, d_q) | |
new_key_shape = (1, h_k, seq_k_len, d_k) | |
new_value_shape = (1, h_v, seq_k_len, d_v) | |
new_grad_out_shape = new_query_shape if grad_out is not None else None | |
yield new_query_shape, new_key_shape, new_value_shape, new_grad_out_shape | |
return | |
yield query.shape, key.shape, value.shape, grad_out.shape if grad_out is not None else None | |
def _unpack_efficient_attention_nested_shapes( | |
*, | |
query, | |
key, | |
value, | |
grad_out=None, | |
cu_seqlens_q, | |
cu_seqlens_k, | |
max_seqlen_q, | |
max_seqlen_k, | |
) -> Iterator[Tuple[Tuple[int, ...], Tuple[int, ...], Tuple[int, ...], Optional[Tuple[int, ...]]]]: | |
""" | |
Given inputs to a efficient_attention_(forward|backward) kernel, this will handle behavior for | |
NestedTensor inputs by effectively unbinding the NestedTensor and yielding the shapes for | |
each batch element. | |
In the case that this isn't a NestedTensor kernel, then it just yields the original shapes. | |
""" | |
if cu_seqlens_q is not None: | |
# Unlike flash_attention_forward, we get a 4D tensor instead of a 3D tensor for efficient attention. | |
# | |
# This means we should be dealing with a Nested Jagged Tensor query. | |
# The inputs will have shape (sum(sequence len), heads, dimension) | |
# In comparison, non-Nested inputs have shape (batch, heads, sequence len, dimension) | |
# To deal with this, we convert to a shape of (batch, heads, max_seq_len, dimension) | |
# So the flops calculation in this case is an overestimate of the actual flops. | |
assert len(key.shape) == 4 | |
assert len(value.shape) == 4 | |
assert grad_out is None or grad_out.shape == query.shape | |
_, _, h_q, d_q = query.shape | |
_, _, h_k, d_k = key.shape | |
_, _, h_v, d_v = value.shape | |
assert cu_seqlens_q is not None | |
assert cu_seqlens_k is not None | |
assert cu_seqlens_q.shape == cu_seqlens_k.shape | |
seqlens_q = _offsets_to_lengths(cu_seqlens_q, max_seqlen_q) | |
seqlens_k = _offsets_to_lengths(cu_seqlens_k, max_seqlen_k) | |
for len_q, len_k in zip(seqlens_q, seqlens_k): | |
new_query_shape = (1, h_q, len_q, d_q) | |
new_key_shape = (1, h_k, len_k, d_k) | |
new_value_shape = (1, h_v, len_k, d_v) | |
new_grad_out_shape = new_query_shape if grad_out is not None else None | |
yield new_query_shape, new_key_shape, new_value_shape, new_grad_out_shape | |
return | |
yield query.shape, key.shape, value.shape, grad_out.shape if grad_out is not None else None | |
@register_flop_formula(aten._flash_attention_forward, get_raw=True) | |
def _flash_attention_forward_flop( | |
query, | |
key, | |
value, | |
cum_seq_q, | |
cum_seq_k, | |
max_q, | |
max_k, | |
*args, | |
out_shape=None, | |
**kwargs | |
) -> int: | |
"""Count flops for self-attention.""" | |
# NB: We aren't accounting for causal attention here | |
# in case this is a nested tensor, we unpack the individual batch elements | |
# and then sum the flops per batch element | |
sizes = _unpack_flash_attention_nested_shapes( | |
query=query, | |
key=key, | |
value=value, | |
cum_seq_q=cum_seq_q, | |
cum_seq_k=cum_seq_k, | |
max_q=max_q, | |
max_k=max_k, | |
) | |
return sum( | |
sdpa_flop_count(query_shape, key_shape, value_shape) | |
for query_shape, key_shape, value_shape, _ in sizes | |
) | |
@register_flop_formula(aten._efficient_attention_forward, get_raw=True) | |
def _efficient_attention_forward_flop( | |
query, | |
key, | |
value, | |
bias, | |
cu_seqlens_q, | |
cu_seqlens_k, | |
max_seqlen_q, | |
max_seqlen_k, | |
*args, | |
**kwargs | |
) -> int: | |
"""Count flops for self-attention.""" | |
# NB: We aren't accounting for causal attention here | |
# in case this is a nested tensor, we unpack the individual batch elements | |
# and then sum the flops per batch element | |
sizes = _unpack_efficient_attention_nested_shapes( | |
query=query, | |
key=key, | |
value=value, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_q, | |
max_seqlen_k=max_seqlen_k, | |
) | |
return sum( | |
sdpa_flop_count(query_shape, key_shape, value_shape) | |
for query_shape, key_shape, value_shape, _ in sizes | |
) | |
def sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape): | |
total_flops = 0 | |
b, h, s_q, d_q = query_shape | |
_b2, _h2, s_k, _d2 = key_shape | |
_b3, _h3, _s3, d_v = value_shape | |
_b4, _h4, _s4, _d4 = grad_out_shape | |
assert b == _b2 == _b3 == _b4 and h == _h2 == _h3 == _h4 and d_q == _d2 | |
assert d_v == _d4 and s_k == _s3 and s_q == _s4 | |
total_flops = 0 | |
# Step 1: We recompute the scores matrix. | |
# q: [b, h, s_q, d_q] @ k: [b, h, d_q, s_k] -> scores: [b, h, s_q, s_k] | |
total_flops += bmm_flop((b * h, s_q, d_q), (b * h, d_q, s_k)) | |
# Step 2: We propagate the gradients through the score @ v operation. | |
# gradOut: [b, h, s_q, d_v] @ v: [b, h, d_v, s_k] -> gradScores: [b, h, s_q, s_k] | |
total_flops += bmm_flop((b * h, s_q, d_v), (b * h, d_v, s_k)) | |
# scores: [b, h, s_k, s_q] @ gradOut: [b, h, s_q, d_v] -> gradV: [b, h, s_k, d_v] | |
total_flops += bmm_flop((b * h, s_k, s_q), (b * h, s_q, d_v)) | |
# Step 3: We propagate th gradients through the k @ v operation | |
# gradScores: [b, h, s_q, s_k] @ k: [b, h, s_k, d_q] -> gradQ: [b, h, s_q, d_q] | |
total_flops += bmm_flop((b * h, s_q, s_k), (b * h, s_k, d_q)) | |
# q: [b, h, d_q, s_q] @ gradScores: [b, h, s_q, s_k] -> gradK: [b, h, d_q, s_k] | |
total_flops += bmm_flop((b * h, d_q, s_q), (b * h, s_q, s_k)) | |
return total_flops | |
@register_flop_formula([aten._scaled_dot_product_efficient_attention_backward, | |
aten._scaled_dot_product_flash_attention_backward, | |
aten._scaled_dot_product_cudnn_attention_backward]) | |
def sdpa_backward_flop(grad_out_shape, query_shape, key_shape, value_shape, *args, out_shape=None, **kwargs) -> int: | |
"""Count flops for self-attention backward.""" | |
return sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape) | |
@register_flop_formula(aten._flash_attention_backward, get_raw=True) | |
def _flash_attention_backward_flop( | |
grad_out, | |
query, | |
key, | |
value, | |
out, # named _out_shape to avoid kwarg collision with out_shape created in wrapper | |
logsumexp, | |
cum_seq_q, | |
cum_seq_k, | |
max_q, | |
max_k, | |
*args, | |
**kwargs, | |
) -> int: | |
# in case this is a nested tensor, we unpack the individual batch elements | |
# and then sum the flops per batch element | |
shapes = _unpack_flash_attention_nested_shapes( | |
query=query, | |
key=key, | |
value=value, | |
grad_out=grad_out, | |
cum_seq_q=cum_seq_q, | |
cum_seq_k=cum_seq_k, | |
max_q=max_q, | |
max_k=max_k, | |
) | |
return sum( | |
sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape) | |
for query_shape, key_shape, value_shape, grad_out_shape in shapes | |
) | |
@register_flop_formula(aten._efficient_attention_backward, get_raw=True) | |
def _efficient_attention_backward_flop( | |
grad_out, | |
query, | |
key, | |
value, | |
bias, | |
out, # named _out to avoid kwarg collision with out created in wrapper | |
cu_seqlens_q, | |
cu_seqlens_k, | |
max_seqlen_q, | |
max_seqlen_k, | |
*args, | |
**kwargs, | |
) -> int: | |
# in case this is a nested tensor, we unpack the individual batch elements | |
# and then sum the flops per batch element | |
shapes = _unpack_efficient_attention_nested_shapes( | |
query=query, | |
key=key, | |
value=value, | |
grad_out=grad_out, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_q, | |
max_seqlen_k=max_seqlen_k, | |
) | |
return sum( | |
sdpa_backward_flop_count(grad_out_shape, query_shape, key_shape, value_shape) | |
for query_shape, key_shape, value_shape, grad_out_shape in shapes | |
) | |
flop_registry = { | |
aten.mm: mm_flop, | |
aten.addmm: addmm_flop, | |
aten.bmm: bmm_flop, | |
aten.baddbmm: baddbmm_flop, | |
aten.convolution: conv_flop, | |
aten._convolution: conv_flop, | |
aten.convolution_backward: conv_backward_flop, | |
aten._scaled_dot_product_efficient_attention: sdpa_flop, | |
aten._scaled_dot_product_flash_attention: sdpa_flop, | |
aten._scaled_dot_product_cudnn_attention: sdpa_flop, | |
aten._scaled_dot_product_efficient_attention_backward: sdpa_backward_flop, | |
aten._scaled_dot_product_flash_attention_backward: sdpa_backward_flop, | |
aten._scaled_dot_product_cudnn_attention_backward: sdpa_backward_flop, | |
aten._flash_attention_forward: _flash_attention_forward_flop, | |
aten._efficient_attention_forward: _efficient_attention_forward_flop, | |
aten._flash_attention_backward: _flash_attention_backward_flop, | |
aten._efficient_attention_backward: _efficient_attention_backward_flop, | |
} | |
def normalize_tuple(x): | |
if not isinstance(x, tuple): | |
return (x,) | |
return x | |
# Define the suffixes for different orders of magnitude | |
suffixes = ["", "K", "M", "B", "T"] | |
# Thanks BingChat! | |
def get_suffix_str(number): | |
# Find the index of the appropriate suffix based on the number of digits | |
# with some additional overflow. | |
# i.e. 1.01B should be displayed as 1001M, not 1.001B | |
index = max(0, min(len(suffixes) - 1, (len(str(number)) - 2) // 3)) | |
return suffixes[index] | |
def convert_num_with_suffix(number, suffix): | |
index = suffixes.index(suffix) | |
# Divide the number by 1000^index and format it to two decimal places | |
value = f"{number / 1000 ** index:.3f}" | |
# Return the value and the suffix as a string | |
return value + suffixes[index] | |
def convert_to_percent_str(num, denom): | |
if denom == 0: | |
return "0%" | |
return f"{num / denom:.2%}" | |
def _pytreeify_preserve_structure(f): | |
@wraps(f) | |
def nf(args): | |
flat_args, spec = tree_flatten(args) | |
out = f(*flat_args) | |
return tree_unflatten(out, spec) | |
return nf | |
class FlopCounterMode(TorchDispatchMode): | |
""" | |
``FlopCounterMode`` is a context manager that counts the number of flops within its context. | |
It does this using a ``TorchDispatchMode``. | |
It also supports hierarchical output by passing a module (or list of | |
modules) to FlopCounterMode on construction. If you do not need hierarchical | |
output, you do not need to use it with a module. | |
Example usage | |
.. code-block:: python | |
mod = ... | |
with FlopCounterMode(mod) as flop_counter: | |
mod.sum().backward() | |
""" | |
def __init__( | |
self, | |
mods: Optional[Union[torch.nn.Module, List[torch.nn.Module]]] = None, | |
depth: int = 2, | |
display: bool = True, | |
custom_mapping: Optional[Dict[Any, Any]] = None): | |
super().__init__() | |
self.flop_counts: Dict[str, Dict[Any, int]] = defaultdict(lambda: defaultdict(int)) | |
self.depth = depth | |
self.display = display | |
if custom_mapping is None: | |
custom_mapping = {} | |
if mods is not None: | |
warnings.warn("mods argument is not needed anymore, you can stop passing it", stacklevel=2) | |
self.flop_registry = { | |
**flop_registry, | |
**{k: v if getattr(v, "_get_raw", False) else shape_wrapper(v) for k, v in custom_mapping.items()} | |
} | |
self.ignored_flop_registry = { | |
torch.ops.aten.is_contiguous.default, | |
torch.ops.aten.is_contiguous.memory_format, | |
torch.ops.aten.is_strides_like_format.default, | |
torch.ops.aten.is_non_overlapping_and_dense.default, | |
torch.ops.aten.size.default, | |
torch.ops.aten.sym_size.default, | |
torch.ops.aten.stride.default, | |
torch.ops.aten.sym_stride.default, | |
torch.ops.aten.storage_offset.default, | |
torch.ops.aten.sym_storage_offset.default, | |
torch.ops.aten.numel.default, | |
torch.ops.aten.sym_numel.default, | |
torch.ops.aten.dim.default, | |
torch.ops.prim.layout.default, | |
torch.ops.prim.device.default, | |
torch.ops.aten.detach.default, | |
torch.ops.aten.copy_.default, | |
torch.ops.aten.as_strided.default, | |
torch.ops.aten.view.default, | |
torch.ops.aten.reshape.default, | |
torch.ops.aten.slice, | |
torch.ops.aten.select, | |
torch.ops.aten.permute.default, | |
torch.ops.aten.transpose, | |
torch.ops.aten.t.default, | |
torch.ops.aten.t, | |
torch.ops.aten.unsqueeze.default, | |
torch.ops.aten.squeeze.default, | |
} | |
self.mod_tracker = mt.ModuleTracker() | |
def get_total_flops(self) -> int: | |
return sum(self.flop_counts['Global'].values()) | |
def get_flop_counts(self) -> Dict[str, Dict[Any, int]]: | |
"""Return the flop counts as a dictionary of dictionaries. | |
The outer | |
dictionary is keyed by module name, and the inner dictionary is keyed by | |
operation name. | |
Returns: | |
Dict[str, Dict[Any, int]]: The flop counts as a dictionary. | |
""" | |
return {k: dict(v) for k, v in self.flop_counts.items()} | |
def get_table(self, depth=None): | |
if depth is None: | |
depth = self.depth | |
if depth is None: | |
depth = 999999 | |
import tabulate | |
tabulate.PRESERVE_WHITESPACE = True | |
header = ["Module", "FLOP", "% Total"] | |
values = [] | |
global_flops = self.get_total_flops() | |
global_suffix = get_suffix_str(global_flops) | |
is_global_subsumed = False | |
def process_mod(mod_name, depth): | |
nonlocal is_global_subsumed | |
total_flops = sum(self.flop_counts[mod_name].values()) | |
is_global_subsumed |= total_flops >= global_flops | |
padding = " " * depth | |
values = [] | |
values.append([ | |
padding + mod_name, | |
convert_num_with_suffix(total_flops, global_suffix), | |
convert_to_percent_str(total_flops, global_flops) | |
]) | |
for k, v in self.flop_counts[mod_name].items(): | |
values.append([ | |
padding + " - " + str(k), | |
convert_num_with_suffix(v, global_suffix), | |
convert_to_percent_str(v, global_flops) | |
]) | |
return values | |
for mod in sorted(self.flop_counts.keys()): | |
if mod == 'Global': | |
continue | |
mod_depth = mod.count(".") + 1 | |
if mod_depth > depth: | |
continue | |
cur_values = process_mod(mod, mod_depth - 1) | |
values.extend(cur_values) | |
# We do a bit of messing around here to only output the "Global" value | |
# if there are any FLOPs in there that aren't already fully contained by | |
# a module. | |
if 'Global' in self.flop_counts and not is_global_subsumed: | |
for idx in range(len(values)): | |
values[idx][0] = " " + values[idx][0] | |
values = process_mod('Global', 0) + values | |
if len(values) == 0: | |
values = [["Global", "0", "0%"]] | |
return tabulate.tabulate(values, headers=header, colalign=("left", "right", "right")) | |
def __enter__(self): | |
self.flop_counts.clear() | |
self.mod_tracker.__enter__() | |
super().__enter__() | |
return self | |
def __exit__(self, *args): | |
super().__exit__(*args) | |
self.mod_tracker.__exit__() | |
if self.display: | |
print(self.get_table(self.depth)) | |
def __torch_dispatch__(self, func, types, args=(), kwargs=None): | |
kwargs = kwargs if kwargs else {} | |
out = func(*args, **kwargs) | |
return self._count_flops(func._overloadpacket, out, args, kwargs) | |
def _count_flops(self, func_packet, out, args, kwargs): | |
if func_packet in self.flop_registry: | |
flop_count_func = self.flop_registry[func_packet] | |
flop_count = flop_count_func(*args, **kwargs, out_val=out) # type: ignore[operator] | |
for par in set(self.mod_tracker.parents): | |
self.flop_counts[par][func_packet] += flop_count | |
elif func_packet in self.ignored_flop_registry: | |
pass | |
else: | |
raise RuntimeError(f"Operation {func_packet} not registered for flop counting.") | |
return out |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
from typing import Dict, Any, Optional, Union, List, Set | |
from math import prod | |
from strict_flop_counter import FlopCounterMode, register_flop_formula | |
from torch._subclasses.fake_tensor import FakeTensor | |
from torch._subclasses.functional_tensor import FunctionalTensor | |
class CustomModule(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.linear = nn.Linear(10, 20) | |
def forward(self, x): | |
x = self.linear(x) | |
x = torch.erf(x) | |
return x | |
# Register flop formula for erf | |
@register_flop_formula(torch.ops.aten.erf) | |
def erf_flop(x_shape, out_shape=None, **kwargs): | |
"""Count flops for erf operation.""" | |
return prod(x_shape) * 4 | |
def main(): | |
print("Test 1: Matrix multiply") | |
try: | |
a = torch.randn(10, 10) | |
b = torch.randn(10, 10) | |
with FlopCounterMode() as fc: | |
c = torch.mm(a, b) | |
print("✓ Matrix multiply counted successfully\n") | |
except Exception as e: | |
print(f"✗ Error: {e}\n") | |
print("Test 2: Operation with registered flop formula") | |
try: | |
model = CustomModule() | |
x = torch.randn(5, 10) | |
with FlopCounterMode() as fc: | |
y = model(x) | |
print(f"✓ Successfully counted flops including erf operation") | |
print(f"Total FLOPs: {fc.get_total_flops()}\n") | |
except Exception as e: | |
print(f"✗ Error: {e}\n") | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment