Created
November 13, 2015 15:41
-
-
Save graphific/7f0a214350fd763275b8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" Simple Logistic Regression on Mnist, incurs a time penalty | |
Epoch: 0001 cost= 29.860479714 | |
time this epoch= 1.749361 | |
Epoch: 0002 cost= 22.108508758 | |
time this epoch= 1.873362 | |
(...) | |
Epoch: 0024 cost= 18.365951549 | |
time this epoch= 2.787942 | |
Epoch: 0025 cost= 18.230793715 | |
time this epoch= 2.748816 | |
""" | |
# input_data.py from mnist example | |
# https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/g3doc/tutorials/mnist/input_data.py | |
import input_data | |
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) | |
import tensorflow as tf | |
import time | |
# Parameters | |
learning_rate = 0.01 | |
training_epochs = 25 | |
batch_size = 100 | |
display_step = 1 | |
# Create model | |
x = tf.placeholder("float", [None, 784]) | |
y = tf.placeholder("float", [None,10]) | |
W = tf.Variable(tf.zeros([784,10])) | |
b = tf.Variable(tf.zeros([10])) | |
activation = tf.nn.softmax(tf.matmul(x,W) + b) #softmax | |
cost = -tf.reduce_sum(y*tf.log(activation)) #cross entropy | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) | |
# Train | |
init = tf.initialize_all_variables() | |
with tf.Session() as sess: | |
sess.run(init) | |
for epoch in range(training_epochs): | |
start_time = time.clock() | |
avg_cost = 0. | |
total_batch = int(mnist.train.num_examples/batch_size) | |
for i in range(total_batch): | |
batch_xs, batch_ys = mnist.train.next_batch(batch_size) | |
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys}) | |
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch | |
if epoch % display_step == 0: | |
print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost) | |
end_time = time.clock() | |
print "time this epoch=", (end_time-start_time) | |
print "Optimization Finished!" | |
# Test trained model | |
correct_prediction = tf.equal(tf.argmax(activation,1), tf.argmax(y,1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) | |
print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment