Last active
November 20, 2017 20:38
-
-
Save henningpohl/671bc088035801ba7b3f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
from scipy.stats import linregress | |
from scipy.optimize import curve_fit | |
data = [ | |
(1982, 165), | |
(1983, 176), | |
(1985, 170), | |
(1986, 122), | |
(1987, 166), | |
(1988, 187), | |
(1989, 199), | |
(1990, 260), | |
(1991, 240), | |
(1992, 216), | |
(1993, 330), | |
(1994, 263), | |
(1995, 228), | |
(1996, 256), | |
(1997, 234), | |
(1998, 351), | |
(1999, 312), | |
(2000, 336), | |
(2001, 352), | |
(2002, 414), | |
(2003, 468), | |
(2004, 578), | |
(2005, 372), | |
(2006, 626), | |
(2007, 840), | |
(2008, 714), | |
(2009, 1130), | |
(2010, 1346), | |
(2011, 1532), | |
(2012, 1577), | |
(2013, 1963), | |
(2014, 2043), | |
(2015, 2120), | |
(2016, 2435), | |
(2017, 2400), | |
(2018, 2592)] | |
years = np.array([d[0] for d in data]) | |
submissions = np.array([d[1] for d in data]) | |
def func(x, a, b, c, d): | |
return a + b * np.exp(c + d * x) | |
p0 = (0, 1, 0, 0.000001) | |
fit_data, covariance = curve_fit(func, years, submissions, p0, maxfev=100000) | |
x2 = np.linspace(years[0], years[-1] + 10, 500) | |
y2 = func(x2, *fit_data) | |
_, _, r, p, stdErr = linregress(submissions, func(years, *fit_data)) | |
print("R-squared:", r ** 2) | |
print(years[-1] + 1, 'prediction:', int(func(years[-1] + 1, *fit_data))) | |
fig = plt.figure(frameon=False, facecolor='w') | |
plt.scatter(years, submissions, marker='o', s=30, linewidth=0, c='.2', zorder=2) | |
plt.plot(x2, y2, c=(.8, .3, .1), lw=1.5, zorder=1) | |
plt.xlim(1980, 2025) | |
plt.ylim(0, 10000) | |
plt.tight_layout() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment