-
-
Save husnejahan/d3dd2085adf936c81e155feb00ddedb5 to your computer and use it in GitHub Desktop.
yolov3_flask.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# @Author: Dwivedi Chandan | |
# @Date: 2019-08-05T13:35:05+05:30 | |
# @Email: [email protected] | |
# @Last modified by: Dwivedi Chandan | |
# @Last modified time: 2019-08-07T11:52:45+05:30 | |
# import the necessary packages | |
import numpy as np | |
import argparse | |
import time | |
import cv2 | |
import os | |
from flask import Flask, request, Response, jsonify | |
import jsonpickle | |
#import binascii | |
import io as StringIO | |
import base64 | |
from io import BytesIO | |
import io | |
import json | |
from PIL import Image | |
# construct the argument parse and parse the arguments | |
confthres = 0.3 | |
nmsthres = 0.1 | |
yolo_path = './' | |
def get_labels(labels_path): | |
# load the COCO class labels our YOLO model was trained on | |
#labelsPath = os.path.sep.join([yolo_path, "yolo_v3/coco.names"]) | |
lpath=os.path.sep.join([yolo_path, labels_path]) | |
LABELS = open(lpath).read().strip().split("\n") | |
return LABELS | |
def get_colors(LABELS): | |
# initialize a list of colors to represent each possible class label | |
np.random.seed(42) | |
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),dtype="uint8") | |
return COLORS | |
def get_weights(weights_path): | |
# derive the paths to the YOLO weights and model configuration | |
weightsPath = os.path.sep.join([yolo_path, weights_path]) | |
return weightsPath | |
def get_config(config_path): | |
configPath = os.path.sep.join([yolo_path, config_path]) | |
return configPath | |
def load_model(configpath,weightspath): | |
# load our YOLO object detector trained on COCO dataset (80 classes) | |
print("[INFO] loading YOLO from disk...") | |
net = cv2.dnn.readNetFromDarknet(configpath, weightspath) | |
return net | |
def image_to_byte_array(image:Image): | |
imgByteArr = io.BytesIO() | |
image.save(imgByteArr, format='PNG') | |
imgByteArr = imgByteArr.getvalue() | |
return imgByteArr | |
def get_predection(image,net,LABELS,COLORS): | |
(H, W) = image.shape[:2] | |
# determine only the *output* layer names that we need from YOLO | |
ln = net.getLayerNames() | |
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()] | |
# construct a blob from the input image and then perform a forward | |
# pass of the YOLO object detector, giving us our bounding boxes and | |
# associated probabilities | |
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), | |
swapRB=True, crop=False) | |
net.setInput(blob) | |
start = time.time() | |
layerOutputs = net.forward(ln) | |
print(layerOutputs) | |
end = time.time() | |
# show timing information on YOLO | |
print("[INFO] YOLO took {:.6f} seconds".format(end - start)) | |
# initialize our lists of detected bounding boxes, confidences, and | |
# class IDs, respectively | |
boxes = [] | |
confidences = [] | |
classIDs = [] | |
# loop over each of the layer outputs | |
for output in layerOutputs: | |
# loop over each of the detections | |
for detection in output: | |
# extract the class ID and confidence (i.e., probability) of | |
# the current object detection | |
scores = detection[5:] | |
# print(scores) | |
classID = np.argmax(scores) | |
# print(classID) | |
confidence = scores[classID] | |
# filter out weak predictions by ensuring the detected | |
# probability is greater than the minimum probability | |
if confidence > confthres: | |
# scale the bounding box coordinates back relative to the | |
# size of the image, keeping in mind that YOLO actually | |
# returns the center (x, y)-coordinates of the bounding | |
# box followed by the boxes' width and height | |
box = detection[0:4] * np.array([W, H, W, H]) | |
(centerX, centerY, width, height) = box.astype("int") | |
# use the center (x, y)-coordinates to derive the top and | |
# and left corner of the bounding box | |
x = int(centerX - (width / 2)) | |
y = int(centerY - (height / 2)) | |
# update our list of bounding box coordinates, confidences, | |
# and class IDs | |
boxes.append([x, y, int(width), int(height)]) | |
confidences.append(float(confidence)) | |
classIDs.append(classID) | |
# apply non-maxima suppression to suppress weak, overlapping bounding | |
# boxes | |
idxs = cv2.dnn.NMSBoxes(boxes, confidences, confthres, | |
nmsthres) | |
# ensure at least one detection exists | |
if len(idxs) > 0: | |
# loop over the indexes we are keeping | |
for i in idxs.flatten(): | |
# extract the bounding box coordinates | |
(x, y) = (boxes[i][0], boxes[i][1]) | |
(w, h) = (boxes[i][2], boxes[i][3]) | |
# draw a bounding box rectangle and label on the image | |
color = [int(c) for c in COLORS[classIDs[i]]] | |
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2) | |
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i]) | |
print(boxes) | |
print(classIDs) | |
cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,0.5, color, 2) | |
return image | |
labelsPath="yolo_v3/coco.names" | |
cfgpath="yolo_v3/yolov3.cfg" | |
wpath="yolo_v3/yolov3.weights" | |
Lables=get_labels(labelsPath) | |
CFG=get_config(cfgpath) | |
Weights=get_weights(wpath) | |
nets=load_model(CFG,Weights) | |
Colors=get_colors(Lables) | |
# Initialize the Flask application | |
app = Flask(__name__) | |
# route http posts to this method | |
@app.route('/api/test', methods=['POST']) | |
def main(): | |
# load our input image and grab its spatial dimensions | |
#image = cv2.imread("./test1.jpg") | |
img = request.files["image"].read() | |
img = Image.open(io.BytesIO(img)) | |
npimg=np.array(img) | |
image=npimg.copy() | |
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB) | |
res=get_predection(image,nets,Lables,Colors) | |
# image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB) | |
# show the output image | |
#cv2.imshow("Image", res) | |
#cv2.waitKey() | |
image=cv2.cvtColor(res,cv2.COLOR_BGR2RGB) | |
np_img=Image.fromarray(image) | |
img_encoded=image_to_byte_array(np_img) | |
return Response(response=img_encoded, status=200,mimetype="image/jpeg") | |
# start flask app | |
if __name__ == '__main__': | |
app.run(debug=True, host='0.0.0.0') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment