Created
January 21, 2018 11:21
-
-
Save iCHAIT/0f9a90004cdda01cb14f81013cff141c to your computer and use it in GitHub Desktop.
Codes for information visualization using python lab report 2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import plotly.plotly as py | |
import pandas as pd | |
df = pd.read_csv('2014_world_gdp_with_codes.csv') | |
data = [ dict( | |
type = 'choropleth', | |
locations = df['CODE'], | |
z = df['GDP (BILLIONS)'], | |
text = df['COUNTRY'], | |
colorscale = [[0,"rgb(5, 10, 172)"],[0.35,"rgb(40, 60, 190)"],[0.5,"rgb(70, 100, 245)"],\ | |
[0.6,"rgb(90, 120, 245)"],[0.7,"rgb(106, 137, 247)"],[1,"rgb(220, 220, 220)"]], | |
autocolorscale = False, | |
reversescale = True, | |
marker = dict( | |
line = dict ( | |
color = 'rgb(180,180,180)', | |
width = 0.5 | |
) ), | |
colorbar = dict( | |
autotick = False, | |
tickprefix = '$', | |
title = 'GDP<br>Billions US$'), | |
) ] | |
layout = dict( | |
title = '2014 Global GDP', | |
geo = dict( | |
showframe = False, | |
showcoastlines = False, | |
projection = dict( | |
type = 'Mercator' | |
) | |
) | |
) | |
fig = dict( data=data, layout=layout ) | |
py.iplot( fig, validate=False, filename='d3-world-map' ) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import plotly.plotly as py | |
import plotly.figure_factory as ff | |
import numpy as np | |
X = np.random.rand(10, 10) | |
names = ['Jack', 'Oxana', 'John', 'Chelsea', 'Mark', 'Alice', 'Charlie', 'Rob', 'Lisa', 'Lily'] | |
fig = ff.create_dendrogram(X, orientation='left', labels=names) | |
fig['layout'].update({'width':800, 'height':800}) | |
py.iplot(fig, filename='dendrogram_with_labels') |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
# Read the Pharma Sector data | |
df = pd.read_csv("Pharma_Heatmap_data.csv") | |
# Create an array of stock symbols & their respective percentage price change | |
symbol = ((np.asarray(df['Symbol'])).reshape(6,5)) | |
perchange = ((np.asarray(df['Change'])).reshape(6,5)) | |
# Create a pivot table | |
result = df.pivot(index='Yrows',columns='Xcols',values='Change') | |
# Create an array to annotate the heatmap | |
labels = (np.asarray(["{0} \n {1:.2f}".format(symb,value) | |
for symb, value in zip(symbol.flatten(), | |
perchange.flatten())]) | |
).reshape(6,5) | |
# Define the plot | |
fig, ax = plt.subplots(figsize=(13,7)) | |
# Add title to the Heat map | |
title = "Pharma Sector Heat Map" | |
# Set the font size and the distance of the title from the plot | |
plt.title(title,fontsize=18) | |
ttl = ax.title | |
ttl.set_position([0.5,1.05]) | |
# Hide ticks for X & Y axis | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
# Remove the axes | |
ax.axis('off') | |
# Use the heatmap function from the seaborn package | |
sns.heatmap(result,annot=labels,fmt="",cmap='RdYlGn',linewidths=0.30,ax=ax) | |
# Display the Pharma Sector Heatmap | |
plt.show() | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
sns.set(style="white", color_codes=True) | |
iris = pd.read_csv("iris.csv") | |
# We use violinplot to plot the data | |
sns.violinplot(x="species", y="petal_length", data=iris, size=6) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment