Created
January 15, 2023 07:30
-
-
Save ialhashim/ffd1c54645f6295e17aa99ed3cc5bef7 to your computer and use it in GitHub Desktop.
Split images into square patches
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def split_to_batches(img, trained_size=512): | |
img = skimage.img_as_float32(img) | |
direction = 'landscape' | |
if img.shape[0] > img.shape[1]: direction = 'portrait' | |
# resize into 512x[width|height] | |
width, height = img.shape[1], img.shape[0] | |
if direction == 'landscape': | |
new_height = trained_size | |
new_width = int(new_height * (width / height)) | |
elif direction == 'portrait': | |
new_width = trained_size | |
new_height = int(new_width * (height / width)) | |
img = resize(img, (new_height, new_width), preserve_range=True, anti_aliasing=True) | |
# Collect batches covering resized image | |
if direction == 'landscape': | |
batch_count = math.ceil(new_width / trained_size) | |
elif direction == 'portrait': | |
batch_count = math.ceil(new_height / trained_size) | |
batches = [] | |
for i in range(batch_count): | |
x, y = 0, 0 | |
if direction == 'landscape': x = min(img.shape[1], (i * trained_size)) | |
if direction == 'portrait': y = min(img.shape[0], (i * trained_size)) | |
y = min(y, img.shape[0] - trained_size) | |
x = min(x, img.shape[1] - trained_size) | |
batch = img[y:y+trained_size, x:x+trained_size, :] | |
batches.append( ((x,y), batch) ) | |
return direction, batches, img | |
def predict_in_batches(img): | |
direction, batches, new_input_img = split_to_batches(img) | |
# predict on image splits | |
batch_images = [] | |
for ii in batches: | |
pos, im = ii | |
batch_images.append( im ) | |
batch = (np.stack(batch_images) * 255).astype('uint8') | |
batch_hat = model.predict(batch) | |
if len(batch_hat.shape) < 4: | |
batch_hat = np.expand_dims(batch_hat, 0) | |
# combine predictions | |
prediction_img = new_input_img | |
for i in range(len(batches)): | |
ii = batches[i] | |
pos, im = ii | |
x,y = pos | |
prediction_img[ y : y+im.shape[0], x : x+im.shape[1] , : ] = batch_hat[i] | |
prediction_img = (resize(prediction_img, (img.shape[0], img.shape[1]), preserve_range=True, anti_aliasing=True) * 255).astype('uint8') | |
img = (skimage.img_as_float32(img) * 255).astype('uint8') | |
lab_prediction_img = color.rgb2lab(prediction_img) | |
lab_img = color.rgb2lab(img) | |
lab_prediction_img[:,:,0] = lab_img[:,:,0] | |
prediction_img = (color.lab2rgb(lab_prediction_img) * 255).astype('uint8') | |
return prediction_img |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment