Created
July 7, 2020 05:45
-
-
Save inamiy/7488380da6001cb0f778b59d9f7230cd to your computer and use it in GitHub Desktop.
Solving Fix / Mu / Nu exercise in https://stackoverflow.com/questions/45580858/what-is-the-difference-between-fix-mu-and-nu-in-ed-kmetts-recursion-scheme-pac
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- Solving Fix / Mu / Nu exercise in | |
-- https://stackoverflow.com/questions/45580858/what-is-the-difference-between-fix-mu-and-nu-in-ed-kmetts-recursion-scheme-pac | |
{-# LANGUAGE RankNTypes, GADTs #-} | |
---------------------------------------- | |
-- Fix / Mu / Nu | |
newtype Fix f = Fix { unFix :: f (Fix f) } | |
inFix :: f (Fix f) -> Fix f | |
inFix = Fix | |
outFix :: Fix f -> f (Fix f) | |
outFix (Fix f) = f | |
newtype Mu f = Mu { unMu :: forall a. (f a -> a) -> a } | |
inMu :: Functor f => f (Mu f) -> Mu f | |
inMu fmu = Mu $ \f -> f (flip unMu f <$> fmu) | |
outMu :: Functor f => Mu f -> f (Mu f) | |
outMu = flip unMu $ fmap inMu | |
data Nu f where | |
Nu ::(a -> f a) -> a -> Nu f | |
inNu :: Functor f => f (Nu f) -> Nu f | |
inNu = Nu (fmap outNu) | |
outNu :: Functor f => Nu f -> f (Nu f) | |
outNu (Nu f a) = Nu f <$> f a | |
---------------------------------------- | |
-- Catamorphism / Anamorphism | |
cataFix :: Functor f => (f a -> a) -> Fix f -> a | |
cataFix alg = alg . fmap (cataFix alg) . unFix | |
cataMu :: (f a -> a) -> Mu f -> a | |
cataMu f (Mu g) = g f | |
anaFix :: Functor f => (a -> f a) -> a -> Fix f | |
anaFix coalg = Fix . fmap (anaFix coalg) . coalg | |
anaNu :: (a -> f a) -> a -> Nu f | |
anaNu g a = Nu g a | |
---------------------------------------- | |
-- Mu <-> Fix <-> Nu isomorphism (in Haskell) | |
muToFix :: Mu f -> Fix f | |
muToFix (Mu f) = f Fix | |
-- Requires recursion. | |
fixToMu :: Functor f => Fix f -> Mu f | |
fixToMu x = Mu (flip cataFix x) | |
fixToNu :: Fix f -> Nu f | |
fixToNu x = Nu unFix x | |
-- Requires recursion. | |
nuToFix :: Functor f => Nu f -> Fix f | |
nuToFix (Nu coalg a) = Fix (fmap (anaFix coalg) (coalg a)) | |
---------------------------------------- | |
-- Natural / Co-Natural | |
zeroMu :: Mu Maybe | |
zeroMu = Mu $ \alg -> alg Nothing | |
succMu :: Mu Maybe -> Mu Maybe | |
succMu (Mu f) = Mu $ \alg -> alg (Just (f alg)) | |
muToInt :: Mu Maybe -> Int | |
muToInt (Mu f) = f alg | |
where | |
alg Nothing = 0 | |
alg (Just n) = 1 + n | |
zeroNu :: Nu Maybe | |
zeroNu = Nu (const Nothing) () | |
succNu :: Nu Maybe -> Nu Maybe | |
succNu (Nu coalg a) = Nu (fmap coalg) (Just a) | |
inftyNu :: Nu Maybe | |
inftyNu = Nu Just () | |
nuToInt :: Nu Maybe -> Int | |
-- nuToInt nu = muToInt . fixToMu . nuToFix $ nu | |
nuToInt (Nu coalg a) = f (coalg a) | |
where | |
f Nothing = 0 | |
f (Just x) = 1 + f (coalg x) | |
---------------------------------------- | |
main :: IO () | |
main = do | |
-- Mu | |
print $ muToInt $ zeroMu -- 0 | |
print $ muToInt $ succMu $ zeroMu -- 1 | |
print $ muToInt $ succMu . succMu $ zeroMu -- 2 | |
-- Nu | |
print $ nuToInt $ zeroNu -- 0 | |
print $ nuToInt $ succNu $ zeroNu -- 1 | |
print $ nuToInt $ succNu . succNu $ zeroNu -- 2 | |
print $ nuToInt $ inftyNu -- infinity |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment