All parameters and the ammount of times they are used
C | 14 |
U_init | 1 |
V_init | 1 |
affinity | 2 |
algorithm | 12 |
alpha | 28 |
alpha_1 | 2 |
alpha_2 | 2 |
alphas | 7 |
analyzer | 2 |
assign_labels | 1 |
assume_centered | 7 |
bandwidth | 1 |
batch_size | 1 |
beta | 2 |
beta0 | 1 |
bin_seeding | 1 |
binarize | 1 |
binary | 2 |
block_size | 1 |
bootstrap | 4 |
cache_size | 10 |
callback | 1 |
charset | 2 |
charset_error | 2 |
chunk_size | 2 |
class_weight | 13 |
cluster_all | 1 |
code_init | 1 |
coef0 | 11 |
compute_full_tree | 2 |
compute_importances | 8 |
compute_labels | 1 |
compute_score | 2 |
connectivity | 2 |
contamination | 2 |
convergence_iter | 1 |
convit | 1 |
copy | 17 |
copy_Gram | 1 |
copy_X | 18 |
copy_Xy | 1 |
copy_x | 1 |
corr | 1 |
covariance_type | 5 |
covars_prior | 2 |
covars_weight | 1 |
criterion | 9 |
cv | 8 |
damping | 1 |
deflation_mode | 1 |
degree | 11 |
dict_init | 2 |
dtype | 3 |
dual | 5 |
eig_tol | 1 |
eigen_solver | 3 |
eps | 10 |
epsilon | 6 |
eta | 2 |
eta0 | 3 |
feature_range | 1 |
fit_algorithm | 2 |
fit_intercept | 33 |
fit_inverse_transform | 1 |
fit_path | 2 |
fit_prior | 2 |
fun | 1 |
fun_args | 1 |
fun_prime | 1 |
gamma | 15 |
gcv_mode | 3 |
gmms | 1 |
hessian_tol | 1 |
init | 6 |
init_params | 7 |
init_size | 1 |
input | 2 |
intercept_scaling | 5 |
iterated_power | 1 |
k | 4 |
kernel | 13 |
l1_ratio | 5 |
lambda_1 | 2 |
lambda_2 | 2 |
leaf_size | 5 |
learn_rate | 2 |
learning_rate | 4 |
loss | 10 |
loss_func | 4 |
lowercase | 2 |
max_depth | 10 |
max_df | 2 |
max_features | 12 |
max_iter | 44 |
max_iters | 2 |
max_n | 2 |
max_n_alphas | 2 |
max_no_improvement | 1 |
max_patches | 1 |
means_prior | 1 |
means_weight | 1 |
memory | 4 |
method | 3 |
metric | 3 |
min_covar | 3 |
min_density | 8 |
min_df | 2 |
min_n | 2 |
min_samples | 1 |
min_samples_leaf | 10 |
min_samples_split | 10 |
mode | 5 |
modified_tol | 1 |
multi_class | 4 |
n_alphas | 2 |
n_atoms | 2 |
n_clusters | 5 |
n_components | 32 |
n_estimators | 6 |
n_init | 5 |
n_iter | 16 |
n_jobs | 19 |
n_mix | 1 |
n_neighbors | 8 |
n_nonzero_coefs | 2 |
n_refinements | 1 |
n_resampling | 2 |
neg_label | 1 |
neighbors_algorithm | 2 |
ngram_range | 2 |
nls_max_iter | 2 |
noise_variance_init | 1 |
norm | 3 |
norm_y_weights | 1 |
normalize | 24 |
nu | 6 |
nugget | 1 |
oob_score | 4 |
optimizer | 1 |
outlier_label | 1 |
p | 7 |
param | 1 |
params | 7 |
patch_size | 1 |
path_method | 1 |
penalty | 8 |
percentile | 1 |
pos_label | 1 |
positive | 2 |
power_t | 2 |
pre_dispatch | 2 |
precompute | 10 |
precompute_distances | 1 |
precompute_gram | 1 |
precomputed | 1 |
preference | 1 |
preprocessor | 2 |
priors | 2 |
probability | 9 |
radius | 3 |
random_start | 1 |
random_state | 50 |
reg | 1 |
regr | 1 |
rho | 5 |
ridge_alpha | 2 |
sample_fraction | 2 |
sample_interval | 1 |
sample_steps | 1 |
scale | 5 |
scaling | 2 |
score_func | 10 |
seeds | 1 |
selection_threshold | 2 |
separator | 1 |
shrink_threshold | 1 |
shrinkage | 1 |
shrinking | 10 |
shuffle | 7 |
skewedness | 1 |
smooth_idf | 2 |
solver | 2 |
sparse | 1 |
sparseness | 2 |
split_sign | 2 |
startprob | 4 |
startprob_prior | 4 |
stop_words | 2 |
storage_mode | 1 |
store_cv_values | 3 |
store_precision | 7 |
strip_accents | 2 |
sublinear_tf | 2 |
subsample | 2 |
support_fraction | 3 |
theta0 | 1 |
thetaL | 1 |
thetaU | 1 |
thresh | 7 |
threshold | 1 |
threshold_lambda | 1 |
token_pattern | 2 |
tokenizer | 2 |
tol | 46 |
transform_algorithm | 2 |
transform_alpha | 2 |
transform_n_nonzero_coefs | 2 |
transmat | 4 |
transmat_prior | 4 |
use_idf | 2 |
verbose | 50 |
vocabulary | 2 |
w_init | 1 |
warm_start | 9 |
warn_on_equidistant | 3 |
weights | 4 |
whiten | 4 |
with_mean | 2 |
with_std | 2 |
y_max | 1 |
y_min | 1 |
Which parameter is used in which class and further info:
- C is used in the following classes
- sklearn.linear_model.logistic
- sklearn.linear_model.passive_aggressive
- sklearn.linear_model.randomized_l1
- sklearn.svm.base
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- U_init is used in the following classes
- sklearn.decomposition.sparse_pca
- V_init is used in the following classes
- sklearn.decomposition.sparse_pca
- affinity is used in the following classes
- sklearn.cluster.affinity_propagation_
- sklearn.cluster.spectral
- algorithm is used in the following classes
- sklearn.decomposition.fastica_
- sklearn.hmm
- sklearn.neighbors.classification
- sklearn.neighbors.regression
- sklearn.neighbors.unsupervised
- sklearn.pls
- alpha is used in the following classes
- sklearn.covariance.graph_lasso_
- sklearn.decomposition.dict_learning
- sklearn.decomposition.kernel_pca
- sklearn.decomposition.sparse_pca
- sklearn.ensemble.gradient_boosting
- sklearn.feature_selection.univariate_selection
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.least_angle
- sklearn.linear_model.perceptron
- sklearn.linear_model.randomized_l1
- sklearn.linear_model.ridge
- sklearn.linear_model.stochastic_gradient
- sklearn.mixture.dpgmm
- sklearn.naive_bayes
- sklearn.semi_supervised.label_propagation
- alpha_1 is used in the following classes
- sklearn.linear_model.bayes
- alpha_2 is used in the following classes
- sklearn.linear_model.bayes
- alphas is used in the following classes
- sklearn.covariance.graph_lasso_
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.ridge
- analyzer is used in the following classes
- sklearn.feature_extraction.text
- assign_labels is used in the following classes
- sklearn.cluster.spectral
- assume_centered is used in the following classes
- sklearn.covariance.empirical_covariance_
- sklearn.covariance.outlier_detection
- sklearn.covariance.robust_covariance
- sklearn.covariance.shrunk_covariance_
- bandwidth is used in the following classes
- batch_size is used in the following classes
- beta is used in the following classes
- sklearn.decomposition.nmf
- beta0 is used in the following classes
- sklearn.gaussian_process.gaussian_process
- bin_seeding is used in the following classes
- binarize is used in the following classes
- sklearn.naive_bayes
- binary is used in the following classes
- sklearn.feature_extraction.text
- block_size is used in the following classes
- bootstrap is used in the following classes
- sklearn.ensemble.forest
- cache_size is used in the following classes
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- callback is used in the following classes
- sklearn.decomposition.sparse_pca
- charset is used in the following classes
- sklearn.feature_extraction.text
- charset_error is used in the following classes
- sklearn.feature_extraction.text
- chunk_size is used in the following classes
- sklearn.decomposition.dict_learning
- sklearn.decomposition.sparse_pca
- class_weight is used in the following classes
- sklearn.linear_model.logistic
- sklearn.linear_model.passive_aggressive
- sklearn.linear_model.perceptron
- sklearn.linear_model.ridge
- sklearn.linear_model.stochastic_gradient
- sklearn.svm.base
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- cluster_all is used in the following classes
- code_init is used in the following classes
- sklearn.decomposition.dict_learning
- coef0 is used in the following classes
- sklearn.decomposition.kernel_pca
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- compute_full_tree is used in the following classes
- sklearn.cluster.hierarchical
- compute_importances is used in the following classes
- sklearn.ensemble.forest
- sklearn.tree.tree
- compute_labels is used in the following classes
- compute_score is used in the following classes
- sklearn.linear_model.bayes
- connectivity is used in the following classes
- sklearn.cluster.hierarchical
- contamination is used in the following classes
- sklearn.covariance.outlier_detection
- convergence_iter is used in the following classes
- convit is used in the following classes
- copy is used in the following classes
- sklearn.cluster.affinity_propagation_
- sklearn.cluster.hierarchical
- sklearn.decomposition.factor_analysis
- sklearn.decomposition.pca
- sklearn.pls
- sklearn.preprocessing
- copy_Gram is used in the following classes
- sklearn.linear_model.omp
- copy_X is used in the following classes
- sklearn.linear_model.base
- sklearn.linear_model.bayes
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.least_angle
- sklearn.linear_model.omp
- sklearn.linear_model.ridge
- copy_Xy is used in the following classes
- sklearn.linear_model.omp
- copy_x is used in the following classes
- corr is used in the following classes
- sklearn.gaussian_process.gaussian_process
- covariance_type is used in the following classes
- sklearn.hmm
- sklearn.mixture.dpgmm
- sklearn.mixture.gmm
- covars_prior is used in the following classes
- sklearn.hmm
- covars_weight is used in the following classes
- sklearn.hmm
- criterion is used in the following classes
- sklearn.ensemble.forest
- sklearn.linear_model.least_angle
- sklearn.tree.tree
- cv is used in the following classes
- sklearn.covariance.graph_lasso_
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.least_angle
- sklearn.linear_model.ridge
- damping is used in the following classes
- deflation_mode is used in the following classes
- sklearn.pls
- degree is used in the following classes
- sklearn.decomposition.kernel_pca
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- dict_init is used in the following classes
- sklearn.decomposition.dict_learning
- dtype is used in the following classes
- sklearn.feature_extraction.dict_vectorizer
- sklearn.feature_extraction.text
- dual is used in the following classes
- sklearn.linear_model.logistic
- sklearn.svm.base
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- eig_tol is used in the following classes
- sklearn.cluster.spectral
- eigen_solver is used in the following classes
- sklearn.decomposition.kernel_pca
- sklearn.manifold.isomap
- sklearn.manifold.locally_linear
- eps is used in the following classes
- sklearn.cluster.dbscan_
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.least_angle
- sklearn.linear_model.randomized_l1
- sklearn.manifold.mds
- epsilon is used in the following classes
- sklearn.linear_model.passive_aggressive
- sklearn.linear_model.stochastic_gradient
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- eta is used in the following classes
- sklearn.decomposition.nmf
- eta0 is used in the following classes
- sklearn.linear_model.perceptron
- sklearn.linear_model.stochastic_gradient
- feature_range is used in the following classes
- sklearn.preprocessing
- fit_algorithm is used in the following classes
- sklearn.decomposition.dict_learning
- fit_intercept is used in the following classes
- sklearn.linear_model.base
- sklearn.linear_model.bayes
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.least_angle
- sklearn.linear_model.logistic
- sklearn.linear_model.omp
- sklearn.linear_model.passive_aggressive
- sklearn.linear_model.perceptron
- sklearn.linear_model.randomized_l1
- sklearn.linear_model.ridge
- sklearn.linear_model.stochastic_gradient
- sklearn.svm.base
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- fit_inverse_transform is used in the following classes
- sklearn.decomposition.kernel_pca
- fit_path is used in the following classes
- sklearn.linear_model.least_angle
- fit_prior is used in the following classes
- sklearn.naive_bayes
- fun is used in the following classes
- fun_args is used in the following classes
- fun_prime is used in the following classes
- gamma is used in the following classes
- sklearn.cluster.spectral
- sklearn.decomposition.kernel_pca
- sklearn.kernel_approximation
- sklearn.semi_supervised.label_propagation
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- gcv_mode is used in the following classes
- sklearn.linear_model.ridge
- gmms is used in the following classes
- sklearn.hmm
- hessian_tol is used in the following classes
- sklearn.manifold.locally_linear
- init is used in the following classes
- sklearn.cluster.k_means_
- sklearn.decomposition.nmf
- sklearn.ensemble.gradient_boosting
- init_params is used in the following classes
- sklearn.hmm
- sklearn.mixture.dpgmm
- sklearn.mixture.gmm
- init_size is used in the following classes
- input is used in the following classes
- sklearn.feature_extraction.text
- intercept_scaling is used in the following classes
- sklearn.linear_model.logistic
- sklearn.svm.base
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- iterated_power is used in the following classes
- sklearn.decomposition.pca
- k is used in the following classes
- sklearn.cluster.k_means_
- sklearn.cluster.spectral
- sklearn.feature_selection.univariate_selection
- kernel is used in the following classes
- sklearn.decomposition.kernel_pca
- sklearn.semi_supervised.label_propagation
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- l1_ratio is used in the following classes
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.stochastic_gradient
- lambda_1 is used in the following classes
- sklearn.linear_model.bayes
- lambda_2 is used in the following classes
- sklearn.linear_model.bayes
- leaf_size is used in the following classes
- sklearn.neighbors.classification
- sklearn.neighbors.regression
- sklearn.neighbors.unsupervised
- learn_rate is used in the following classes
- sklearn.ensemble.gradient_boosting
- learning_rate is used in the following classes
- sklearn.ensemble.gradient_boosting
- sklearn.linear_model.stochastic_gradient
- loss is used in the following classes
- sklearn.ensemble.gradient_boosting
- sklearn.linear_model.passive_aggressive
- sklearn.linear_model.stochastic_gradient
- sklearn.svm.base
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- loss_func is used in the following classes
- sklearn.linear_model.ridge
- lowercase is used in the following classes
- sklearn.feature_extraction.text
- max_depth is used in the following classes
- sklearn.ensemble.forest
- sklearn.ensemble.gradient_boosting
- sklearn.tree.tree
- max_df is used in the following classes
- sklearn.feature_extraction.text
- max_features is used in the following classes
- sklearn.ensemble.forest
- sklearn.ensemble.gradient_boosting
- sklearn.feature_extraction.text
- sklearn.tree.tree
- max_iter is used in the following classes
- sklearn.cluster.affinity_propagation_
- sklearn.cluster.k_means_
- sklearn.covariance.graph_lasso_
- sklearn.decomposition.dict_learning
- sklearn.decomposition.factor_analysis
- sklearn.decomposition.fastica_
- sklearn.decomposition.kernel_pca
- sklearn.decomposition.nmf
- sklearn.decomposition.sparse_pca
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.least_angle
- sklearn.linear_model.randomized_l1
- sklearn.linear_model.ridge
- sklearn.manifold.isomap
- sklearn.manifold.locally_linear
- sklearn.manifold.mds
- sklearn.pls
- sklearn.semi_supervised.label_propagation
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- max_iters is used in the following classes
- sklearn.semi_supervised.label_propagation
- max_n is used in the following classes
- sklearn.feature_extraction.text
- max_n_alphas is used in the following classes
- sklearn.linear_model.least_angle
- max_no_improvement is used in the following classes
- max_patches is used in the following classes
- sklearn.feature_extraction.image
- means_prior is used in the following classes
- sklearn.hmm
- means_weight is used in the following classes
- sklearn.hmm
- memory is used in the following classes
- sklearn.cluster.hierarchical
- sklearn.linear_model.randomized_l1
- method is used in the following classes
- sklearn.decomposition.sparse_pca
- sklearn.manifold.locally_linear
- metric is used in the following classes
- sklearn.cluster.dbscan_
- sklearn.manifold.mds
- sklearn.neighbors.nearest_centroid
- min_covar is used in the following classes
- sklearn.mixture.dpgmm
- sklearn.mixture.gmm
- min_density is used in the following classes
- sklearn.ensemble.forest
- sklearn.tree.tree
- min_df is used in the following classes
- sklearn.feature_extraction.text
- min_n is used in the following classes
- sklearn.feature_extraction.text
- min_samples is used in the following classes
- min_samples_leaf is used in the following classes
- sklearn.ensemble.forest
- sklearn.ensemble.gradient_boosting
- sklearn.tree.tree
- min_samples_split is used in the following classes
- sklearn.ensemble.forest
- sklearn.ensemble.gradient_boosting
- sklearn.tree.tree
- mode is used in the following classes
- sklearn.cluster.spectral
- sklearn.covariance.graph_lasso_
- sklearn.feature_selection.univariate_selection
- sklearn.pls
- modified_tol is used in the following classes
- sklearn.manifold.locally_linear
- multi_class is used in the following classes
- sklearn.svm.base
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- n_alphas is used in the following classes
- sklearn.linear_model.coordinate_descent
- n_atoms is used in the following classes
- sklearn.decomposition.dict_learning
- n_clusters is used in the following classes
- sklearn.cluster.hierarchical
- sklearn.cluster.k_means_
- sklearn.cluster.spectral
- n_components is used in the following classes
- sklearn.cluster.hierarchical
- sklearn.decomposition.dict_learning
- sklearn.decomposition.factor_analysis
- sklearn.decomposition.fastica_
- sklearn.decomposition.kernel_pca
- sklearn.decomposition.nmf
- sklearn.decomposition.pca
- sklearn.decomposition.sparse_pca
- sklearn.hmm
- sklearn.kernel_approximation
- sklearn.lda
- sklearn.manifold.isomap
- sklearn.manifold.locally_linear
- sklearn.manifold.mds
- sklearn.mixture.dpgmm
- sklearn.mixture.gmm
- sklearn.pls
- n_estimators is used in the following classes
- sklearn.ensemble.forest
- sklearn.ensemble.gradient_boosting
- n_init is used in the following classes
- sklearn.cluster.k_means_
- sklearn.cluster.spectral
- sklearn.manifold.mds
- sklearn.mixture.gmm
- n_iter is used in the following classes
- sklearn.decomposition.dict_learning
- sklearn.decomposition.sparse_pca
- sklearn.hmm
- sklearn.linear_model.bayes
- sklearn.linear_model.passive_aggressive
- sklearn.linear_model.perceptron
- sklearn.linear_model.stochastic_gradient
- sklearn.mixture.dpgmm
- sklearn.mixture.gmm
- n_jobs is used in the following classes
- sklearn.cluster.k_means_
- sklearn.covariance.graph_lasso_
- sklearn.decomposition.dict_learning
- sklearn.decomposition.sparse_pca
- sklearn.ensemble.forest
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.least_angle
- sklearn.linear_model.passive_aggressive
- sklearn.linear_model.perceptron
- sklearn.linear_model.randomized_l1
- sklearn.linear_model.stochastic_gradient
- sklearn.manifold.mds
- n_mix is used in the following classes
- sklearn.hmm
- n_neighbors is used in the following classes
- sklearn.cluster.spectral
- sklearn.manifold.isomap
- sklearn.manifold.locally_linear
- sklearn.neighbors.classification
- sklearn.neighbors.regression
- sklearn.neighbors.unsupervised
- sklearn.semi_supervised.label_propagation
- n_nonzero_coefs is used in the following classes
- sklearn.linear_model.least_angle
- sklearn.linear_model.omp
- n_refinements is used in the following classes
- n_resampling is used in the following classes
- sklearn.linear_model.randomized_l1
- neg_label is used in the following classes
- sklearn.preprocessing
- neighbors_algorithm is used in the following classes
- sklearn.manifold.isomap
- sklearn.manifold.locally_linear
- ngram_range is used in the following classes
- sklearn.feature_extraction.text
- nls_max_iter is used in the following classes
- sklearn.decomposition.nmf
- noise_variance_init is used in the following classes
- sklearn.decomposition.factor_analysis
- norm is used in the following classes
- sklearn.feature_extraction.text
- sklearn.preprocessing
- norm_y_weights is used in the following classes
- sklearn.pls
- normalize is used in the following classes
- sklearn.gaussian_process.gaussian_process
- sklearn.linear_model.base
- sklearn.linear_model.bayes
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.least_angle
- sklearn.linear_model.omp
- sklearn.linear_model.randomized_l1
- sklearn.linear_model.ridge
- nu is used in the following classes
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- nugget is used in the following classes
- sklearn.gaussian_process.gaussian_process
- oob_score is used in the following classes
- sklearn.ensemble.forest
- optimizer is used in the following classes
- sklearn.gaussian_process.gaussian_process
- outlier_label is used in the following classes
- sklearn.neighbors.classification
- p is used in the following classes
- sklearn.cluster.affinity_propagation_
- sklearn.linear_model.stochastic_gradient
- sklearn.neighbors.classification
- sklearn.neighbors.regression
- sklearn.neighbors.unsupervised
- param is used in the following classes
- sklearn.feature_selection.univariate_selection
- params is used in the following classes
- sklearn.hmm
- sklearn.mixture.dpgmm
- sklearn.mixture.gmm
- patch_size is used in the following classes
- sklearn.feature_extraction.image
- path_method is used in the following classes
- sklearn.manifold.isomap
- penalty is used in the following classes
- sklearn.linear_model.logistic
- sklearn.linear_model.perceptron
- sklearn.linear_model.stochastic_gradient
- sklearn.svm.base
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- percentile is used in the following classes
- sklearn.feature_selection.univariate_selection
- pos_label is used in the following classes
- sklearn.preprocessing
- positive is used in the following classes
- sklearn.linear_model.coordinate_descent
- power_t is used in the following classes
- sklearn.linear_model.stochastic_gradient
- pre_dispatch is used in the following classes
- sklearn.linear_model.randomized_l1
- precompute is used in the following classes
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.least_angle
- sklearn.linear_model.randomized_l1
- precompute_distances is used in the following classes
- precompute_gram is used in the following classes
- sklearn.linear_model.omp
- precomputed is used in the following classes
- sklearn.cluster.spectral
- preference is used in the following classes
- preprocessor is used in the following classes
- sklearn.feature_extraction.text
- priors is used in the following classes
- sklearn.lda
- sklearn.qda
- probability is used in the following classes
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- radius is used in the following classes
- sklearn.neighbors.classification
- sklearn.neighbors.regression
- sklearn.neighbors.unsupervised
- random_start is used in the following classes
- sklearn.gaussian_process.gaussian_process
- random_state is used in the following classes
- sklearn.cluster.dbscan_
- sklearn.cluster.k_means_
- sklearn.cluster.spectral
- sklearn.covariance.outlier_detection
- sklearn.covariance.robust_covariance
- sklearn.decomposition.dict_learning
- sklearn.decomposition.fastica_
- sklearn.decomposition.nmf
- sklearn.decomposition.pca
- sklearn.decomposition.sparse_pca
- sklearn.ensemble.forest
- sklearn.ensemble.gradient_boosting
- sklearn.feature_extraction.image
- sklearn.gaussian_process.gaussian_process
- sklearn.hmm
- sklearn.kernel_approximation
- sklearn.linear_model.logistic
- sklearn.linear_model.passive_aggressive
- sklearn.linear_model.perceptron
- sklearn.linear_model.randomized_l1
- sklearn.linear_model.stochastic_gradient
- sklearn.manifold.locally_linear
- sklearn.manifold.mds
- sklearn.mixture.dpgmm
- sklearn.mixture.gmm
- sklearn.svm.base
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- sklearn.tree.tree
- reg is used in the following classes
- sklearn.manifold.locally_linear
- regr is used in the following classes
- sklearn.gaussian_process.gaussian_process
- rho is used in the following classes
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.stochastic_gradient
- ridge_alpha is used in the following classes
- sklearn.decomposition.sparse_pca
- sample_fraction is used in the following classes
- sklearn.linear_model.randomized_l1
- sample_interval is used in the following classes
- sklearn.kernel_approximation
- sample_steps is used in the following classes
- sklearn.kernel_approximation
- scale is used in the following classes
- sklearn.pls
- scaling is used in the following classes
- sklearn.linear_model.randomized_l1
- score_func is used in the following classes
- sklearn.feature_selection.univariate_selection
- sklearn.linear_model.ridge
- seeds is used in the following classes
- selection_threshold is used in the following classes
- sklearn.linear_model.randomized_l1
- separator is used in the following classes
- sklearn.feature_extraction.dict_vectorizer
- shrink_threshold is used in the following classes
- sklearn.neighbors.nearest_centroid
- shrinkage is used in the following classes
- shrinking is used in the following classes
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- shuffle is used in the following classes
- sklearn.decomposition.dict_learning
- sklearn.decomposition.sparse_pca
- sklearn.linear_model.passive_aggressive
- sklearn.linear_model.perceptron
- sklearn.linear_model.stochastic_gradient
- skewedness is used in the following classes
- sklearn.kernel_approximation
- smooth_idf is used in the following classes
- sklearn.feature_extraction.text
- solver is used in the following classes
- sklearn.linear_model.ridge
- sparse is used in the following classes
- sklearn.feature_extraction.dict_vectorizer
- sparseness is used in the following classes
- sklearn.decomposition.nmf
- split_sign is used in the following classes
- sklearn.decomposition.dict_learning
- startprob is used in the following classes
- sklearn.hmm
- startprob_prior is used in the following classes
- sklearn.hmm
- stop_words is used in the following classes
- sklearn.feature_extraction.text
- storage_mode is used in the following classes
- sklearn.gaussian_process.gaussian_process
- store_cv_values is used in the following classes
- sklearn.linear_model.ridge
- store_precision is used in the following classes
- sklearn.covariance.empirical_covariance_
- sklearn.covariance.outlier_detection
- sklearn.covariance.robust_covariance
- sklearn.covariance.shrunk_covariance_
- strip_accents is used in the following classes
- sklearn.feature_extraction.text
- sublinear_tf is used in the following classes
- sklearn.feature_extraction.text
- subsample is used in the following classes
- sklearn.ensemble.gradient_boosting
- support_fraction is used in the following classes
- sklearn.covariance.outlier_detection
- sklearn.covariance.robust_covariance
- theta0 is used in the following classes
- sklearn.gaussian_process.gaussian_process
- thetaL is used in the following classes
- sklearn.gaussian_process.gaussian_process
- thetaU is used in the following classes
- sklearn.gaussian_process.gaussian_process
- thresh is used in the following classes
- sklearn.hmm
- sklearn.mixture.dpgmm
- sklearn.mixture.gmm
- threshold is used in the following classes
- sklearn.preprocessing
- threshold_lambda is used in the following classes
- sklearn.linear_model.bayes
- token_pattern is used in the following classes
- sklearn.feature_extraction.text
- tokenizer is used in the following classes
- sklearn.feature_extraction.text
- tol is used in the following classes
- sklearn.cluster.k_means_
- sklearn.covariance.graph_lasso_
- sklearn.decomposition.dict_learning
- sklearn.decomposition.factor_analysis
- sklearn.decomposition.fastica_
- sklearn.decomposition.kernel_pca
- sklearn.decomposition.nmf
- sklearn.decomposition.sparse_pca
- sklearn.linear_model.bayes
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.logistic
- sklearn.linear_model.omp
- sklearn.linear_model.randomized_l1
- sklearn.linear_model.ridge
- sklearn.manifold.isomap
- sklearn.manifold.locally_linear
- sklearn.pls
- sklearn.semi_supervised.label_propagation
- sklearn.svm.base
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- transform_algorithm is used in the following classes
- sklearn.decomposition.dict_learning
- transform_alpha is used in the following classes
- sklearn.decomposition.dict_learning
- transform_n_nonzero_coefs is used in the following classes
- sklearn.decomposition.dict_learning
- transmat is used in the following classes
- sklearn.hmm
- transmat_prior is used in the following classes
- sklearn.hmm
- use_idf is used in the following classes
- sklearn.feature_extraction.text
- verbose is used in the following classes
- sklearn.cluster.affinity_propagation_
- sklearn.cluster.k_means_
- sklearn.covariance.graph_lasso_
- sklearn.decomposition.dict_learning
- sklearn.decomposition.factor_analysis
- sklearn.decomposition.sparse_pca
- sklearn.ensemble.forest
- sklearn.ensemble.gradient_boosting
- sklearn.gaussian_process.gaussian_process
- sklearn.linear_model.bayes
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.least_angle
- sklearn.linear_model.passive_aggressive
- sklearn.linear_model.perceptron
- sklearn.linear_model.randomized_l1
- sklearn.linear_model.stochastic_gradient
- sklearn.manifold.mds
- sklearn.mixture.dpgmm
- sklearn.svm.base
- sklearn.svm.classes
- sklearn.svm.sparse.classes
- vocabulary is used in the following classes
- sklearn.feature_extraction.text
- w_init is used in the following classes
- warm_start is used in the following classes
- sklearn.linear_model.coordinate_descent
- sklearn.linear_model.passive_aggressive
- sklearn.linear_model.perceptron
- sklearn.linear_model.stochastic_gradient
- warn_on_equidistant is used in the following classes
- sklearn.neighbors.classification
- sklearn.neighbors.regression
- sklearn.neighbors.unsupervised
- weights is used in the following classes
- sklearn.neighbors.classification
- sklearn.neighbors.regression
- whiten is used in the following classes
- sklearn.decomposition.fastica_
- sklearn.decomposition.pca
- with_mean is used in the following classes
- sklearn.preprocessing
- with_std is used in the following classes
- sklearn.preprocessing
- y_max is used in the following classes
- y_min is used in the following classes
All parameters and the ammount of times they are used
- K_fit_all_ is used in the following classes
- KernelCenterer
- K_fit_rows_ is used in the following classes
- KernelCenterer
- X_ is used in the following classes
- IsotonicRegression
- LabelPropagation
- LabelSpreading
- X_fit_ is used in the following classes
- KernelPCA
- _intercept_ is used in the following classes
- NuSVC
- NuSVR
- SVC
- SVR
- active_ is used in the following classes
- Lars
- LarsCV
- LassoLars
- LassoLarsCV
- affinity_matrix_ is used in the following classes
- AffinityPropagation
- SpectralClustering
- all_scores_ is used in the following classes
- RandomizedLasso
- RandomizedLogisticRegression
- alpha_ is used in the following classes
- ARDRegression
- BayesianRidge
- ElasticNetCV
- LarsCV
- LassoCV
- LassoLarsCV
- LassoLarsIC
- RandomizedLasso
- RidgeCV
- RidgeClassifierCV
- alphas_ is used in the following classes
- ElasticNetCV
- KernelPCA
- Lars
- LarsCV
- LassoCV
- LassoLars
- LassoLarsCV
- LassoLarsIC
- best_estimator_ is used in the following classes
- GridSearchCV
- best_params_ is used in the following classes
- GridSearchCV
- best_score_ is used in the following classes
- GridSearchCV
- centroids_ is used in the following classes
- NearestCentroid
- children_ is used in the following classes
- Ward
- WardAgglomeration
- class_log_prior_ is used in the following classes
- BernoulliNB
- MultinomialNB
- class_prior_ is used in the following classes
- GaussianNB
- class_weight_ is used in the following classes
- LinearSVC
- LogisticRegression
- NuSVC
- NuSVR
- SVC
- SVR
- class_weight_label_ is used in the following classes
- LinearSVC
- LogisticRegression
- NuSVC
- NuSVR
- SVC
- SVR
- classes_ is used in the following classes
- BernoulliNB
- DecisionTreeClassifier
- DecisionTreeRegressor
- ExtraTreeClassifier
- ExtraTreeRegressor
- ExtraTreesClassifier
- ExtraTreesRegressor
- GaussianNB
- GradientBoostingClassifier
- KNeighborsClassifier
- LDA
- LabelBinarizer
- LabelEncoder
- LabelPropagation
- LabelSpreading
- LinearSVC
- LogisticRegression
- MultinomialNB
- NearestCentroid
- OneVsOneClassifier
- OneVsRestClassifier
- OutputCodeClassifier
- PassiveAggressiveClassifier
- Perceptron
- QDA
- RadiusNeighborsClassifier
- RandomForestClassifier
- RandomForestRegressor
- RidgeClassifier
- RidgeClassifierCV
- SGDClassifier
- cluster_centers_ is used in the following classes
- KMeans
- MeanShift
- MiniBatchKMeans
- cluster_centers_indices_ is used in the following classes
- AffinityPropagation
- code_book_ is used in the following classes
- OutputCodeClassifier
- coef_ is used in the following classes
- ARDRegression
- BayesianRidge
- BernoulliNB
- ElasticNet
- ElasticNetCV
- LDA
- Lars
- LarsCV
- Lasso
- LassoCV
- LassoLars
- LassoLarsCV
- LassoLarsIC
- LinearRegression
- LinearSVC
- LogisticRegression
- MultiTaskElasticNet
- MultiTaskLasso
- MultinomialNB
- NuSVC
- NuSVR
- OneVsRestClassifier
- OrthogonalMatchingPursuit
- PassiveAggressiveClassifier
- PassiveAggressiveRegressor
- Perceptron
- Ridge
- RidgeCV
- RidgeClassifier
- RidgeClassifierCV
- SGDClassifier
- SGDRegressor
- SVC
- SVR
- coef_path_ is used in the following classes
- ElasticNetCV
- Lars
- LarsCV
- LassoCV
- LassoLars
- LassoLarsCV
- comp_sparseness_ is used in the following classes
- NMF
- ProjectedGradientNMF
- components_ is used in the following classes
- DBSCAN
- DictionaryLearning
- FactorAnalysis
- FastICA
- MiniBatchDictionaryLearning
- MiniBatchSparsePCA
- NMF
- PCA
- ProbabilisticPCA
- ProjectedGradientNMF
- RandomizedPCA
- SparseCoder
- SparsePCA
- core_sample_indices_ is used in the following classes
- DBSCAN
- counts_ is used in the following classes
- MiniBatchKMeans
- covariance_ is used in the following classes
- EllipticEnvelope
- ProbabilisticPCA
- criterion_ is used in the following classes
- LassoLarsIC
- cv_alphas_ is used in the following classes
- LarsCV
- LassoLarsCV
- cv_mse_path_ is used in the following classes
- LarsCV
- LassoLarsCV
- cv_scores_ is used in the following classes
- RFECV
- data_sparseness_ is used in the following classes
- NMF
- ProjectedGradientNMF
- dist_ is used in the following classes
- EllipticEnvelope
- dist_matrix_ is used in the following classes
- Isomap
- dual_coef_ is used in the following classes
- NuSVC
- NuSVR
- SVC
- SVR
- dual_gap_ is used in the following classes
- ElasticNet
- Lasso
- MultiTaskElasticNet
- MultiTaskLasso
- embedding_ is used in the following classes
- Isomap
- LocallyLinearEmbedding
- eps_ is used in the following classes
- ElasticNet
- Lasso
- MultiTaskElasticNet
- MultiTaskLasso
- error_ is used in the following classes
- DictionaryLearning
- SparsePCA
- estimator_ is used in the following classes
- RFE
- RFECV
- estimators_ is used in the following classes
- ExtraTreesClassifier
- ExtraTreesRegressor
- GradientBoostingClassifier
- GradientBoostingRegressor
- OneVsOneClassifier
- OneVsRestClassifier
- OutputCodeClassifier
- RandomForestClassifier
- RandomForestRegressor
- explained_variance_ is used in the following classes
- PCA
- ProbabilisticPCA
- RandomizedPCA
- explained_variance_ratio_ is used in the following classes
- PCA
- ProbabilisticPCA
- RandomizedPCA
- feature_importances_ is used in the following classes
- DecisionTreeClassifier
- DecisionTreeRegressor
- ExtraTreeClassifier
- ExtraTreeRegressor
- ExtraTreesClassifier
- ExtraTreesRegressor
- GradientBoostingClassifier
- GradientBoostingRegressor
- RandomForestClassifier
- RandomForestRegressor
- feature_log_prob_ is used in the following classes
- BernoulliNB
- MultinomialNB
- feature_names_ is used in the following classes
- DictVectorizer
- find_split_ is used in the following classes
- DecisionTreeClassifier
- DecisionTreeRegressor
- ExtraTreeClassifier
- ExtraTreeRegressor
- fit_status_ is used in the following classes
- NuSVC
- NuSVR
- SVC
- SVR
- grid_scores_ is used in the following classes
- GridSearchCV
- idf_ is used in the following classes
- TfidfTransformer
- inertia_ is used in the following classes
- KMeans
- MiniBatchKMeans
- init_size_ is used in the following classes
- MiniBatchKMeans
- intercept_ is used in the following classes
- ARDRegression
- BayesianRidge
- BernoulliNB
- ElasticNet
- ElasticNetCV
- LDA
- Lars
- LarsCV
- Lasso
- LassoCV
- LassoLars
- LassoLarsCV
- LassoLarsIC
- LinearRegression
- LinearSVC
- LogisticRegression
- MultiTaskElasticNet
- MultiTaskLasso
- MultinomialNB
- NuSVC
- NuSVR
- OneVsRestClassifier
- OrthogonalMatchingPursuit
- PassiveAggressiveClassifier
- PassiveAggressiveRegressor
- Perceptron
- Ridge
- RidgeCV
- RidgeClassifier
- RidgeClassifierCV
- SGDClassifier
- SGDRegressor
- SVC
- SVR
- kernel_pca_ is used in the following classes
- Isomap
- l1_ratio_ is used in the following classes
- ElasticNetCV
- LassoCV
- label_ is used in the following classes
- NuSVC
- NuSVR
- SVC
- SVR
- label_binarizer_ is used in the following classes
- OneVsRestClassifier
- label_distributions_ is used in the following classes
- LabelPropagation
- LabelSpreading
- labels_ is used in the following classes
- AffinityPropagation
- DBSCAN
- KMeans
- MeanShift
- MiniBatchKMeans
- SpectralClustering
- Ward
- WardAgglomeration
- lambda_ is used in the following classes
- BayesianRidge
- lambdas_ is used in the following classes
- KernelPCA
- location_ is used in the following classes
- EllipticEnvelope
- loglike_ is used in the following classes
- FactorAnalysis
- loss_ is used in the following classes
- GradientBoostingClassifier
- GradientBoostingRegressor
- mean_ is used in the following classes
- FactorAnalysis
- PCA
- ProbabilisticPCA
- RandomizedPCA
- Scaler
- StandardScaler
- means_ is used in the following classes
- LDA
- QDA
- min_ is used in the following classes
- MinMaxScaler
- mse_path_ is used in the following classes
- ElasticNetCV
- LassoCV
- multilabel_ is used in the following classes
- OneVsRestClassifier
- n_classes_ is used in the following classes
- DecisionTreeClassifier
- DecisionTreeRegressor
- ExtraTreeClassifier
- ExtraTreeRegressor
- ExtraTreesClassifier
- ExtraTreesRegressor
- GradientBoostingClassifier
- GradientBoostingRegressor
- RandomForestClassifier
- RandomForestRegressor
- n_features_ is used in the following classes
- DecisionTreeClassifier
- DecisionTreeRegressor
- ExtraTreeClassifier
- ExtraTreeRegressor
- ExtraTreesClassifier
- ExtraTreesRegressor
- RFE
- RFECV
- RandomForestClassifier
- RandomForestRegressor
- n_leaves_ is used in the following classes
- Ward
- WardAgglomeration
- n_outputs_ is used in the following classes
- DecisionTreeClassifier
- DecisionTreeRegressor
- ExtraTreeClassifier
- ExtraTreeRegressor
- ExtraTreesClassifier
- ExtraTreesRegressor
- RandomForestClassifier
- RandomForestRegressor
- n_support_ is used in the following classes
- NuSVC
- NuSVR
- SVC
- SVR
- nbrs_ is used in the following classes
- Isomap
- LocallyLinearEmbedding
- noise_variance_ is used in the following classes
- FactorAnalysis
- oob_score_ is used in the following classes
- GradientBoostingClassifier
- GradientBoostingRegressor
- precision_ is used in the following classes
- EllipticEnvelope
- priors_ is used in the following classes
- LDA
- QDA
- probA_ is used in the following classes
- NuSVC
- NuSVR
- SVC
- SVR
- probB_ is used in the following classes
- NuSVC
- NuSVR
- SVC
- SVR
- pvalues_ is used in the following classes
- GenericUnivariateSelect
- SelectFdr
- SelectFpr
- SelectFwe
- SelectKBest
- SelectPercentile
- random_offset_ is used in the following classes
- RBFSampler
- SkewedChi2Sampler
- random_weights_ is used in the following classes
- RBFSampler
- SkewedChi2Sampler
- rank_ is used in the following classes
- LinearRegression
- ranking_ is used in the following classes
- RFE
- RFECV
- raw_coef_ is used in the following classes
- LinearSVC
- LogisticRegression
- raw_covariance_ is used in the following classes
- EllipticEnvelope
- raw_location_ is used in the following classes
- EllipticEnvelope
- raw_support_ is used in the following classes
- EllipticEnvelope
- reconstruction_err_ is used in the following classes
- NMF
- ProjectedGradientNMF
- reconstruction_error_ is used in the following classes
- LocallyLinearEmbedding
- reduced_likelihood_function_value_ is used in the following classes
- GaussianProcess
- residues_ is used in the following classes
- LinearRegression
- rho_ is used in the following classes
- ElasticNetCV
- LassoCV
- scale_ is used in the following classes
- MinMaxScaler
- scores_ is used in the following classes
- ARDRegression
- BayesianRidge
- GenericUnivariateSelect
- RandomizedLasso
- RandomizedLogisticRegression
- SelectFdr
- SelectFpr
- SelectFwe
- SelectKBest
- SelectPercentile
- shape_fit_ is used in the following classes
- NuSVC
- NuSVR
- SVC
- SVR
- sigma_ is used in the following classes
- ARDRegression
- GaussianNB
- singular_ is used in the following classes
- LinearRegression
- sources_ is used in the following classes
- FastICA
- sparse_coef_ is used in the following classes
- ElasticNet
- Lasso
- MultiTaskElasticNet
- MultiTaskLasso
- std_ is used in the following classes
- Scaler
- StandardScaler
- support_ is used in the following classes
- EllipticEnvelope
- NuSVC
- NuSVR
- RFE
- RFECV
- SVC
- SVR
- support_vectors_ is used in the following classes
- NuSVC
- NuSVR
- SVC
- SVR
- t_ is used in the following classes
- PassiveAggressiveClassifier
- PassiveAggressiveRegressor
- Perceptron
- SGDClassifier
- SGDRegressor
- theta_ is used in the following classes
- GaussianNB
- GaussianProcess
- train_score_ is used in the following classes
- GradientBoostingClassifier
- GradientBoostingRegressor
- training_data_ is used in the following classes
- Isomap
- transduction_ is used in the following classes
- LabelPropagation
- LabelSpreading
- tree_ is used in the following classes
- DecisionTreeClassifier
- DecisionTreeRegressor
- ExtraTreeClassifier
- ExtraTreeRegressor
- unmixing_matrix_ is used in the following classes
- FastICA
- vocabulary_ is used in the following classes
- DictVectorizer
- x_loadings_ is used in the following classes
- CCA
- PLSCanonical
- PLSRegression
- _PLS
- x_mean_ is used in the following classes
- CCA
- PLSCanonical
- PLSRegression
- PLSSVD
- _PLS
- x_rotations_ is used in the following classes
- CCA
- PLSCanonical
- PLSRegression
- _PLS
- x_scores_ is used in the following classes
- CCA
- PLSCanonical
- PLSRegression
- PLSSVD
- _PLS
- x_std_ is used in the following classes
- CCA
- PLSCanonical
- PLSRegression
- PLSSVD
- _PLS
- x_weights_ is used in the following classes
- CCA
- PLSCanonical
- PLSRegression
- PLSSVD
- _PLS
- xbar_ is used in the following classes
- LDA
- y_ is used in the following classes
- IsotonicRegression
- y_loadings_ is used in the following classes
- CCA
- PLSCanonical
- PLSRegression
- _PLS
- y_mean_ is used in the following classes
- CCA
- PLSCanonical
- PLSRegression
- PLSSVD
- _PLS
- y_rotations_ is used in the following classes
- CCA
- PLSCanonical
- PLSRegression
- _PLS
- y_scores_ is used in the following classes
- CCA
- PLSCanonical
- PLSRegression
- PLSSVD
- _PLS
- y_std_ is used in the following classes
- CCA
- PLSCanonical
- PLSRegression
- PLSSVD
- _PLS
- y_weights_ is used in the following classes
- CCA
- PLSCanonical
- PLSRegression
- PLSSVD
- _PLS
Lists of parameter/attribute frequency and where they are used for sklearn. The script that generates this is attached at the bottom -
NOTE: the script is still very messy and dogmatic due to debugging and borrowing lots a data create code from tests. I'm still cleaning it up, but I thought I'd put the script up for now so that if anyone wanted to see where the tables come from. Obviously there a good chance that there is maybe a mistake somewhere or that I left an estimator that isn't in the mixins - so please let me know. But hopefully this can be useful regarding making decisions about the API. All feedback welcome - just know the script is still a mess and is not intended to be super fast either. It's just to get everything. J