Skip to content

Instantly share code, notes, and snippets.

@jaquesgrobler
Created October 29, 2012 12:43
Show Gist options
  • Save jaquesgrobler/3973308 to your computer and use it in GitHub Desktop.
Save jaquesgrobler/3973308 to your computer and use it in GitHub Desktop.
Lists of parameter/attribute frequency and where they are used for sklearn. The script that generates this is attached at the bottom - NOTE: the script is still very messy and dogmatic due to debugging and borrowing lots a data create code from tests. I'm
from __future__ import print_function
import warnings
import numpy as np
import sklearn
from sklearn.utils.testing import all_estimators
from sklearn.utils.testing import assert_greater
from sklearn.base import clone, ClassifierMixin, RegressorMixin, \
TransformerMixin, ClusterMixin
from sklearn.utils import shuffle
from sklearn.preprocessing import StandardScaler, Scaler
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest
#from sklearn.cross_validation import train_test_split
from sklearn.datasets import load_iris, load_boston, make_blobs, load_digits
from sklearn.datasets import make_multilabel_classification
from sklearn.metrics import zero_one_score, adjusted_rand_score
from sklearn.lda import LDA
from sklearn.svm.base import BaseLibSVM
from sklearn.svm import LinearSVC
from sklearn.feature_selection.rfe import RFE, RFECV
from sklearn.utils import check_random_state
# import "special" estimators
from sklearn.grid_search import GridSearchCV
from sklearn.decomposition import SparseCoder
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.pls import _PLS, PLSCanonical, PLSRegression, CCA, PLSSVD
from sklearn.ensemble import BaseEnsemble
from sklearn.multiclass import OneVsOneClassifier, OneVsRestClassifier,\
OutputCodeClassifier
from sklearn.feature_selection import RFE, RFECV, SelectKBest
from sklearn.naive_bayes import MultinomialNB, BernoulliNB
from sklearn.covariance import EllipticEnvelope, EllipticEnvelop
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfTransformer, \
CountVectorizer
from sklearn.kernel_approximation import AdditiveChi2Sampler
from sklearn.preprocessing import LabelBinarizer, LabelEncoder, Binarizer, \
Normalizer
from sklearn.cluster import WardAgglomeration, AffinityPropagation, \
SpectralClustering
from sklearn.linear_model import IsotonicRegression, LogisticRegression
dont_test = [Pipeline, FeatureUnion, GridSearchCV, SparseCoder,
EllipticEnvelope, EllipticEnvelop, DictVectorizer, LabelBinarizer,
LabelEncoder, TfidfTransformer, IsotonicRegression]
meta_estimators = [BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier,
OneVsRestClassifier, RFE, RFECV]
# Create the outputfile
f = open('sklearn_param_attrib.rst', 'w')
def param_gather () :
all_objects_p = []
for C in all_estimators():
try:
all_objects_p.append(C[1]())
except:
pass
params = [c.get_params().keys() for c in all_objects_p]
flat = [x for c in params for x in c]
unique_p, indices_p = np.unique(flat, return_inverse=True)
return all_objects_p, unique_p, indices_p
def write_param_table(unique_p, indices_p) :
param_table = np.vstack([unique_p, np.bincount(indices_p)]).T
max_width, _ = [max(len((x)) for x in line) for line in zip(*param_table)]
bar_iter = 1
bar1 = "="
while (bar_iter < max_width):
bar1 += "="
bar_iter += 1
bar1 += " ====="
print (bar1, file=f)
for name, count in param_table :
print ("%s %s" % (name.ljust(max_width), count), file=f)
print (bar1, file=f)
def param_info(all_objects_p, unique_p) :
print ("\nWhich parameter is used in which class and further info: \n", file=f)
for param in unique_p:
est = []
str = param + ' is used in the following classes'
print(str, file=f)
for c in all_objects_p:
if param in c.get_params().keys():
est.append(c.__module__)
for u in np.unique(est):
print (' * ' + u, file=f)
print('\n', file=f)
#def attrib_gather() :
# temp_attribs = []
# trans_attrib_dict = {}
# for i in dir(trans):
# if i[-1] is '_' and i[-2] is not '_':
# temp_attribs.append(i)
# transformers_attribs.append(temp_attribs)
# trans_attrib_dict[Trans] = temp_attribs
# transformers_attrib_dicts.append(trans_attrib_dict)
def attrib_gather_other(attribs, attrib_dicts, est, est_type) :
temp_attribs = []
temp_attrib_dict = {}
for i in dir(est):
if i[-1] is '_' and i[-2] is not '_':
temp_attribs.append(i)
attribs.append(temp_attribs)
temp_attrib_dict[est_type] = temp_attribs
attrib_dicts.append(temp_attrib_dict)
return attribs, attrib_dicts
if __name__ == "__main__":
# Parameters
print("\nGather all parameters\n")
print("\n\nPARAMETERS\n=============\n", file=f)
print("All parameters and the ammount of times they are used\n", file=f)
all_objects_p, unique_p, indices_p = param_gather()
write_param_table(unique_p, indices_p)
param_info(all_objects_p, unique_p)
print("\nParameters written to file\n")
# Attributes
#-----------------------------------------------------------------------------------
estimators = all_estimators()
# Transformers
transformers = [(name, E) for name, E in estimators if issubclass(E,
TransformerMixin)]
# Generate the generic TransformerMixin data
X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]],
random_state=0, n_features=2, cluster_std=0.1)
n_samples, n_features = X.shape
X = StandardScaler().fit_transform(X)
X -= X.min()
transformers_attribs = []
transformers_attrib_dicts = []
for name, Trans in transformers:
if Trans in dont_test or Trans in meta_estimators:
continue
# these don't actually fit the data:
if Trans in [AdditiveChi2Sampler, Binarizer, Normalizer]:
continue
# catch deprecation warnings
with warnings.catch_warnings(record=True):
trans = Trans()
if hasattr(trans, 'compute_importances'):
trans.compute_importances = True
if Trans is SelectKBest:
# SelectKBest has a default of k=10
# which is more feature than we have.
trans.k = 1
if Trans in (_PLS, PLSCanonical, PLSRegression, CCA, PLSSVD):
y_ = np.vstack([y, 2 * y + np.random.randint(2, size=len(y))])
y_ = y_.T
else:
y_ = y
try:
trans.fit(X, y_)
except Exception as e:
print (trans)
print (e)
print ()
succeeded = False
transformers_attribs, transformers_attrib_dicts = attrib_gather_other(transformers_attribs,
transformers_attrib_dicts,
trans, Trans)
# Clustering
clustering = [(name, E) for name, E in estimators if issubclass(E,
ClusterMixin)]
iris = load_iris()
X = iris.data
clustering_attribs = []
clustering_attrib_dicts = []
for name, Alg in clustering:
with warnings.catch_warnings(record=True):
alg = Alg()
if hasattr(alg, "n_clusters"):
alg.set_params(n_clusters=3)
if hasattr(alg, "random_state"):
alg.set_params(random_state=1)
if Alg is AffinityPropagation:
alg.set_params(preference=-100)
alg.fit(X)
clustering_attribs, clustering_attrib_dicts = attrib_gather_other(clustering_attribs,
clustering_attrib_dicts,
alg, Alg)
# Regressors
regressors = [(name, E) for name, E in estimators if issubclass(E,
RegressorMixin)]
boston = load_boston()
X, y = boston.data, boston.target
X, y = shuffle(X, y, random_state=0)
regressor_attribs = []
regressor_attrib_dicts = []
for name, Reg in regressors:
if Reg in dont_test or Reg in meta_estimators:
continue
# catch deprecation warnings
with warnings.catch_warnings(record=True):
reg = Reg()
try:
if Reg in (_PLS, PLSCanonical, PLSRegression, CCA):
y_ = np.vstack([y, 2 * y + np.random.randint(2, size=len(y))])
y_ = y_.T
else:
y_ = y
reg.fit(X, y_)
except Exception as e:
print(reg)
print (e)
print ()
succeeded = False
regressor_attribs, regressor_attrib_dicts = attrib_gather_other(regressor_attribs,
regressor_attrib_dicts,
reg, Reg)
# Classifiers
classifiers = [(name, E) for name, E in estimators if issubclass(E,
ClassifierMixin)]
iris = load_iris()
X, y = iris.data, iris.target
X, y = shuffle(X, y, random_state=7)
classifier_attribs = []
classifier_attrib_dicts = []
for name, Clf in classifiers:
if Clf in dont_test or Clf in meta_estimators:
continue
# catch deprecation warnings
with warnings.catch_warnings(record=True):
clf = Clf()
clf.fit(X, y)
classifier_attribs, classifier_attrib_dicts = attrib_gather_other(classifier_attribs,
classifier_attrib_dicts,
clf, Clf)
# Obtain dont_test and meta_estimators attributes
other_attribs = []
other_attrib_dicts = []
# Pipeline - attribute 'steps' should be 'steps_'
digits = load_digits()
X_digits = digits.data
y_digits = digits.target
logistic = LogisticRegression()
item = Pipeline(steps=[('logistic', logistic)])
item.fit(X_digits, y_digits)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item, Pipeline)
# BaseEnsemble - No attributes/no fit method
# OneVsRestClassifier
X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=True,
random_state=1)
item = OneVsRestClassifier(SVC(kernel='linear'))
item.fit(X, Y)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
OneVsRestClassifier)
# OutputCodeClassifier
X, y = iris.data, iris.target
item = OutputCodeClassifier(LinearSVC())
item.fit(X, y)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
OutputCodeClassifier)
# OneVsOneClassifier
item = OneVsOneClassifier(LinearSVC())
item.fit(X, y)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
OneVsOneClassifier)
# FeatureUnion
pca = PCA(n_components=2)
selection = SelectKBest(k=1)
item = FeatureUnion([("pca", pca), ("univ_select", selection)])
item.fit(X, y)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
FeatureUnion)
# GridSearchCV
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
svr = SVC()
item = GridSearchCV(svr, parameters)
item.fit(iris.data, iris.target)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
GridSearchCV)
# RFE
generator = check_random_state(0)
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
y = iris.target
clf = SVC(kernel="linear")
item = RFE(estimator=clf, n_features_to_select=4, step=0.1)
item.fit(X, y)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
RFE)
#RFECV
item = RFECV(estimator=SVC(kernel="linear"), step=1, cv=3)
item.fit(X, y)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
RFECV)
# SparseCoder
y = np.linspace(0, 4 - 1, 10)
item = SparseCoder(y, transform_algorithm='lasso_lars')
item.fit(y)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
SparseCoder)
# EllipticEnvelope
X1 = load_boston()['data'][:, [8, 10]] # two clusters
item = EllipticEnvelope(support_fraction=1., contamination=0.261)
item.fit(X1)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
EllipticEnvelope)
# DictVectorizer
D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
item = DictVectorizer(sparse=False)
item.fit_transform(D)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
DictVectorizer)
#LabelBinarizer
item = LabelBinarizer()
item.fit([1, 2, 6, 4, 2])
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
LabelBinarizer)
#LabelEncoder
item = LabelEncoder()
item.fit([1, 2, 2, 6])
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
LabelEncoder)
# TfidfTransformer
JUNK_FOOD_DOCS = (
"the pizza pizza beer copyright",
"the pizza burger beer copyright",
)
what_we_like = ["pizza", "beer"]
item = TfidfTransformer()
pipe = Pipeline([
('count', CountVectorizer(vocabulary=what_we_like)),
('tfidf', item)])
pipe.fit_transform(JUNK_FOOD_DOCS)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
TfidfTransformer)
# IsotonicRegression
n = 100
x = np.arange(n)
rs = check_random_state(0)
y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n))
item = IsotonicRegression()
item.fit(x, y)
other_attribs, other_attrib_dicts = attrib_gather_other(other_attribs,
other_attrib_dicts,
item,
IsotonicRegression)
######################
# Process the gathered attributes
print("\n\nATTRIBUTES\n=============\n", file=f)
print("All parameters and the ammount of times they are used\n", file=f)
all_attribs = transformers_attribs + clustering_attribs \
+ regressor_attribs + classifier_attribs \
+ other_attribs
all_attrib_dicts = transformers_attrib_dicts + clustering_attrib_dicts \
+ regressor_attrib_dicts + classifier_attrib_dicts \
+ other_attrib_dicts
flat_attrib = [x for c in all_attribs for x in c]
unique_a, indices_a = np.unique(flat_attrib, return_inverse=True)
attrib_table = np.vstack([unique_a, np.bincount(indices_a)]).T
max_width, _ = [max(len((x)) for x in line) for line in zip(*attrib_table)]
print ("================================== ====", file=f)
for name, count in attrib_table :
print ("%s %s" % (name.ljust(max_width), count), file=f)
print ("================================== ====", file=f)
print('\n', file=f)
for attrib in unique_a:
est = []
str = attrib + ' is used in the following classes'
print(str, file=f)
for e in all_attrib_dicts:
if attrib in e.values()[0]:
est.append(e.keys()[0].__name__)
for u in np.unique(est):
print (' * ' + u, file=f)
print('\n', file=f)
print ("\nCompleted\n----------")
#print '\n\nList of Classes that derive from the BaseEstimator:'
#for c in np.unique(all_objects_p):
# print c.__class__

PARAMETERS

All parameters and the ammount of times they are used

C 14
U_init 1
V_init 1
affinity 2
algorithm 12
alpha 28
alpha_1 2
alpha_2 2
alphas 7
analyzer 2
assign_labels 1
assume_centered 7
bandwidth 1
batch_size 1
beta 2
beta0 1
bin_seeding 1
binarize 1
binary 2
block_size 1
bootstrap 4
cache_size 10
callback 1
charset 2
charset_error 2
chunk_size 2
class_weight 13
cluster_all 1
code_init 1
coef0 11
compute_full_tree 2
compute_importances 8
compute_labels 1
compute_score 2
connectivity 2
contamination 2
convergence_iter 1
convit 1
copy 17
copy_Gram 1
copy_X 18
copy_Xy 1
copy_x 1
corr 1
covariance_type 5
covars_prior 2
covars_weight 1
criterion 9
cv 8
damping 1
deflation_mode 1
degree 11
dict_init 2
dtype 3
dual 5
eig_tol 1
eigen_solver 3
eps 10
epsilon 6
eta 2
eta0 3
feature_range 1
fit_algorithm 2
fit_intercept 33
fit_inverse_transform 1
fit_path 2
fit_prior 2
fun 1
fun_args 1
fun_prime 1
gamma 15
gcv_mode 3
gmms 1
hessian_tol 1
init 6
init_params 7
init_size 1
input 2
intercept_scaling 5
iterated_power 1
k 4
kernel 13
l1_ratio 5
lambda_1 2
lambda_2 2
leaf_size 5
learn_rate 2
learning_rate 4
loss 10
loss_func 4
lowercase 2
max_depth 10
max_df 2
max_features 12
max_iter 44
max_iters 2
max_n 2
max_n_alphas 2
max_no_improvement 1
max_patches 1
means_prior 1
means_weight 1
memory 4
method 3
metric 3
min_covar 3
min_density 8
min_df 2
min_n 2
min_samples 1
min_samples_leaf 10
min_samples_split 10
mode 5
modified_tol 1
multi_class 4
n_alphas 2
n_atoms 2
n_clusters 5
n_components 32
n_estimators 6
n_init 5
n_iter 16
n_jobs 19
n_mix 1
n_neighbors 8
n_nonzero_coefs 2
n_refinements 1
n_resampling 2
neg_label 1
neighbors_algorithm 2
ngram_range 2
nls_max_iter 2
noise_variance_init 1
norm 3
norm_y_weights 1
normalize 24
nu 6
nugget 1
oob_score 4
optimizer 1
outlier_label 1
p 7
param 1
params 7
patch_size 1
path_method 1
penalty 8
percentile 1
pos_label 1
positive 2
power_t 2
pre_dispatch 2
precompute 10
precompute_distances 1
precompute_gram 1
precomputed 1
preference 1
preprocessor 2
priors 2
probability 9
radius 3
random_start 1
random_state 50
reg 1
regr 1
rho 5
ridge_alpha 2
sample_fraction 2
sample_interval 1
sample_steps 1
scale 5
scaling 2
score_func 10
seeds 1
selection_threshold 2
separator 1
shrink_threshold 1
shrinkage 1
shrinking 10
shuffle 7
skewedness 1
smooth_idf 2
solver 2
sparse 1
sparseness 2
split_sign 2
startprob 4
startprob_prior 4
stop_words 2
storage_mode 1
store_cv_values 3
store_precision 7
strip_accents 2
sublinear_tf 2
subsample 2
support_fraction 3
theta0 1
thetaL 1
thetaU 1
thresh 7
threshold 1
threshold_lambda 1
token_pattern 2
tokenizer 2
tol 46
transform_algorithm 2
transform_alpha 2
transform_n_nonzero_coefs 2
transmat 4
transmat_prior 4
use_idf 2
verbose 50
vocabulary 2
w_init 1
warm_start 9
warn_on_equidistant 3
weights 4
whiten 4
with_mean 2
with_std 2
y_max 1
y_min 1

Which parameter is used in which class and further info:

C is used in the following classes
  • sklearn.linear_model.logistic
  • sklearn.linear_model.passive_aggressive
  • sklearn.linear_model.randomized_l1
  • sklearn.svm.base
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
U_init is used in the following classes
  • sklearn.decomposition.sparse_pca
V_init is used in the following classes
  • sklearn.decomposition.sparse_pca
affinity is used in the following classes
algorithm is used in the following classes
alpha is used in the following classes
  • sklearn.covariance.graph_lasso_
  • sklearn.decomposition.dict_learning
  • sklearn.decomposition.kernel_pca
  • sklearn.decomposition.sparse_pca
  • sklearn.ensemble.gradient_boosting
  • sklearn.feature_selection.univariate_selection
  • sklearn.linear_model.coordinate_descent
  • sklearn.linear_model.least_angle
  • sklearn.linear_model.perceptron
  • sklearn.linear_model.randomized_l1
  • sklearn.linear_model.ridge
  • sklearn.linear_model.stochastic_gradient
  • sklearn.mixture.dpgmm
  • sklearn.naive_bayes
  • sklearn.semi_supervised.label_propagation
alpha_1 is used in the following classes
  • sklearn.linear_model.bayes
alpha_2 is used in the following classes
  • sklearn.linear_model.bayes
alphas is used in the following classes
analyzer is used in the following classes
  • sklearn.feature_extraction.text
assign_labels is used in the following classes
  • sklearn.cluster.spectral
assume_centered is used in the following classes
bandwidth is used in the following classes
batch_size is used in the following classes
beta is used in the following classes
  • sklearn.decomposition.nmf
beta0 is used in the following classes
  • sklearn.gaussian_process.gaussian_process
bin_seeding is used in the following classes
binarize is used in the following classes
  • sklearn.naive_bayes
binary is used in the following classes
  • sklearn.feature_extraction.text
block_size is used in the following classes
bootstrap is used in the following classes
  • sklearn.ensemble.forest
cache_size is used in the following classes
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
callback is used in the following classes
  • sklearn.decomposition.sparse_pca
charset is used in the following classes
  • sklearn.feature_extraction.text
charset_error is used in the following classes
  • sklearn.feature_extraction.text
chunk_size is used in the following classes
  • sklearn.decomposition.dict_learning
  • sklearn.decomposition.sparse_pca
class_weight is used in the following classes
  • sklearn.linear_model.logistic
  • sklearn.linear_model.passive_aggressive
  • sklearn.linear_model.perceptron
  • sklearn.linear_model.ridge
  • sklearn.linear_model.stochastic_gradient
  • sklearn.svm.base
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
cluster_all is used in the following classes
code_init is used in the following classes
  • sklearn.decomposition.dict_learning
coef0 is used in the following classes
  • sklearn.decomposition.kernel_pca
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
compute_full_tree is used in the following classes
  • sklearn.cluster.hierarchical
compute_importances is used in the following classes
  • sklearn.ensemble.forest
  • sklearn.tree.tree
compute_labels is used in the following classes
compute_score is used in the following classes
  • sklearn.linear_model.bayes
connectivity is used in the following classes
  • sklearn.cluster.hierarchical
contamination is used in the following classes
  • sklearn.covariance.outlier_detection
convergence_iter is used in the following classes
convit is used in the following classes
copy is used in the following classes
copy_Gram is used in the following classes
  • sklearn.linear_model.omp
copy_X is used in the following classes
  • sklearn.linear_model.base
  • sklearn.linear_model.bayes
  • sklearn.linear_model.coordinate_descent
  • sklearn.linear_model.least_angle
  • sklearn.linear_model.omp
  • sklearn.linear_model.ridge
copy_Xy is used in the following classes
  • sklearn.linear_model.omp
copy_x is used in the following classes
corr is used in the following classes
  • sklearn.gaussian_process.gaussian_process
covariance_type is used in the following classes
  • sklearn.hmm
  • sklearn.mixture.dpgmm
  • sklearn.mixture.gmm
covars_prior is used in the following classes
  • sklearn.hmm
covars_weight is used in the following classes
  • sklearn.hmm
criterion is used in the following classes
  • sklearn.ensemble.forest
  • sklearn.linear_model.least_angle
  • sklearn.tree.tree
cv is used in the following classes
damping is used in the following classes
deflation_mode is used in the following classes
  • sklearn.pls
degree is used in the following classes
  • sklearn.decomposition.kernel_pca
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
dict_init is used in the following classes
  • sklearn.decomposition.dict_learning
dtype is used in the following classes
  • sklearn.feature_extraction.dict_vectorizer
  • sklearn.feature_extraction.text
dual is used in the following classes
  • sklearn.linear_model.logistic
  • sklearn.svm.base
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
eig_tol is used in the following classes
  • sklearn.cluster.spectral
eigen_solver is used in the following classes
  • sklearn.decomposition.kernel_pca
  • sklearn.manifold.isomap
  • sklearn.manifold.locally_linear
eps is used in the following classes
  • sklearn.cluster.dbscan_
  • sklearn.linear_model.coordinate_descent
  • sklearn.linear_model.least_angle
  • sklearn.linear_model.randomized_l1
  • sklearn.manifold.mds
epsilon is used in the following classes
  • sklearn.linear_model.passive_aggressive
  • sklearn.linear_model.stochastic_gradient
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
eta is used in the following classes
  • sklearn.decomposition.nmf
eta0 is used in the following classes
  • sklearn.linear_model.perceptron
  • sklearn.linear_model.stochastic_gradient
feature_range is used in the following classes
  • sklearn.preprocessing
fit_algorithm is used in the following classes
  • sklearn.decomposition.dict_learning
fit_intercept is used in the following classes
  • sklearn.linear_model.base
  • sklearn.linear_model.bayes
  • sklearn.linear_model.coordinate_descent
  • sklearn.linear_model.least_angle
  • sklearn.linear_model.logistic
  • sklearn.linear_model.omp
  • sklearn.linear_model.passive_aggressive
  • sklearn.linear_model.perceptron
  • sklearn.linear_model.randomized_l1
  • sklearn.linear_model.ridge
  • sklearn.linear_model.stochastic_gradient
  • sklearn.svm.base
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
fit_inverse_transform is used in the following classes
  • sklearn.decomposition.kernel_pca
fit_path is used in the following classes
  • sklearn.linear_model.least_angle
fit_prior is used in the following classes
  • sklearn.naive_bayes
fun is used in the following classes
fun_args is used in the following classes
fun_prime is used in the following classes
gamma is used in the following classes
  • sklearn.cluster.spectral
  • sklearn.decomposition.kernel_pca
  • sklearn.kernel_approximation
  • sklearn.semi_supervised.label_propagation
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
gcv_mode is used in the following classes
  • sklearn.linear_model.ridge
gmms is used in the following classes
  • sklearn.hmm
hessian_tol is used in the following classes
  • sklearn.manifold.locally_linear
init is used in the following classes
init_params is used in the following classes
  • sklearn.hmm
  • sklearn.mixture.dpgmm
  • sklearn.mixture.gmm
init_size is used in the following classes
input is used in the following classes
  • sklearn.feature_extraction.text
intercept_scaling is used in the following classes
  • sklearn.linear_model.logistic
  • sklearn.svm.base
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
iterated_power is used in the following classes
  • sklearn.decomposition.pca
k is used in the following classes
kernel is used in the following classes
  • sklearn.decomposition.kernel_pca
  • sklearn.semi_supervised.label_propagation
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
l1_ratio is used in the following classes
  • sklearn.linear_model.coordinate_descent
  • sklearn.linear_model.stochastic_gradient
lambda_1 is used in the following classes
  • sklearn.linear_model.bayes
lambda_2 is used in the following classes
  • sklearn.linear_model.bayes
leaf_size is used in the following classes
  • sklearn.neighbors.classification
  • sklearn.neighbors.regression
  • sklearn.neighbors.unsupervised
learn_rate is used in the following classes
  • sklearn.ensemble.gradient_boosting
learning_rate is used in the following classes
  • sklearn.ensemble.gradient_boosting
  • sklearn.linear_model.stochastic_gradient
loss is used in the following classes
  • sklearn.ensemble.gradient_boosting
  • sklearn.linear_model.passive_aggressive
  • sklearn.linear_model.stochastic_gradient
  • sklearn.svm.base
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
loss_func is used in the following classes
  • sklearn.linear_model.ridge
lowercase is used in the following classes
  • sklearn.feature_extraction.text
max_depth is used in the following classes
  • sklearn.ensemble.forest
  • sklearn.ensemble.gradient_boosting
  • sklearn.tree.tree
max_df is used in the following classes
  • sklearn.feature_extraction.text
max_features is used in the following classes
  • sklearn.ensemble.forest
  • sklearn.ensemble.gradient_boosting
  • sklearn.feature_extraction.text
  • sklearn.tree.tree
max_iter is used in the following classes
max_iters is used in the following classes
  • sklearn.semi_supervised.label_propagation
max_n is used in the following classes
  • sklearn.feature_extraction.text
max_n_alphas is used in the following classes
  • sklearn.linear_model.least_angle
max_no_improvement is used in the following classes
max_patches is used in the following classes
  • sklearn.feature_extraction.image
means_prior is used in the following classes
  • sklearn.hmm
means_weight is used in the following classes
  • sklearn.hmm
memory is used in the following classes
  • sklearn.cluster.hierarchical
  • sklearn.linear_model.randomized_l1
method is used in the following classes
  • sklearn.decomposition.sparse_pca
  • sklearn.manifold.locally_linear
metric is used in the following classes
min_covar is used in the following classes
  • sklearn.mixture.dpgmm
  • sklearn.mixture.gmm
min_density is used in the following classes
  • sklearn.ensemble.forest
  • sklearn.tree.tree
min_df is used in the following classes
  • sklearn.feature_extraction.text
min_n is used in the following classes
  • sklearn.feature_extraction.text
min_samples is used in the following classes
min_samples_leaf is used in the following classes
  • sklearn.ensemble.forest
  • sklearn.ensemble.gradient_boosting
  • sklearn.tree.tree
min_samples_split is used in the following classes
  • sklearn.ensemble.forest
  • sklearn.ensemble.gradient_boosting
  • sklearn.tree.tree
mode is used in the following classes
modified_tol is used in the following classes
  • sklearn.manifold.locally_linear
multi_class is used in the following classes
  • sklearn.svm.base
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
n_alphas is used in the following classes
  • sklearn.linear_model.coordinate_descent
n_atoms is used in the following classes
  • sklearn.decomposition.dict_learning
n_clusters is used in the following classes
n_components is used in the following classes
  • sklearn.cluster.hierarchical
  • sklearn.decomposition.dict_learning
  • sklearn.decomposition.factor_analysis
  • sklearn.decomposition.fastica_
  • sklearn.decomposition.kernel_pca
  • sklearn.decomposition.nmf
  • sklearn.decomposition.pca
  • sklearn.decomposition.sparse_pca
  • sklearn.hmm
  • sklearn.kernel_approximation
  • sklearn.lda
  • sklearn.manifold.isomap
  • sklearn.manifold.locally_linear
  • sklearn.manifold.mds
  • sklearn.mixture.dpgmm
  • sklearn.mixture.gmm
  • sklearn.pls
n_estimators is used in the following classes
  • sklearn.ensemble.forest
  • sklearn.ensemble.gradient_boosting
n_init is used in the following classes
n_iter is used in the following classes
  • sklearn.decomposition.dict_learning
  • sklearn.decomposition.sparse_pca
  • sklearn.hmm
  • sklearn.linear_model.bayes
  • sklearn.linear_model.passive_aggressive
  • sklearn.linear_model.perceptron
  • sklearn.linear_model.stochastic_gradient
  • sklearn.mixture.dpgmm
  • sklearn.mixture.gmm
n_jobs is used in the following classes
  • sklearn.cluster.k_means_
  • sklearn.covariance.graph_lasso_
  • sklearn.decomposition.dict_learning
  • sklearn.decomposition.sparse_pca
  • sklearn.ensemble.forest
  • sklearn.linear_model.coordinate_descent
  • sklearn.linear_model.least_angle
  • sklearn.linear_model.passive_aggressive
  • sklearn.linear_model.perceptron
  • sklearn.linear_model.randomized_l1
  • sklearn.linear_model.stochastic_gradient
  • sklearn.manifold.mds
n_mix is used in the following classes
  • sklearn.hmm
n_neighbors is used in the following classes
  • sklearn.cluster.spectral
  • sklearn.manifold.isomap
  • sklearn.manifold.locally_linear
  • sklearn.neighbors.classification
  • sklearn.neighbors.regression
  • sklearn.neighbors.unsupervised
  • sklearn.semi_supervised.label_propagation
n_nonzero_coefs is used in the following classes
  • sklearn.linear_model.least_angle
  • sklearn.linear_model.omp
n_refinements is used in the following classes
n_resampling is used in the following classes
  • sklearn.linear_model.randomized_l1
neg_label is used in the following classes
  • sklearn.preprocessing
neighbors_algorithm is used in the following classes
  • sklearn.manifold.isomap
  • sklearn.manifold.locally_linear
ngram_range is used in the following classes
  • sklearn.feature_extraction.text
nls_max_iter is used in the following classes
  • sklearn.decomposition.nmf
noise_variance_init is used in the following classes
  • sklearn.decomposition.factor_analysis
norm is used in the following classes
  • sklearn.feature_extraction.text
  • sklearn.preprocessing
norm_y_weights is used in the following classes
  • sklearn.pls
normalize is used in the following classes
  • sklearn.gaussian_process.gaussian_process
  • sklearn.linear_model.base
  • sklearn.linear_model.bayes
  • sklearn.linear_model.coordinate_descent
  • sklearn.linear_model.least_angle
  • sklearn.linear_model.omp
  • sklearn.linear_model.randomized_l1
  • sklearn.linear_model.ridge
nu is used in the following classes
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
nugget is used in the following classes
  • sklearn.gaussian_process.gaussian_process
oob_score is used in the following classes
  • sklearn.ensemble.forest
optimizer is used in the following classes
  • sklearn.gaussian_process.gaussian_process
outlier_label is used in the following classes
  • sklearn.neighbors.classification
p is used in the following classes
param is used in the following classes
  • sklearn.feature_selection.univariate_selection
params is used in the following classes
  • sklearn.hmm
  • sklearn.mixture.dpgmm
  • sklearn.mixture.gmm
patch_size is used in the following classes
  • sklearn.feature_extraction.image
path_method is used in the following classes
  • sklearn.manifold.isomap
penalty is used in the following classes
  • sklearn.linear_model.logistic
  • sklearn.linear_model.perceptron
  • sklearn.linear_model.stochastic_gradient
  • sklearn.svm.base
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
percentile is used in the following classes
  • sklearn.feature_selection.univariate_selection
pos_label is used in the following classes
  • sklearn.preprocessing
positive is used in the following classes
  • sklearn.linear_model.coordinate_descent
power_t is used in the following classes
  • sklearn.linear_model.stochastic_gradient
pre_dispatch is used in the following classes
  • sklearn.linear_model.randomized_l1
precompute is used in the following classes
  • sklearn.linear_model.coordinate_descent
  • sklearn.linear_model.least_angle
  • sklearn.linear_model.randomized_l1
precompute_distances is used in the following classes
precompute_gram is used in the following classes
  • sklearn.linear_model.omp
precomputed is used in the following classes
  • sklearn.cluster.spectral
preference is used in the following classes
preprocessor is used in the following classes
  • sklearn.feature_extraction.text
priors is used in the following classes
  • sklearn.lda
  • sklearn.qda
probability is used in the following classes
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
radius is used in the following classes
  • sklearn.neighbors.classification
  • sklearn.neighbors.regression
  • sklearn.neighbors.unsupervised
random_start is used in the following classes
  • sklearn.gaussian_process.gaussian_process
random_state is used in the following classes
  • sklearn.cluster.dbscan_
  • sklearn.cluster.k_means_
  • sklearn.cluster.spectral
  • sklearn.covariance.outlier_detection
  • sklearn.covariance.robust_covariance
  • sklearn.decomposition.dict_learning
  • sklearn.decomposition.fastica_
  • sklearn.decomposition.nmf
  • sklearn.decomposition.pca
  • sklearn.decomposition.sparse_pca
  • sklearn.ensemble.forest
  • sklearn.ensemble.gradient_boosting
  • sklearn.feature_extraction.image
  • sklearn.gaussian_process.gaussian_process
  • sklearn.hmm
  • sklearn.kernel_approximation
  • sklearn.linear_model.logistic
  • sklearn.linear_model.passive_aggressive
  • sklearn.linear_model.perceptron
  • sklearn.linear_model.randomized_l1
  • sklearn.linear_model.stochastic_gradient
  • sklearn.manifold.locally_linear
  • sklearn.manifold.mds
  • sklearn.mixture.dpgmm
  • sklearn.mixture.gmm
  • sklearn.svm.base
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
  • sklearn.tree.tree
reg is used in the following classes
  • sklearn.manifold.locally_linear
regr is used in the following classes
  • sklearn.gaussian_process.gaussian_process
rho is used in the following classes
  • sklearn.linear_model.coordinate_descent
  • sklearn.linear_model.stochastic_gradient
ridge_alpha is used in the following classes
  • sklearn.decomposition.sparse_pca
sample_fraction is used in the following classes
  • sklearn.linear_model.randomized_l1
sample_interval is used in the following classes
  • sklearn.kernel_approximation
sample_steps is used in the following classes
  • sklearn.kernel_approximation
scale is used in the following classes
  • sklearn.pls
scaling is used in the following classes
  • sklearn.linear_model.randomized_l1
score_func is used in the following classes
  • sklearn.feature_selection.univariate_selection
  • sklearn.linear_model.ridge
seeds is used in the following classes
selection_threshold is used in the following classes
  • sklearn.linear_model.randomized_l1
separator is used in the following classes
  • sklearn.feature_extraction.dict_vectorizer
shrink_threshold is used in the following classes
  • sklearn.neighbors.nearest_centroid
shrinkage is used in the following classes
shrinking is used in the following classes
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
shuffle is used in the following classes
  • sklearn.decomposition.dict_learning
  • sklearn.decomposition.sparse_pca
  • sklearn.linear_model.passive_aggressive
  • sklearn.linear_model.perceptron
  • sklearn.linear_model.stochastic_gradient
skewedness is used in the following classes
  • sklearn.kernel_approximation
smooth_idf is used in the following classes
  • sklearn.feature_extraction.text
solver is used in the following classes
  • sklearn.linear_model.ridge
sparse is used in the following classes
  • sklearn.feature_extraction.dict_vectorizer
sparseness is used in the following classes
  • sklearn.decomposition.nmf
split_sign is used in the following classes
  • sklearn.decomposition.dict_learning
startprob is used in the following classes
  • sklearn.hmm
startprob_prior is used in the following classes
  • sklearn.hmm
stop_words is used in the following classes
  • sklearn.feature_extraction.text
storage_mode is used in the following classes
  • sklearn.gaussian_process.gaussian_process
store_cv_values is used in the following classes
  • sklearn.linear_model.ridge
store_precision is used in the following classes
strip_accents is used in the following classes
  • sklearn.feature_extraction.text
sublinear_tf is used in the following classes
  • sklearn.feature_extraction.text
subsample is used in the following classes
  • sklearn.ensemble.gradient_boosting
support_fraction is used in the following classes
  • sklearn.covariance.outlier_detection
  • sklearn.covariance.robust_covariance
theta0 is used in the following classes
  • sklearn.gaussian_process.gaussian_process
thetaL is used in the following classes
  • sklearn.gaussian_process.gaussian_process
thetaU is used in the following classes
  • sklearn.gaussian_process.gaussian_process
thresh is used in the following classes
  • sklearn.hmm
  • sklearn.mixture.dpgmm
  • sklearn.mixture.gmm
threshold is used in the following classes
  • sklearn.preprocessing
threshold_lambda is used in the following classes
  • sklearn.linear_model.bayes
token_pattern is used in the following classes
  • sklearn.feature_extraction.text
tokenizer is used in the following classes
  • sklearn.feature_extraction.text
tol is used in the following classes
  • sklearn.cluster.k_means_
  • sklearn.covariance.graph_lasso_
  • sklearn.decomposition.dict_learning
  • sklearn.decomposition.factor_analysis
  • sklearn.decomposition.fastica_
  • sklearn.decomposition.kernel_pca
  • sklearn.decomposition.nmf
  • sklearn.decomposition.sparse_pca
  • sklearn.linear_model.bayes
  • sklearn.linear_model.coordinate_descent
  • sklearn.linear_model.logistic
  • sklearn.linear_model.omp
  • sklearn.linear_model.randomized_l1
  • sklearn.linear_model.ridge
  • sklearn.manifold.isomap
  • sklearn.manifold.locally_linear
  • sklearn.pls
  • sklearn.semi_supervised.label_propagation
  • sklearn.svm.base
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
transform_algorithm is used in the following classes
  • sklearn.decomposition.dict_learning
transform_alpha is used in the following classes
  • sklearn.decomposition.dict_learning
transform_n_nonzero_coefs is used in the following classes
  • sklearn.decomposition.dict_learning
transmat is used in the following classes
  • sklearn.hmm
transmat_prior is used in the following classes
  • sklearn.hmm
use_idf is used in the following classes
  • sklearn.feature_extraction.text
verbose is used in the following classes
  • sklearn.cluster.affinity_propagation_
  • sklearn.cluster.k_means_
  • sklearn.covariance.graph_lasso_
  • sklearn.decomposition.dict_learning
  • sklearn.decomposition.factor_analysis
  • sklearn.decomposition.sparse_pca
  • sklearn.ensemble.forest
  • sklearn.ensemble.gradient_boosting
  • sklearn.gaussian_process.gaussian_process
  • sklearn.linear_model.bayes
  • sklearn.linear_model.coordinate_descent
  • sklearn.linear_model.least_angle
  • sklearn.linear_model.passive_aggressive
  • sklearn.linear_model.perceptron
  • sklearn.linear_model.randomized_l1
  • sklearn.linear_model.stochastic_gradient
  • sklearn.manifold.mds
  • sklearn.mixture.dpgmm
  • sklearn.svm.base
  • sklearn.svm.classes
  • sklearn.svm.sparse.classes
vocabulary is used in the following classes
  • sklearn.feature_extraction.text
w_init is used in the following classes
warm_start is used in the following classes
  • sklearn.linear_model.coordinate_descent
  • sklearn.linear_model.passive_aggressive
  • sklearn.linear_model.perceptron
  • sklearn.linear_model.stochastic_gradient
warn_on_equidistant is used in the following classes
  • sklearn.neighbors.classification
  • sklearn.neighbors.regression
  • sklearn.neighbors.unsupervised
weights is used in the following classes
  • sklearn.neighbors.classification
  • sklearn.neighbors.regression
whiten is used in the following classes
with_mean is used in the following classes
  • sklearn.preprocessing
with_std is used in the following classes
  • sklearn.preprocessing
y_max is used in the following classes
y_min is used in the following classes

ATTRIBUTES

All parameters and the ammount of times they are used

K_fit_all_ 1
K_fit_rows_ 1
X_ 3
X_fit_ 1
_intercept_ 8
active_ 4
affinity_matrix_ 2
all_scores_ 2
alpha_ 10
alphas_ 8
best_estimator_ 1
best_params_ 1
best_score_ 1
centroids_ 1
children_ 3
class_log_prior_ 2
class_prior_ 1
class_weight_ 16
class_weight_label_ 16
classes_ 49
cluster_centers_ 5
cluster_centers_indices_ 1
code_book_ 1
coef_ 50
coef_path_ 6
comp_sparseness_ 2
components_ 13
core_sample_indices_ 1
counts_ 2
covariance_ 2
criterion_ 1
cv_alphas_ 2
cv_mse_path_ 2
cv_scores_ 1
data_sparseness_ 2
dist_ 1
dist_matrix_ 1
dual_coef_ 8
dual_gap_ 4
embedding_ 2
eps_ 4
error_ 2
estimator_ 2
estimators_ 13
explained_variance_ 3
explained_variance_ratio_ 3
feature_importances_ 18
feature_log_prob_ 2
feature_names_ 1
find_split_ 8
fit_status_ 8
grid_scores_ 1
idf_ 1
inertia_ 4
init_size_ 2
intercept_ 50
kernel_pca_ 1
l1_ratio_ 2
label_ 8
label_binarizer_ 1
label_distributions_ 2
labels_ 11
lambda_ 1
lambdas_ 1
location_ 1
loglike_ 1
loss_ 2
mean_ 6
means_ 3
min_ 1
mse_path_ 2
multilabel_ 1
n_classes_ 18
n_features_ 18
n_leaves_ 3
n_outputs_ 16
n_support_ 8
nbrs_ 2
noise_variance_ 1
oob_score_ 2
precision_ 1
priors_ 3
probA_ 8
probB_ 8
pvalues_ 6
random_offset_ 2
random_weights_ 2
rank_ 1
ranking_ 2
raw_coef_ 8
raw_covariance_ 1
raw_location_ 1
raw_support_ 1
reconstruction_err_ 2
reconstruction_error_ 1
reduced_likelihood_function_value_ 1
residues_ 1
rho_ 2
scale_ 1
scores_ 10
shape_fit_ 8
sigma_ 2
singular_ 1
sources_ 1
sparse_coef_ 4
std_ 2
support_ 7
support_vectors_ 8
t_ 10
theta_ 2
train_score_ 2
training_data_ 1
transduction_ 2
tree_ 8
unmixing_matrix_ 1
vocabulary_ 1
x_loadings_ 8
x_mean_ 9
x_rotations_ 8
x_scores_ 9
x_std_ 9
x_weights_ 9
xbar_ 2
y_ 1
y_loadings_ 8
y_mean_ 9
y_rotations_ 8
y_scores_ 9
y_std_ 9
y_weights_ 9
K_fit_all_ is used in the following classes
  • KernelCenterer
K_fit_rows_ is used in the following classes
  • KernelCenterer
X_ is used in the following classes
  • IsotonicRegression
  • LabelPropagation
  • LabelSpreading
X_fit_ is used in the following classes
  • KernelPCA
_intercept_ is used in the following classes
  • NuSVC
  • NuSVR
  • SVC
  • SVR
active_ is used in the following classes
  • Lars
  • LarsCV
  • LassoLars
  • LassoLarsCV
affinity_matrix_ is used in the following classes
  • AffinityPropagation
  • SpectralClustering
all_scores_ is used in the following classes
  • RandomizedLasso
  • RandomizedLogisticRegression
alpha_ is used in the following classes
  • ARDRegression
  • BayesianRidge
  • ElasticNetCV
  • LarsCV
  • LassoCV
  • LassoLarsCV
  • LassoLarsIC
  • RandomizedLasso
  • RidgeCV
  • RidgeClassifierCV
alphas_ is used in the following classes
  • ElasticNetCV
  • KernelPCA
  • Lars
  • LarsCV
  • LassoCV
  • LassoLars
  • LassoLarsCV
  • LassoLarsIC
best_estimator_ is used in the following classes
  • GridSearchCV
best_params_ is used in the following classes
  • GridSearchCV
best_score_ is used in the following classes
  • GridSearchCV
centroids_ is used in the following classes
  • NearestCentroid
children_ is used in the following classes
  • Ward
  • WardAgglomeration
class_log_prior_ is used in the following classes
  • BernoulliNB
  • MultinomialNB
class_prior_ is used in the following classes
  • GaussianNB
class_weight_ is used in the following classes
  • LinearSVC
  • LogisticRegression
  • NuSVC
  • NuSVR
  • SVC
  • SVR
class_weight_label_ is used in the following classes
  • LinearSVC
  • LogisticRegression
  • NuSVC
  • NuSVR
  • SVC
  • SVR
classes_ is used in the following classes
  • BernoulliNB
  • DecisionTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreeClassifier
  • ExtraTreeRegressor
  • ExtraTreesClassifier
  • ExtraTreesRegressor
  • GaussianNB
  • GradientBoostingClassifier
  • KNeighborsClassifier
  • LDA
  • LabelBinarizer
  • LabelEncoder
  • LabelPropagation
  • LabelSpreading
  • LinearSVC
  • LogisticRegression
  • MultinomialNB
  • NearestCentroid
  • OneVsOneClassifier
  • OneVsRestClassifier
  • OutputCodeClassifier
  • PassiveAggressiveClassifier
  • Perceptron
  • QDA
  • RadiusNeighborsClassifier
  • RandomForestClassifier
  • RandomForestRegressor
  • RidgeClassifier
  • RidgeClassifierCV
  • SGDClassifier
cluster_centers_ is used in the following classes
  • KMeans
  • MeanShift
  • MiniBatchKMeans
cluster_centers_indices_ is used in the following classes
  • AffinityPropagation
code_book_ is used in the following classes
  • OutputCodeClassifier
coef_ is used in the following classes
  • ARDRegression
  • BayesianRidge
  • BernoulliNB
  • ElasticNet
  • ElasticNetCV
  • LDA
  • Lars
  • LarsCV
  • Lasso
  • LassoCV
  • LassoLars
  • LassoLarsCV
  • LassoLarsIC
  • LinearRegression
  • LinearSVC
  • LogisticRegression
  • MultiTaskElasticNet
  • MultiTaskLasso
  • MultinomialNB
  • NuSVC
  • NuSVR
  • OneVsRestClassifier
  • OrthogonalMatchingPursuit
  • PassiveAggressiveClassifier
  • PassiveAggressiveRegressor
  • Perceptron
  • Ridge
  • RidgeCV
  • RidgeClassifier
  • RidgeClassifierCV
  • SGDClassifier
  • SGDRegressor
  • SVC
  • SVR
coef_path_ is used in the following classes
  • ElasticNetCV
  • Lars
  • LarsCV
  • LassoCV
  • LassoLars
  • LassoLarsCV
comp_sparseness_ is used in the following classes
  • NMF
  • ProjectedGradientNMF
components_ is used in the following classes
  • DBSCAN
  • DictionaryLearning
  • FactorAnalysis
  • FastICA
  • MiniBatchDictionaryLearning
  • MiniBatchSparsePCA
  • NMF
  • PCA
  • ProbabilisticPCA
  • ProjectedGradientNMF
  • RandomizedPCA
  • SparseCoder
  • SparsePCA
core_sample_indices_ is used in the following classes
  • DBSCAN
counts_ is used in the following classes
  • MiniBatchKMeans
covariance_ is used in the following classes
  • EllipticEnvelope
  • ProbabilisticPCA
criterion_ is used in the following classes
  • LassoLarsIC
cv_alphas_ is used in the following classes
  • LarsCV
  • LassoLarsCV
cv_mse_path_ is used in the following classes
  • LarsCV
  • LassoLarsCV
cv_scores_ is used in the following classes
  • RFECV
data_sparseness_ is used in the following classes
  • NMF
  • ProjectedGradientNMF
dist_ is used in the following classes
  • EllipticEnvelope
dist_matrix_ is used in the following classes
  • Isomap
dual_coef_ is used in the following classes
  • NuSVC
  • NuSVR
  • SVC
  • SVR
dual_gap_ is used in the following classes
  • ElasticNet
  • Lasso
  • MultiTaskElasticNet
  • MultiTaskLasso
embedding_ is used in the following classes
  • Isomap
  • LocallyLinearEmbedding
eps_ is used in the following classes
  • ElasticNet
  • Lasso
  • MultiTaskElasticNet
  • MultiTaskLasso
error_ is used in the following classes
  • DictionaryLearning
  • SparsePCA
estimator_ is used in the following classes
  • RFE
  • RFECV
estimators_ is used in the following classes
  • ExtraTreesClassifier
  • ExtraTreesRegressor
  • GradientBoostingClassifier
  • GradientBoostingRegressor
  • OneVsOneClassifier
  • OneVsRestClassifier
  • OutputCodeClassifier
  • RandomForestClassifier
  • RandomForestRegressor
explained_variance_ is used in the following classes
  • PCA
  • ProbabilisticPCA
  • RandomizedPCA
explained_variance_ratio_ is used in the following classes
  • PCA
  • ProbabilisticPCA
  • RandomizedPCA
feature_importances_ is used in the following classes
  • DecisionTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreeClassifier
  • ExtraTreeRegressor
  • ExtraTreesClassifier
  • ExtraTreesRegressor
  • GradientBoostingClassifier
  • GradientBoostingRegressor
  • RandomForestClassifier
  • RandomForestRegressor
feature_log_prob_ is used in the following classes
  • BernoulliNB
  • MultinomialNB
feature_names_ is used in the following classes
  • DictVectorizer
find_split_ is used in the following classes
  • DecisionTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreeClassifier
  • ExtraTreeRegressor
fit_status_ is used in the following classes
  • NuSVC
  • NuSVR
  • SVC
  • SVR
grid_scores_ is used in the following classes
  • GridSearchCV
idf_ is used in the following classes
  • TfidfTransformer
inertia_ is used in the following classes
  • KMeans
  • MiniBatchKMeans
init_size_ is used in the following classes
  • MiniBatchKMeans
intercept_ is used in the following classes
  • ARDRegression
  • BayesianRidge
  • BernoulliNB
  • ElasticNet
  • ElasticNetCV
  • LDA
  • Lars
  • LarsCV
  • Lasso
  • LassoCV
  • LassoLars
  • LassoLarsCV
  • LassoLarsIC
  • LinearRegression
  • LinearSVC
  • LogisticRegression
  • MultiTaskElasticNet
  • MultiTaskLasso
  • MultinomialNB
  • NuSVC
  • NuSVR
  • OneVsRestClassifier
  • OrthogonalMatchingPursuit
  • PassiveAggressiveClassifier
  • PassiveAggressiveRegressor
  • Perceptron
  • Ridge
  • RidgeCV
  • RidgeClassifier
  • RidgeClassifierCV
  • SGDClassifier
  • SGDRegressor
  • SVC
  • SVR
kernel_pca_ is used in the following classes
  • Isomap
l1_ratio_ is used in the following classes
  • ElasticNetCV
  • LassoCV
label_ is used in the following classes
  • NuSVC
  • NuSVR
  • SVC
  • SVR
label_binarizer_ is used in the following classes
  • OneVsRestClassifier
label_distributions_ is used in the following classes
  • LabelPropagation
  • LabelSpreading
labels_ is used in the following classes
  • AffinityPropagation
  • DBSCAN
  • KMeans
  • MeanShift
  • MiniBatchKMeans
  • SpectralClustering
  • Ward
  • WardAgglomeration
lambda_ is used in the following classes
  • BayesianRidge
lambdas_ is used in the following classes
  • KernelPCA
location_ is used in the following classes
  • EllipticEnvelope
loglike_ is used in the following classes
  • FactorAnalysis
loss_ is used in the following classes
  • GradientBoostingClassifier
  • GradientBoostingRegressor
mean_ is used in the following classes
  • FactorAnalysis
  • PCA
  • ProbabilisticPCA
  • RandomizedPCA
  • Scaler
  • StandardScaler
means_ is used in the following classes
  • LDA
  • QDA
min_ is used in the following classes
  • MinMaxScaler
mse_path_ is used in the following classes
  • ElasticNetCV
  • LassoCV
multilabel_ is used in the following classes
  • OneVsRestClassifier
n_classes_ is used in the following classes
  • DecisionTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreeClassifier
  • ExtraTreeRegressor
  • ExtraTreesClassifier
  • ExtraTreesRegressor
  • GradientBoostingClassifier
  • GradientBoostingRegressor
  • RandomForestClassifier
  • RandomForestRegressor
n_features_ is used in the following classes
  • DecisionTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreeClassifier
  • ExtraTreeRegressor
  • ExtraTreesClassifier
  • ExtraTreesRegressor
  • RFE
  • RFECV
  • RandomForestClassifier
  • RandomForestRegressor
n_leaves_ is used in the following classes
  • Ward
  • WardAgglomeration
n_outputs_ is used in the following classes
  • DecisionTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreeClassifier
  • ExtraTreeRegressor
  • ExtraTreesClassifier
  • ExtraTreesRegressor
  • RandomForestClassifier
  • RandomForestRegressor
n_support_ is used in the following classes
  • NuSVC
  • NuSVR
  • SVC
  • SVR
nbrs_ is used in the following classes
  • Isomap
  • LocallyLinearEmbedding
noise_variance_ is used in the following classes
  • FactorAnalysis
oob_score_ is used in the following classes
  • GradientBoostingClassifier
  • GradientBoostingRegressor
precision_ is used in the following classes
  • EllipticEnvelope
priors_ is used in the following classes
  • LDA
  • QDA
probA_ is used in the following classes
  • NuSVC
  • NuSVR
  • SVC
  • SVR
probB_ is used in the following classes
  • NuSVC
  • NuSVR
  • SVC
  • SVR
pvalues_ is used in the following classes
  • GenericUnivariateSelect
  • SelectFdr
  • SelectFpr
  • SelectFwe
  • SelectKBest
  • SelectPercentile
random_offset_ is used in the following classes
  • RBFSampler
  • SkewedChi2Sampler
random_weights_ is used in the following classes
  • RBFSampler
  • SkewedChi2Sampler
rank_ is used in the following classes
  • LinearRegression
ranking_ is used in the following classes
  • RFE
  • RFECV
raw_coef_ is used in the following classes
  • LinearSVC
  • LogisticRegression
raw_covariance_ is used in the following classes
  • EllipticEnvelope
raw_location_ is used in the following classes
  • EllipticEnvelope
raw_support_ is used in the following classes
  • EllipticEnvelope
reconstruction_err_ is used in the following classes
  • NMF
  • ProjectedGradientNMF
reconstruction_error_ is used in the following classes
  • LocallyLinearEmbedding
reduced_likelihood_function_value_ is used in the following classes
  • GaussianProcess
residues_ is used in the following classes
  • LinearRegression
rho_ is used in the following classes
  • ElasticNetCV
  • LassoCV
scale_ is used in the following classes
  • MinMaxScaler
scores_ is used in the following classes
  • ARDRegression
  • BayesianRidge
  • GenericUnivariateSelect
  • RandomizedLasso
  • RandomizedLogisticRegression
  • SelectFdr
  • SelectFpr
  • SelectFwe
  • SelectKBest
  • SelectPercentile
shape_fit_ is used in the following classes
  • NuSVC
  • NuSVR
  • SVC
  • SVR
sigma_ is used in the following classes
  • ARDRegression
  • GaussianNB
singular_ is used in the following classes
  • LinearRegression
sources_ is used in the following classes
  • FastICA
sparse_coef_ is used in the following classes
  • ElasticNet
  • Lasso
  • MultiTaskElasticNet
  • MultiTaskLasso
std_ is used in the following classes
  • Scaler
  • StandardScaler
support_ is used in the following classes
  • EllipticEnvelope
  • NuSVC
  • NuSVR
  • RFE
  • RFECV
  • SVC
  • SVR
support_vectors_ is used in the following classes
  • NuSVC
  • NuSVR
  • SVC
  • SVR
t_ is used in the following classes
  • PassiveAggressiveClassifier
  • PassiveAggressiveRegressor
  • Perceptron
  • SGDClassifier
  • SGDRegressor
theta_ is used in the following classes
  • GaussianNB
  • GaussianProcess
train_score_ is used in the following classes
  • GradientBoostingClassifier
  • GradientBoostingRegressor
training_data_ is used in the following classes
  • Isomap
transduction_ is used in the following classes
  • LabelPropagation
  • LabelSpreading
tree_ is used in the following classes
  • DecisionTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreeClassifier
  • ExtraTreeRegressor
unmixing_matrix_ is used in the following classes
  • FastICA
vocabulary_ is used in the following classes
  • DictVectorizer
x_loadings_ is used in the following classes
  • CCA
  • PLSCanonical
  • PLSRegression
  • _PLS
x_mean_ is used in the following classes
  • CCA
  • PLSCanonical
  • PLSRegression
  • PLSSVD
  • _PLS
x_rotations_ is used in the following classes
  • CCA
  • PLSCanonical
  • PLSRegression
  • _PLS
x_scores_ is used in the following classes
  • CCA
  • PLSCanonical
  • PLSRegression
  • PLSSVD
  • _PLS
x_std_ is used in the following classes
  • CCA
  • PLSCanonical
  • PLSRegression
  • PLSSVD
  • _PLS
x_weights_ is used in the following classes
  • CCA
  • PLSCanonical
  • PLSRegression
  • PLSSVD
  • _PLS
xbar_ is used in the following classes
  • LDA
y_ is used in the following classes
  • IsotonicRegression
y_loadings_ is used in the following classes
  • CCA
  • PLSCanonical
  • PLSRegression
  • _PLS
y_mean_ is used in the following classes
  • CCA
  • PLSCanonical
  • PLSRegression
  • PLSSVD
  • _PLS
y_rotations_ is used in the following classes
  • CCA
  • PLSCanonical
  • PLSRegression
  • _PLS
y_scores_ is used in the following classes
  • CCA
  • PLSCanonical
  • PLSRegression
  • PLSSVD
  • _PLS
y_std_ is used in the following classes
  • CCA
  • PLSCanonical
  • PLSRegression
  • PLSSVD
  • _PLS
y_weights_ is used in the following classes
  • CCA
  • PLSCanonical
  • PLSRegression
  • PLSSVD
  • _PLS
@jaquesgrobler
Copy link
Author

Lists of parameter/attribute frequency and where they are used for sklearn. The script that generates this is attached at the bottom -

NOTE: the script is still very messy and dogmatic due to debugging and borrowing lots a data create code from tests. I'm still cleaning it up, but I thought I'd put the script up for now so that if anyone wanted to see where the tables come from. Obviously there a good chance that there is maybe a mistake somewhere or that I left an estimator that isn't in the mixins - so please let me know. But hopefully this can be useful regarding making decisions about the API. All feedback welcome - just know the script is still a mess and is not intended to be super fast either. It's just to get everything. J

@jaquesgrobler
Copy link
Author

Lists of parameter/attribute frequency and where they are used for sklearn. The script that generates this is attached at the bottom -

NOTE: the script is still very messy and dogmatic due to debugging and borrowing lots a data create code from tests. I'm still cleaning it up, but I thought I'd put the script up for now so that if anyone wanted to see where the tables come from. Obviously there a good chance that there is maybe a mistake somewhere or that I left an estimator that isn't in the mixins, so let me know. But hopefully this can be useful regarding making decisions about the API. All feedback welcome - just know the script is still a mess and is not intended to be super fast either. It's just to get everything. J

@amueller
Copy link

amueller commented Jan 5, 2013

The script would also be cool to find attributes that don't end with _. You just need to adjust the attribute finding thing a bit.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment