Created
June 23, 2021 11:39
-
-
Save jjerphan/8bc10072e02637d318653aaa493430fd to your computer and use it in GitHub Desktop.
ASV benchmark for scikit-learn/scikit-learn#20323
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from sklearn.neighbors import DistanceMetric | |
from .common import Benchmark | |
class DistanceMetricBenchmark(Benchmark): | |
param_names = ["n", "d"] | |
params = ([100, 1000, 10_000], [5, 10, 100]) | |
def setup(self, n, d): | |
self.rng = np.random.RandomState(0) | |
self.X = self.rng.random_sample((n, d)) | |
self.Y = self.rng.random_sample((n, d)) | |
self.V = self.rng.random_sample((d, d)) | |
self.VI = np.dot(self.V, self.V.T) | |
class EuclideanDistanceBenchmark(DistanceMetricBenchmark): | |
def setup(self, n, d): | |
super().setup(n, d) | |
self.dist_metric = DistanceMetric.get_metric("euclidean") | |
def time_pairwise(self, n, d): | |
self.dist_metric.pairwise(self.X, self.Y) | |
class ManhattanDistanceBenchmark(DistanceMetricBenchmark): | |
def setup(self, n, d): | |
super().setup(n, d) | |
self.dist_metric = DistanceMetric.get_metric("manhattan") | |
def time_pairwise(self, n, d): | |
self.dist_metric.pairwise(self.X, self.Y) | |
class ChebyshevDistanceBenchmark(DistanceMetricBenchmark): | |
def setup(self, n, d): | |
super().setup(n, d) | |
self.dist_metric = DistanceMetric.get_metric("chebyshev") | |
def time_pairwise(self, n, d): | |
self.dist_metric.pairwise(self.X, self.Y) | |
class MinkowskiDistanceBenchmark(DistanceMetricBenchmark): | |
def setup(self, n, d): | |
super().setup(n, d) | |
self.dist_metric = DistanceMetric.get_metric("minkowski", p=1.5) | |
def time_pairwise(self, n, d): | |
self.dist_metric.pairwise(self.X, self.Y) | |
class WMinkowskiDistanceBenchmark(DistanceMetricBenchmark): | |
def setup(self, n, d): | |
super().setup(n, d) | |
self.dist_metric = DistanceMetric.get_metric("wminkowski", p=1.5, | |
w=self.rng.random_sample(d)) | |
def time_pairwise(self, n, d): | |
self.dist_metric.pairwise(self.X, self.Y) | |
class SEuclideanDistanceBenchmark(DistanceMetricBenchmark): | |
def setup(self, n, d): | |
super().setup(n, d) | |
self.dist_metric = DistanceMetric.get_metric("seuclidean", V=self.V) | |
def time_pairwise(self, n, d): | |
self.dist_metric.pairwise(self.X, self.Y) | |
class MahalanobisDistanceBenchmark(DistanceMetricBenchmark): | |
def setup(self, n, d): | |
super().setup(n, d) | |
self.dist_metric = DistanceMetric.get_metric("mahalanobis", VI=self.VI) | |
def time_pairwise(self, n, d): | |
self.dist_metric.pairwise(self.X, self.Y) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment