Last active
September 10, 2023 11:02
-
-
Save keskival/d4188e9d64ed2cf6fe14175c8419da2c to your computer and use it in GitHub Desktop.
Computing cosine similarities.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import seaborn as sns | |
import numpy as np | |
from numpy.linalg import norm | |
import matplotlib.pyplot as plt | |
data_df = pd.read_csv('data/embedded_1k_reviews.csv') | |
queries_df = pd.read_csv('data/queries.csv') | |
data_df['ada_embedding'] = data_df.ada_embedding.apply(eval).apply(np.array) | |
queries_df['ada_embedding'] = queries_df.ada_embedding.apply(eval).apply(np.array) | |
data_embeddings = np.stack(data_df['ada_embedding']) | |
queries_embeddings = np.stack(queries_df['ada_embedding']) | |
cosine_similarities = np.tensordot(data_embeddings, queries_embeddings, axes=[1, 1]) / (np.expand_dims(norm(data_embeddings, axis=1), axis=1) * np.expand_dims(norm(queries_embeddings, axis=1), axis=0)) | |
dims=128 | |
cosine_similarities_cropped = np.tensordot(data_embeddings[:, :dims], queries_embeddings[:, :dims], axes=[1, 1]) / (np.expand_dims(norm(data_embeddings[:, :dims], axis=1), axis=1) * np.expand_dims(norm(queries_embeddings[:,:dims], axis=1), axis=0)) | |
sns.histplot(cosine_similarities) | |
sns.histplot(cosine_similarities_cropped) | |
np.argsort(cosine_similarities, axis=0)[-10:] | |
np.argsort(cosine_similarities_cropped, axis=0)[-10:] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment