Last active
November 19, 2017 21:49
-
-
Save klightspeed/06c57bd844efa21a2c181cfe9381a5e2 to your computer and use it in GitHub Desktop.
Math for determining second body mass in binary pair given first body parameters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\usepackage{amsmath} | |
\usepackage{amsfonts} | |
\usepackage{amssymb} | |
\begin{document} | |
\begin{align*} | |
\text{==== Centre of mass ====} \\ | |
m_{1} a_{1} &= m_{2} a_{2} \\ | |
a_{1} &= \frac{m_{2} a_{2}}{m_{1}} \\ | |
\text{==== Separation ====} \\ | |
a &= a_{1} + a_{2} \\ | |
\text{==== Kepler's third law ====} \\ | |
\frac{P^2}{a^3} &= \frac{4 \pi}{G (m_{1} + m_{2})} \\ | |
\text{==== Velocities ====} \\ | |
P v_{1} &= 2 \pi a_{1} \\ | |
P v_{2} &= 2 \pi a_{2} \\ | |
a &= \frac{P}{2 \pi}(v_{1} + v_{2}) \\ | |
\frac{P^2}{[\frac{P}{2 \pi}(v_{1} + v_{2})]^3} &= \frac{4 \pi^2}{G(m_{1} + m_{2})} \\ | |
m_{1} + m_{2} &= \frac{P(v_{1} + v_{2})^3}{2 \pi G} \\ | |
v_{1} m_{1} = v_{2} m_{2} &\Rightarrow v_{2} = \frac{v_{1} m_{1}}{m_{2}} \\ | |
m_{1} + m_{2} &= \frac{P(v_{1} + \frac{m_{1}}{m_{2}} v_{1})^3}{2 \pi G} \\ | |
\frac{m_{2}^3}{(m_{1} + m_{2})^2} &= \frac{P v_{1}^3}{2 \pi G} \\ | |
\text{==== Eliminate velocity ====} \\ | |
v_{1} &:= \frac{2 \pi a_{1}}{P} \\ | |
\frac{m_{2}^3}{(m_{1} + m_{2})^2} &= \frac{P (2 \pi a_{1})^3}{2 \pi G P^3} \\ | |
&= \frac{4 \pi^2 a_{1}^3}{G P^2} \\ | |
\text{==== Convert to polynomial ====} \\ | |
\frac{(m_{1} + m_{2})^2}{m_{2}^3} &= \frac{G P^2}{4 \pi^2 a_{1}^3} \\ | |
\frac{m_{2}^2 + 2 m_{1} m_{2} + m_{1}^2}{m_{2}^3} &= \frac{G P^2}{4 \pi^2 a_{1}^3} \\ | |
m_{2}^2 + 2 m_{1} m_{2} + m_{1}^2 &= m_{2}^3 \frac{G P^2}{4 \pi^2 a_{1}^3} \\ | |
\frac{G P^2}{4 \pi^2 a_{1}^3} m_{2}^3 - m_{2}^2 - 2 m_{1} m_{2} - m_{1}^2 &= 0 \\ | |
\text{==== Polynomial coefficients ====} \\ | |
a x^3 + b x^2 + c x + d &= 0 \\ | |
a &:= \frac{G P^2}{4 \pi^2 a_{1}^3} \\ | |
b &:= -1 \\ | |
c &:= -2 m_{1} \\ | |
d &:= -m_{1}^2 \\ | |
\text{==== Eliminate $a$ ====} \\ | |
x^3 + \frac{b}{a} x^2 + \frac{c}{a} x + \frac{d}{a} &= 0 \\ | |
\lambda &:= \frac{1}{a} = \frac{4 \pi^2 a_{1}^3}{G P^2} \\ | |
a &:= 1 \\ | |
b &:= -\lambda \\ | |
c &:= -2 \lambda m_{1} \\ | |
d &:= -\lambda m_{1}^2 \\ | |
\text{==== Eliminate $x^2$ ====} \\ | |
x &:= z - \frac{b}{3} \\ | |
(z - \frac{b}{3})^3 + b (z - \frac{b}{3})^2 + c (z - \frac{b}{3}) + d &= 0 \\ | |
[z^3 - 3 \cdot \frac{1}{3} b z^2 + 3 (\frac{1}{3} b)^2 z - (\frac{1}{3} b)^3] + b [z^2 - 2 \cdot \frac{1}{3} b z + (\frac{1}{3} b)^2] + c (z - \frac{1}{3} b) + d &= 0 \\ | |
z^3 - b z^2 + \frac{1}{3} b^2 z - \frac{1}{27} b^3 + b z^2 - \frac{2}{3} b^2 z + \frac{1}{9} b^3 + c z - \frac{1}{3} b c + d &= 0 \\ | |
z^3 + (b - b)z^2 + (\frac{1}{3} b^2 - \frac{2}{3} b^2 + c)z + \frac{1}{9} b^3 - \frac{1}{27} b^3 - \frac{1}{3} b c + d &= 0 \\ | |
z^3 + (c - \frac{1}{3} b^2) z + \frac{2}{27} b^3 - \frac{1}{3} b c + d &= 0 \\ | |
z^3 + (c - \frac{1}{3} b^2) z - (\frac{1}{3} b c - d - \frac{2}{27} b^3) &= 0 \\ | |
\text{==== Polynomial Coefficients ====} \\ | |
z^3 + p z - q &= 0 \\ | |
p &:= c - \frac{b^2}{3} \\ | |
&= -2 \lambda m_{1} - \frac{\lambda^2}{3} \\ | |
q &:= \frac{1}{3} b c - d - \frac{2}{27} b^3 \\ | |
&= \frac{2}{3} \lambda^2 m_{1} + \lambda m_{1}^2 + \frac{2}{27} \lambda^3 \\ | |
\text{==== Vieta's Substitution ====} \\ | |
z &:= w - \frac{p}{3 w} \\ | |
(w - \frac{p}{3 w})^3 + p (w - \frac{p}{3 w}) - q &= 0 \\ | |
[w^3 - 3 \cdot \frac{p}{3 w} w^2 + 3 (\frac{p}{3 w})^2 w - (\frac{p}{3 w})^3] + (p w - p \frac{p}{3 w}) - q &= 0 \\ | |
(w^3 - p w + \frac{p^2}{3 w} - \frac{p^3}{27 w^3}) + (p w - \frac{p^2}{3 w}) - q &= 0 \\ | |
w^3 + p w - p w + \frac{p^2}{3 w} - \frac{p^2}{3 w} - \frac{p^3}{27 w^3} - q &= 0 \\ | |
w^3 - \frac{p^3}{27 w^3} - q &= 0 \\ | |
\text{==== Convert to quadratic ====} \\ | |
w^3 w^3 - \frac{p^3}{27 w^3} w^3 - q w^3 &= 0 \\ | |
(w^3)^2 - q (w^3) - \frac{1}{27} p^3 &= 0 \\ | |
\text{==== Quadratic formula ====} \\ | |
w^3 &= \frac{1}{2} q + \sqrt{\frac{1}{4} q^2 + \frac{1}{27} p^3} \\ | |
w &= \sqrt[3]{\frac{1}{2} q + \sqrt{\frac{1}{4} q^2 + \frac{1}{27} p^3}} \\ | |
\text{==== Substitute to get $x$ ====} \\ | |
x &= (w - \frac{p}{3 w}) - \frac{b}{3} \\ | |
&= w + \frac{1}{3 w} (2 \lambda m_{1} + \frac{1}{3} \lambda^2) + \frac{1}{3} \lambda \\ | |
\text{==== Bringing it all together ====} \\ | |
\lambda &= \frac{4 \pi^2 a_{1}^3}{G P^2} \\ | |
p &= -2 \lambda m_{1} - \frac{\lambda^2}{3} \\ | |
q &= \frac{2}{3} \lambda^2 m_{1} + \lambda m_{1}^2 + \frac{2}{27} \lambda^3 \\ | |
w &= \sqrt[3]{\frac{1}{2} q + \sqrt{\frac{1}{4} q^2 + \frac{1}{27} p^3}} \\ | |
m_{2} &= w + \frac{1}{3 w} (2 \lambda m_{1} + \frac{1}{3} \lambda^2) + \frac{1}{3} \lambda | |
\end{align*} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment