Created
March 5, 2016 23:42
-
-
Save kukuruza/6714b632c92d8967fd3c to your computer and use it in GitHub Desktop.
tensorflow: train and evaluate Cifar10 model during the same run. Train and test data are evaluated and sent to tensorboard.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# !!! Note for cifar10_train_and_eval.py !!! | |
# | |
# 1. Put this file into tensorflow/models/image/cifar10 directory. | |
# 2. For this file to work, you need to comment out tf.image_summary() in | |
# file tensorflow/models/image/cifar_input.py | |
# | |
# Copyright 2015 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""A binary to train CIFAR-10 using a single GPU. | |
Accuracy: | |
cifar10_train.py achieves ~86% accuracy after 100K steps (256 epochs of | |
data) as judged by cifar10_eval.py. | |
Speed: With batch_size 128. | |
System | Step Time (sec/batch) | Accuracy | |
------------------------------------------------------------------ | |
1 Tesla K20m | 0.35-0.60 | ~86% at 60K steps (5 hours) | |
1 Tesla K40m | 0.25-0.35 | ~86% at 100K steps (4 hours) | |
Usage: | |
Please see the tutorial and website for how to download the CIFAR-10 | |
data set, compile the program and train the model. | |
http://tensorflow.org/tutorials/deep_cnn/ | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from datetime import datetime | |
import os.path | |
import time | |
import math | |
import numpy as np | |
from six.moves import xrange # pylint: disable=redefined-builtin | |
import tensorflow as tf | |
from tensorflow.models.image.cifar10 import cifar10 | |
FLAGS = tf.app.flags.FLAGS | |
tf.app.flags.DEFINE_string('train_dir', '/tmp/cifar10_train', | |
"""Directory where to write event logs """ | |
"""and checkpoint.""") | |
tf.app.flags.DEFINE_integer('max_steps', 1000000, | |
"""Number of batches to run.""") | |
tf.app.flags.DEFINE_boolean('log_device_placement', False, | |
"""Whether to log device placement.""") | |
def evaluate_set (sess, top_k_op, num_examples): | |
"""Convenience function to run evaluation for for every batch. | |
Sum the number of correct predictions and output one precision value. | |
Args: | |
sess: current Session | |
top_k_op: tensor of type tf.nn.in_top_k | |
num_examples: number of examples to evaluate | |
""" | |
num_iter = int(math.ceil(num_examples / FLAGS.batch_size)) | |
true_count = 0 # Counts the number of correct predictions. | |
total_sample_count = num_iter * FLAGS.batch_size | |
for step in xrange(num_iter): | |
predictions = sess.run([top_k_op]) | |
true_count += np.sum(predictions) | |
# Compute precision | |
return true_count / total_sample_count | |
def train(): | |
"""Train CIFAR-10 for a number of steps.""" | |
with tf.Graph().as_default(): | |
with tf.variable_scope("model") as scope: | |
global_step = tf.Variable(0, trainable=False) | |
# Get images and labels for CIFAR-10. | |
images, labels = cifar10.distorted_inputs() | |
images_eval, labels_eval = cifar10.inputs(eval_data=True) | |
# Build a Graph that computes the logits predictions from the | |
# inference model. | |
logits = cifar10.inference(images) | |
scope.reuse_variables() | |
logits_eval = cifar10.inference(images_eval) | |
# Calculate loss. | |
loss = cifar10.loss(logits, labels) | |
# For evaluation | |
top_k = tf.nn.in_top_k (logits, labels, 1) | |
top_k_eval = tf.nn.in_top_k (logits_eval, labels_eval, 1) | |
# Add precision summary | |
summary_train_prec = tf.placeholder(tf.float32) | |
summary_eval_prec = tf.placeholder(tf.float32) | |
tf.scalar_summary('precision/train', summary_train_prec) | |
tf.scalar_summary('precision/eval', summary_eval_prec) | |
# Build a Graph that trains the model with one batch of examples and | |
# updates the model parameters. | |
train_op = cifar10.train(loss, global_step) | |
# Create a saver. | |
saver = tf.train.Saver(tf.all_variables()) | |
# Build the summary operation based on the TF collection of Summaries. | |
summary_op = tf.merge_all_summaries() | |
# Build an initialization operation to run below. | |
init = tf.initialize_all_variables() | |
# Start running operations on the Graph. | |
sess = tf.Session(config=tf.ConfigProto( | |
log_device_placement=FLAGS.log_device_placement)) | |
sess.run(init) | |
# Start the queue runners. | |
tf.train.start_queue_runners(sess=sess) | |
summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, | |
graph_def=sess.graph_def) | |
for step in xrange(FLAGS.max_steps): | |
start_time = time.time() | |
_, loss_value = sess.run([train_op, loss]) | |
duration = time.time() - start_time | |
assert not np.isnan(loss_value), 'Model diverged with loss = NaN' | |
if step % 10 == 0: | |
num_examples_per_step = FLAGS.batch_size | |
examples_per_sec = num_examples_per_step / duration | |
sec_per_batch = float(duration) | |
format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' | |
'sec/batch)') | |
print (format_str % (datetime.now(), step, loss_value, | |
examples_per_sec, sec_per_batch)) | |
EVAL_STEP = 10 | |
EVAL_NUM_EXAMPLES = 1024 | |
if step % EVAL_STEP == 0: | |
prec_train = evaluate_set (sess, top_k, EVAL_NUM_EXAMPLES) | |
prec_eval = evaluate_set (sess, top_k_eval, EVAL_NUM_EXAMPLES) | |
print('%s: precision train = %.3f' % (datetime.now(), prec_train)) | |
print('%s: precision eval = %.3f' % (datetime.now(), prec_eval)) | |
if step % 100 == 0: | |
summary_str = sess.run(summary_op, feed_dict={summary_train_prec: prec_train, | |
summary_eval_prec: prec_eval}) | |
summary_writer.add_summary(summary_str, step) | |
# Save the model checkpoint periodically. | |
if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: | |
checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') | |
saver.save(sess, checkpoint_path, global_step=step) | |
def main(argv=None): # pylint: disable=unused-argument | |
cifar10.maybe_download_and_extract() | |
if tf.gfile.Exists(FLAGS.train_dir): | |
tf.gfile.DeleteRecursively(FLAGS.train_dir) | |
tf.gfile.MakeDirs(FLAGS.train_dir) | |
train() | |
if __name__ == '__main__': | |
tf.app.run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment