Last active
February 23, 2021 18:11
-
-
Save lasseha/f651243e5904f9b44940a807e5325ffb to your computer and use it in GitHub Desktop.
vae
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Conv(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): | |
super(Conv, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False), | |
nn.BatchNorm2d(out_channels), | |
nn.LeakyReLU() | |
) | |
def forward(self, x): | |
return self.conv(x) | |
class ConvTranspose(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): | |
super(ConvTranspose, self).__init__() | |
self.conv = nn.Sequential( | |
nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, bias=False), | |
nn.BatchNorm2d(out_channels), | |
nn.LeakyReLU() | |
) | |
def forward(self, x): | |
return self.conv(x) | |
class VAE(nn.Module): | |
def __init__(self): | |
super(VAE, self).__init__() | |
base = 16 | |
self.encoder = nn.Sequential( | |
Conv(3, base, 3, stride=2, padding=1), | |
Conv(base, 2*base, 3, padding=1), | |
Conv(2*base, 2*base, 3, stride=2, padding=1), | |
Conv(2*base, 2*base, 3, padding=1), | |
Conv(2*base, 2*base, 3, stride=2, padding=1), | |
Conv(2*base, 4*base, 3, padding=1), | |
Conv(4*base, 4*base, 3, stride=2, padding=1), | |
Conv(4*base, 4*base, 3, padding=1), | |
Conv(4*base, 4*base, 3, stride=2, padding=1), | |
nn.Conv2d(4*base, 64*base, 8), | |
nn.LeakyReLU() | |
) | |
self.encoder_mu = nn.Conv2d(64*base, 32*base, 1) | |
self.encoder_logvar = nn.Conv2d(64*base, 32*base, 1) | |
self.decoder = nn.Sequential( | |
nn.Conv2d(32*base, 64*base, 1), | |
ConvTranspose(64*base, 4*base, 8), | |
Conv(4*base, 4*base, 3, padding=1), | |
ConvTranspose(4*base, 4*base, 4, stride=2, padding=1), | |
Conv(4*base, 4*base, 3, padding=1), | |
ConvTranspose(4*base, 4*base, 4, stride=2, padding=1), | |
Conv(4*base, 2*base, 3, padding=1), | |
ConvTranspose(2*base, 2*base, 4, stride=2, padding=1), | |
Conv(2*base, 2*base, 3, padding=1), | |
ConvTranspose(2*base, 2*base, 4, stride=2, padding=1), | |
Conv(2*base, base, 3, padding=1), | |
ConvTranspose(base, base, 4, stride=2, padding=1), | |
nn.Conv2d(base, 3, 3, padding=1), | |
nn.Tanh() | |
) | |
def encode(self, x): | |
x = self.encoder(x) | |
return self.encoder_mu(x), self.encoder_logvar(x) | |
def reparameterize(self, mu, logvar): | |
std = torch.exp(0.5*logvar) | |
eps = torch.randn_like(std) | |
return mu + eps*std | |
def decode(self, z): | |
return self.decoder(z) | |
def forward(self, x): | |
mu, logvar = self.encode(x) | |
z = self.reparameterize(mu, logvar) | |
return self.decode(z), mu, logvar |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment