Skip to content

Instantly share code, notes, and snippets.

@matt-erhart
Created August 21, 2015 21:41
Show Gist options
  • Save matt-erhart/ac4556330ff262f6ee5b to your computer and use it in GitHub Desktop.
Save matt-erhart/ac4556330ff262f6ee5b to your computer and use it in GitHub Desktop.
import os.path as op
import numpy as np
import mne
from mne import spatial_tris_connectivity, grade_to_tris
from mne.datasets import sample
from sklearn import cluster
from collections import Counter
from surfer import Brain, TimeViewer
###############################################################################
# Set parameters
data_path = sample.data_path()
stc_fname = data_path + '/MEG/sample/sample_audvis-meg'
subjects_dir = data_path + '/subjects'
# Load stc to in common cortical space (fsaverage)
stc = mne.read_source_estimate(stc_fname)
stc.resample(50)
stc = mne.morph_data('sample', 'fsaverage', stc, grade=5, smooth=20,
subjects_dir=subjects_dir,n_jobs=-1)
n_vertices_fsave, n_times = stc.data.shape
tstep = stc.tstep
connectivity = spatial_tris_connectivity(grade_to_tris(5))
model = cluster.FeatureAgglomeration(n_clusters=200,connectivity=connectivity
,linkage='average',affinity='cityblock')
fit = model.fit(stc.data.T)
counts = Counter(fit.labels_)
an_roi = np.zeros(fit.labels_.shape)
an_roi[fit.labels_==1] = 10
cluster_stc = mne.SourceEstimate(an_roi[:,None],vertices=stc.vertices,tmin=1,tstep=1)
# plot movies
brain = cluster_stc.plot(subject='fsaverage',hemi='split', colormap="jet",
subjects_dir=subjects_dir,views=['lat', 'med'],
config_opts=dict(width=2500, height=1400))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment