-
-
Save mietek/c4c85691d9b74a999ba0564241349fe0 to your computer and use it in GitHub Desktop.
Definition of a category as an Agda record: level polymorphic in the objects and arrows
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Category where | |
open import Agda.Primitive public | |
using (Level ; _⊔_ ; lzero ; lsuc) | |
open import Agda.Builtin.Equality public | |
using (_≡_ ; refl) | |
record Category ℓ ℓ′ : Set (lsuc (ℓ ⊔ ℓ′)) where | |
field | |
World : Set ℓ | |
_►_ : World → World → Set ℓ′ | |
►-refl : ∀ {w} → w ► w | |
►-trans : ∀ {w w′ w″} → w″ ► w′ → w′ ► w → w″ ► w | |
►-id₁ : ∀ {w w′} → (a : w′ ► w) → ►-trans ►-refl a ≡ a | |
►-id₂ : ∀ {w w′} → (a : w′ ► w) → ►-trans a ►-refl ≡ a | |
►-assoc : ∀ {w w′ w″ w‴} → (a″ : w‴ ► w″) (a′ : w″ ► w′) (a : w′ ► w) → | |
►-trans a″ (►-trans a′ a) ≡ ►-trans (►-trans a″ a′) a | |
id : ∀ {w} → w ► w | |
id = ►-refl | |
infixr 9 _∘_ | |
_∘_ : ∀ {w w′ w″} → w′ ► w → w″ ► w′ → w″ ► w | |
f ∘ g = ►-trans g f | |
open Category {{…}} public | |
instance | |
cat-Set-→ : ∀ {ℓ} → Category (lsuc ℓ) ℓ | |
cat-Set-→ {ℓ} = record | |
{ World = Set ℓ | |
; _►_ = λ X Y → X → Y | |
; ►-refl = λ x → x | |
; ►-trans = λ f g x → g (f x) | |
; ►-id₁ = λ f → refl | |
; ►-id₂ = λ f → refl | |
; ►-assoc = λ f g h → refl | |
} | |
infixl 5 _,_ | |
record Σ {ℓ ℓ′} (X : Set ℓ) (P : X → Set ℓ′) : Set (ℓ ⊔ ℓ′) where | |
instance | |
constructor _,_ | |
field | |
π₁ : X | |
π₂ : P π₁ | |
infixl 2 _∧_ | |
_∧_ : ∀ {ℓ ℓ′} → Set ℓ → Set ℓ′ → Set (ℓ ⊔ ℓ′) | |
X ∧ Y = Σ X (λ x → Y) | |
infix 3 _↔_ | |
_↔_ : ∀ {ℓ ℓ′} → (X : Set ℓ) (Y : Set ℓ′) → Set (ℓ ⊔ ℓ′) | |
X ↔ Y = (X → Y) ∧ (Y → X) | |
cong² : ∀ {ℓ ℓ′ ℓ″} {X : Set ℓ} {Y : Set ℓ′} {Z : Set ℓ″} {x y x′ y′} → | |
(f : X → Y → Z) → x ≡ x′ → y ≡ y′ → | |
f x y ≡ f x′ y′ | |
cong² f refl refl = refl | |
instance | |
cat-Set-↔ : ∀ {ℓ} → Category (lsuc ℓ) ℓ | |
cat-Set-↔ {ℓ} = record | |
{ World = Set ℓ | |
; _►_ = _↔_ | |
; ►-refl = ►-refl , ►-refl | |
; ►-trans = λ { (f , f⁻¹) (g , g⁻¹) → ►-trans f g , ►-trans g⁻¹ f⁻¹ } | |
; ►-id₁ = λ { (f , f⁻¹) → cong² _,_ refl refl } | |
; ►-id₂ = λ { (f , f⁻¹) → cong² _,_ refl refl } | |
; ►-assoc = λ { (f , f⁻¹) (g , g⁻¹) (h , h⁻¹) → cong² _,_ refl refl } | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment