Created
June 13, 2022 20:54
-
-
Save nchaimov/ed1bee43bd0a9f2e51b47cf5d15648d8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
`Learn the Basics <intro.html>`_ || | |
**Quickstart** || | |
`Tensors <tensorqs_tutorial.html>`_ || | |
`Datasets & DataLoaders <data_tutorial.html>`_ || | |
`Transforms <transforms_tutorial.html>`_ || | |
`Build Model <buildmodel_tutorial.html>`_ || | |
`Autograd <autogradqs_tutorial.html>`_ || | |
`Optimization <optimization_tutorial.html>`_ || | |
`Save & Load Model <saveloadrun_tutorial.html>`_ | |
Quickstart | |
=================== | |
This section runs through the API for common tasks in machine learning. Refer to the links in each section to dive deeper. | |
Working with data | |
----------------- | |
PyTorch has two `primitives to work with data <https://pytorch.org/docs/stable/data.html>`_: | |
``torch.utils.data.DataLoader`` and ``torch.utils.data.Dataset``. | |
``Dataset`` stores the samples and their corresponding labels, and ``DataLoader`` wraps an iterable around | |
the ``Dataset``. | |
""" | |
from pprint import pprint | |
import torch | |
from torch import nn | |
from torch.utils.data import DataLoader | |
from torchvision import datasets | |
from torchvision.transforms import ToTensor | |
###################################################################### | |
# PyTorch offers domain-specific libraries such as `TorchText <https://pytorch.org/text/stable/index.html>`_, | |
# `TorchVision <https://pytorch.org/vision/stable/index.html>`_, and `TorchAudio <https://pytorch.org/audio/stable/index.html>`_, | |
# all of which include datasets. For this tutorial, we will be using a TorchVision dataset. | |
# | |
# The ``torchvision.datasets`` module contains ``Dataset`` objects for many real-world vision data like | |
# CIFAR, COCO (`full list here <https://pytorch.org/vision/stable/datasets.html>`_). In this tutorial, we | |
# use the FashionMNIST dataset. Every TorchVision ``Dataset`` includes two arguments: ``transform`` and | |
# ``target_transform`` to modify the samples and labels respectively. | |
# Download training data from open datasets. | |
training_data = datasets.FashionMNIST( | |
root="data", | |
train=True, | |
download=True, | |
transform=ToTensor(), | |
) | |
# Download test data from open datasets. | |
test_data = datasets.FashionMNIST( | |
root="data", | |
train=False, | |
download=True, | |
transform=ToTensor(), | |
) | |
###################################################################### | |
# We pass the ``Dataset`` as an argument to ``DataLoader``. This wraps an iterable over our dataset, and supports | |
# automatic batching, sampling, shuffling and multiprocess data loading. Here we define a batch size of 64, i.e. each element | |
# in the dataloader iterable will return a batch of 64 features and labels. | |
batch_size = 64 | |
# Create data loaders. | |
train_dataloader = DataLoader(training_data, batch_size=batch_size) | |
test_dataloader = DataLoader(test_data, batch_size=batch_size) | |
for X, y in test_dataloader: | |
print(f"Shape of X [N, C, H, W]: {X.shape}") | |
print(f"Shape of y: {y.shape} {y.dtype}") | |
break | |
###################################################################### | |
# Read more about `loading data in PyTorch <data_tutorial.html>`_. | |
# | |
###################################################################### | |
# -------------- | |
# | |
################################ | |
# Creating Models | |
# ------------------ | |
# To define a neural network in PyTorch, we create a class that inherits | |
# from `nn.Module <https://pytorch.org/docs/stable/generated/torch.nn.Module.html>`_. We define the layers of the network | |
# in the ``__init__`` function and specify how data will pass through the network in the ``forward`` function. To accelerate | |
# operations in the neural network, we move it to the GPU if available. | |
# Get cpu or gpu device for training. | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using {device} device") | |
# Define model | |
class NeuralNetwork(nn.Module): | |
def __init__(self): | |
super(NeuralNetwork, self).__init__() | |
self.flatten = nn.Flatten() | |
self.linear_relu_stack = nn.Sequential( | |
nn.Linear(28*28, 512), | |
nn.ReLU(), | |
nn.Linear(512, 512), | |
nn.ReLU(), | |
nn.Linear(512, 10) | |
) | |
def forward(self, x): | |
x = self.flatten(x) | |
logits = self.linear_relu_stack(x) | |
return logits | |
model = NeuralNetwork().to(device) | |
print(model) | |
###################################################################### | |
# Read more about `building neural networks in PyTorch <buildmodel_tutorial.html>`_. | |
# | |
###################################################################### | |
# -------------- | |
# | |
##################################################################### | |
# Optimizing the Model Parameters | |
# ---------------------------------------- | |
# To train a model, we need a `loss function <https://pytorch.org/docs/stable/nn.html#loss-functions>`_ | |
# and an `optimizer <https://pytorch.org/docs/stable/optim.html>`_. | |
loss_fn = nn.CrossEntropyLoss() | |
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) | |
####################################################################### | |
# In a single training loop, the model makes predictions on the training dataset (fed to it in batches), and | |
# backpropagates the prediction error to adjust the model's parameters. | |
def train(dataloader, model, loss_fn, optimizer): | |
size = len(dataloader.dataset) | |
model.train() | |
for batch, (X, y) in enumerate(dataloader): | |
X, y = X.to(device), y.to(device) | |
# Compute prediction error | |
pred = model(X) | |
loss = loss_fn(pred, y) | |
# Backpropagation | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
if batch % 100 == 0: | |
loss, current = loss.item(), batch * len(X) | |
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") | |
############################################################################## | |
# We also check the model's performance against the test dataset to ensure it is learning. | |
def test(dataloader, model, loss_fn): | |
size = len(dataloader.dataset) | |
num_batches = len(dataloader) | |
model.eval() | |
test_loss, correct = 0, 0 | |
with torch.no_grad(): | |
for X, y in dataloader: | |
X, y = X.to(device), y.to(device) | |
pred = model(X) | |
test_loss += loss_fn(pred, y).item() | |
correct += (pred.argmax(1) == y).type(torch.float).sum().item() | |
test_loss /= num_batches | |
correct /= size | |
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") | |
############################################################################## | |
# The training process is conducted over several iterations (*epochs*). During each epoch, the model learns | |
# parameters to make better predictions. We print the model's accuracy and loss at each epoch; we'd like to see the | |
# accuracy increase and the loss decrease with every epoch. | |
def trace_handler(prof): | |
pprint(prof.events()) | |
epochs = 5 | |
print("entering profile region") | |
with torch.profiler.profile( | |
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA], | |
schedule=torch.profiler.schedule(wait=0,warmup=0,active=1), | |
on_trace_ready=trace_handler) as p: | |
for t in range(epochs): | |
print(f"Epoch {t+1}\n-------------------------------") | |
train(train_dataloader, model, loss_fn, optimizer) | |
test(test_dataloader, model, loss_fn) | |
p.step() | |
print("Done!") | |
###################################################################### | |
# Read more about `Training your model <optimization_tutorial.html>`_. | |
# | |
###################################################################### | |
# -------------- | |
# | |
###################################################################### | |
# Saving Models | |
# ------------- | |
# A common way to save a model is to serialize the internal state dictionary (containing the model parameters). | |
torch.save(model.state_dict(), "model.pth") | |
print("Saved PyTorch Model State to model.pth") | |
###################################################################### | |
# Loading Models | |
# ---------------------------- | |
# | |
# The process for loading a model includes re-creating the model structure and loading | |
# the state dictionary into it. | |
model = NeuralNetwork() | |
model.load_state_dict(torch.load("model.pth")) | |
############################################################# | |
# This model can now be used to make predictions. | |
classes = [ | |
"T-shirt/top", | |
"Trouser", | |
"Pullover", | |
"Dress", | |
"Coat", | |
"Sandal", | |
"Shirt", | |
"Sneaker", | |
"Bag", | |
"Ankle boot", | |
] | |
model.eval() | |
x, y = test_data[0][0], test_data[0][1] | |
with torch.no_grad(): | |
pred = model(x) | |
predicted, actual = classes[pred[0].argmax(0)], classes[y] | |
print(f'Predicted: "{predicted}", Actual: "{actual}"') | |
###################################################################### | |
# Read more about `Saving & Loading your model <saveloadrun_tutorial.html>`_. | |
# |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment