Created
July 10, 2020 17:28
-
-
Save orwa-te/4887067323fb32bc5c2e62e29d4afc81 to your computer and use it in GitHub Desktop.
Snippet code for building and training U-Net
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def unet(shape = (128,128,4)): | |
# Left side of the U-Net | |
inputs = Input(shape) | |
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(inputs) | |
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv1) | |
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) | |
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(pool1) | |
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv2) | |
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) | |
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(pool2) | |
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv3) | |
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) | |
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(pool3) | |
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv4) | |
drop4 = Dropout(0.5)(conv4) | |
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) | |
# Bottom of the U-Net | |
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(pool4) | |
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv5) | |
drop5 = Dropout(0.5)(conv5) | |
# Upsampling Starts, right side of the U-Net | |
up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(UpSampling2D(size = (2,2))(drop5)) | |
merge6 = concatenate([drop4,up6], axis = 3) | |
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(merge6) | |
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv6) | |
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(UpSampling2D(size = (2,2))(conv6)) | |
merge7 = concatenate([conv3,up7], axis = 3) | |
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(merge7) | |
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv7) | |
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(UpSampling2D(size = (2,2))(conv7)) | |
merge8 = concatenate([conv2,up8], axis = 3) | |
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(merge8) | |
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv8) | |
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(UpSampling2D(size = (2,2))(conv8)) | |
merge9 = concatenate([conv1,up9], axis = 3) | |
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(merge9) | |
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv9) | |
conv9 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'random_normal')(conv9) | |
# Output layer of the U-Net with a softmax activation | |
conv10 = Conv2D(9, 1, activation = 'softmax')(conv9) | |
model = Model(input = inputs, output = conv10) | |
model.compile(optimizer = Adam(lr = 0.0001), loss = 'categorical_crossentropy', metrics = ['accuracy']) | |
model.summary() | |
return model | |
strategy = tf.distribute.MirroredStrategy() | |
with strategy.scope(): | |
dist_model = unet() | |
history = dist_model.fit(trainx, trainy_hot, epochs=1, validation_data = (testx, testy_hot),batch_size=64, verbose=1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment