Created
August 2, 2023 14:25
-
-
Save phinate/1c95a8d216d26349f77035cd0da42d1c to your computer and use it in GitHub Desktop.
pyhf-like models as pytrees
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import jax.scipy as jsp | |
import equinox as eqx | |
import jax.numpy as jnp | |
from jax import Array | |
import jax | |
jax.config.update("jax_enable_x64", True) | |
@jax.jit | |
def poisson_logpdf(n, lam): | |
return n * jnp.log(lam) - lam - jsp.special.gammaln(n + 1) | |
class Model(eqx.Module): | |
def logpdf(self, data: Array, pars: dict[str, Array] | Array) -> Array: | |
raise NotImplementedError | |
def expected_data(self, pars: dict[str, Array] | Array) -> Array: | |
raise NotImplementedError | |
class Systematic(eqx.Module): | |
name: str | |
constraint: Model | |
class PoissonConstraint(Model): | |
scaled_binwise_uncerts: Array | |
def __init__(self, nominal_bkg: Array, binwise_uncerts: Array) -> None: | |
eqx.error_if( | |
nominal_bkg, | |
nominal_bkg.shape != binwise_uncerts.shape, | |
f"Nominal bkg shape {nominal_bkg.shape} does not match binwise uncertainty shape {binwise_uncerts.shape}" | |
) | |
self.scaled_binwise_uncerts = binwise_uncerts / nominal_bkg | |
def expected_data(self, gamma: Array) -> Array: | |
return gamma*self.scaled_binwise_uncerts**-2 | |
def logpdf(self, auxdata, gamma): | |
eqx.error_if( | |
gamma, | |
gamma.shape != self.scaled_binwise_uncerts.shape, | |
f"Constrained param shape {gamma.shape} does not match number of bins {self.scaled_binwise_uncerts.shape}" | |
) | |
return jnp.sum( | |
poisson_logpdf(auxdata, (gamma*self.scaled_binwise_uncerts**-2)), | |
axis=None | |
) | |
class UncorrelatedShape(Systematic): | |
def __init__(self, name: str, nominal_bkg: Array, binwise_uncerts: Array) -> None: | |
self.name = name | |
self.constraint = PoissonConstraint(nominal_bkg, binwise_uncerts) | |
class HEPDataLike(Model): | |
sig: Array | |
bkg: Array | |
db: Array | |
poi_name: str | |
systematic: UncorrelatedShape | |
def __init__(self, sig: Array, bkg: Array, db: Array, poi_name: str = "mu", nuis_name: str = "shapesys") -> None: | |
self.sig = sig | |
self.bkg = bkg | |
self.db = db | |
self.poi_name = poi_name | |
self.systematic = UncorrelatedShape(nuis_name, bkg, db) | |
def expected_data(self, pars: dict[str, Array]) -> Array: | |
mu, gamma = pars[self.poi_name], pars[self.systematic.name] | |
return mu * self.sig + gamma * self.bkg, self.systematic.constraint.expected_data(gamma) | |
def logpdf(self, data: Array, pars: dict[str, Array]) -> Array: | |
maindata, auxdata = data | |
main, _ = self.expected_data(pars) | |
main = jnp.sum(poisson_logpdf(maindata, main), axis=None) | |
constraint = self.systematic.constraint.logpdf(auxdata, pars[self.systematic.name]) | |
return main + constraint | |
# example: | |
sig = jnp.array([5,10]) | |
bkg = jnp.array([50.0, 60.0]) | |
uncerts = jnp.array([5.0, 12.0]) | |
model = HEPDataLike(sig, bkg, uncerts, poi_name="mu", nuis_name="shapesys") | |
pars = {"mu": jnp.array(1.0), "shapesys": jnp.array([1.0, 1.0])} | |
data = model.expected_data(pars) | |
# pyhf version | |
import pyhf | |
pyhf_model = pyhf.simplemodels.uncorrelated_background([5, 10], [50, 60], [5, 12]) | |
pyhf_pars = pyhf.tensorlib.astensor([1.0, 1.0, 1.0]) | |
pyhf_data = pyhf_model.expected_data(pyhf_pars) | |
assert jnp.allclose(model.logpdf(data, pars), pyhf.tensorlib.astensor(pyhf_model.logpdf(pyhf_pars, pyhf_data))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment