Executable and Linkable Format (ELF), is the default binary format on Linux-based systems.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Copyright 2019 The MediaPipe Authors. | |
// | |
// Licensed under the Apache License, Version 2.0 (the "License"); | |
// you may not use this file except in compliance with the License. | |
// You may obtain a copy of the License at | |
// | |
// http://www.apache.org/licenses/LICENSE-2.0 | |
// | |
// Unless required by applicable law or agreed to in writing, software | |
// distributed under the License is distributed on an "AS IS" BASIS, |
Training TensorFlow models in C++
Python is the primary language in which TensorFlow models are typically developed and trained. TensorFlow does have bindings for other programming languages. These bindings have the low-level primitives that are required to build a more complete API, however, lack much of the higher-level API richness of the Python bindings, particularly for defining the model structure.
This file demonstrates taking a model (a TensorFlow graph) created by a Python program and running the training loop in C++.
-
Hackers & Painters: http://www.paulgraham.com/hp.html
-
Logicomix: https://bd.backpackbang.com/item/1596914521
-
Learn Hapi:
- React Boilerplate: https://github.com/facebookincubator/create-react-app
- React Native Boilerplate: https://facebook.github.io/react-native/blog/2017/03/13/introducing-create-react-native-app.html
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) | |
BSD License | |
""" | |
import numpy as np | |
# data I/O | |
data = open('input.txt', 'r').read() # should be simple plain text file | |
chars = list(set(data)) | |
data_size, vocab_size = len(data), len(chars) |